-

=
kea

Kea Administrator Reference Manual

Documentation
Release 2.7.5

Internet Systems Consortium

Dec 06, 2024

CONTENTS

1 Introduction

1.1

1.2
1.3

Supported Platforms L e
1.1.1 Regularly Tested Platforms
1.1.2 Best-Effort e
1.1.3 Community-Maintained e e e e
1.1.4 Unsupported Platforms e e
Required Software at Runtime L
Kea Software e e e

2 Quick Start

2.1
22
23
24
2.5

Quick Start Guide Using tarball
Quick Start Guide Using Native Packages oo
Quick Start Guide Using Docker Containers
Quick Start Guide for DHCPv4 and DHCPv6 Services
Running the Kea Servers Directly e e

3 Installation

3.1

32
33
34

3.5

3.6
3.7
3.8

Packages e e e e e e
3.1.1 Installation From Cloudsmith Packages
3.1.2 Caveats When Upgrading Kea Packages
Installation Hierarchy o . . e
Build Requirements L e e e
Installation From Source
341 Download TarFile
3.4.2 Verify The Tar File Signature
343 Retrieve From Git e
344 Configure Before the Build
345 Build ...
346 Install
347 Cross-Building oL e e e
DHCP Database Installation and Configuration
3.5.1 Building with MySQL Support e
3.5.2 Building with PostgreSQL support
Hammer Building Tool o e e e e e
Running Kea From a Non-root AccountonLinux
Deprecated Features e e
3.8.1 Sysrepo0.x0or 1.X . . . o L o e e e e e e e e

4 Kea Database Administration

4.1

Databases and Schema Versions e e e e e e e

Db owoww

13
13
13
14
14
15
16
16
16
16
17
18
18
19
19
19
19
20
22
23
23

25
25

42 Thekea-adminTool
4.3 Supported Backends L e e e e e e
431 Memfile e
4.3.1.1 Upgrading Memfile Lease Files From an Earlier Versionof Kea

432 MySQL . . . e e e
43.2.1 MySQL 5.7vs MySQL 8 vs MariaDB 10and 11

4.3.2.2 First-Time Creation of the MySQL Database

4.3.2.3 Upgrading a MySQL Database From an Earlier Versionof Kea

4.3.2.4 Improved Performance WithMySQL

433 PostgreSQL L e e e e
4.3.3.1 First-Time Creation of the PostgreSQL Database

4.3.3.2 Initialize the PostgreSQL Database Using kea-admin

4.3.3.3 Upgrading a PostgreSQL Engine From an Earlier Version

4.3.3.4 Upgrading a PostgreSQL Database From an Earlier Versionof Kea

4.3.3.5 PostgreSQL without OpenSSL support

4.3.3.6 Improved Performance With PostgreSQL

4.3.4 Using Read-Only Databases With Host Reservations

4.3.5 Limitations Related to the Use of SQL Databases
4351 Year20381Issue e

Kea Configuration

5.1 JSON Configuration o 0 i i e e e e e e e e e e e e e
5.1 JSONSYNtax . . . o v ot e e e e e e e e e e e e e
5.1.2 Comments and User CONteXt o v v v v i ittt et e e e e e
5.1.3 Simplified Notation e

5.2 KeaConfiguration Backend L
5.2.1 Applicability e e e e e e e e e
5.2.2 CB Capabilities and Limitations o e
523 CBCOMPONENtS v v v it e e et e e e e e e e e e e e e e e e e e e
5.2.4 Configuration Sharing and Server Tags
5.2.5 Configuration Files Inclusion L

Managing Kea with keactrl

6.1 OVEIVIEW o o o i e e e
6.2 Command Line Options e e e e
6.3 The keactrl Configuration File e
6.4 Commands e e e e
6.5 Overriding the Server Selection L e
6.6 Native Packages and systemd L
The Kea Control Agent
7.1 Overview of the Kea Control Agent
7.2 Configuration L. e e e
7.3 Secure CONNECHONS v v v v v v e ettt e e e e e e e e e e
7.4 Starting and Stopping the Control Agent. e e e
7.5 Connecting tothe Control AGent o o v v i e e e e e e e e e e e
The DHCPv4 Server
8.1 Starting and Stopping the DHCPv4 Server ittt
8.2 DHCPv4 Server Configuration o ittt e e e e e e e e e
8.2.1 Introduction e e e e e e e e e e e
8.2.2 Lease Storage o it i e e e e e e e e e e e e e
8.2.2.1 Memfile - Basic Storage for Leases
8.2.2.2 Why Is Lease File Cleanup Necessary? v v v v ..
8.2.2.3 Lease Database Configuration i

35
35
35
36
39
39
39
40
41
41
43

45
45
45
45
47
49
50

51
51
51
54
54
55

8.3

8.2.2.4 Tuning Database Timeouts 65

8.2.3 HOStS StOrage o i e e e e e e e e e e e 66
8.2.3.1 DHCPv4 Hosts Database Configuration 66
8.2.3.2 Using Read-Only Databases for Host Reservations With DHCPv4 68
8.2.3.3 Tuning Database Timeouts for Hosts Storage 69

8.2.4 Interface Configuration L 69

8.2.5 Issues With Unicast Responses to DHCPINFORM 72

8.2.6 IPv4 Subnetldentifier. L 73

8277 IPv4SubnetPrefix e 73

8.2.8 Configuration of [IPv4 Address Pools 74

8.2.9 Sending T1 (Option 58) and T2 (Option 59) 76

8.2.10 Standard DHCPv4 Options o oo it i i ittt e e e e 77

8.2.11 CableLabs Client Conf Suboptions 87

8.2.12 Custom DHCPv4 Options i et e et e 88

8.2.13 DHCPv4 Private Options e 90

8.2.14 DHCPv4 Vendor-SpecificOptions 93

8.2.15 Nested DHCPv4 Options (Custom Option Spaces) 97

8.2.16 Unspecified Parameters for DHCPv4 Option Configuration 99

8.2.17 Support for Long Options e e e e e e 99

8.2.18 Support for IPv6-Only Preferred Option 100

8.2.19 Stateless Configuration of DHCPv4 Clients 101

8.2.20 Client Classificationin DHCPv4 101
8.2.20.1 Setting Fixed Fields in Classification 103
8.2.20.2 Using Vendor Class Information in Classification 103
8.2.20.3 Defining and Using Custom Classes 104
8.2.20.4 Additional Classification 105

8221 DDNSfor DHCPv4 e 106
8.2.21.1 DHCP-DDNS Server Connectivity 109
8.2.21.2 When Does the kea-dhcp4 Server Generate a DDNS Request? 110
8.2.21.3 kea-dhcp4 Name Generation for DDNS Update Requests 111
8.2.21.4 Sanitizing Client Host Name and FQDN Names 113

8.2.22 NextServer (siaddr) e e e e e 114

8.2.23 Echoing Client-ID (RFC 6842) i st 114

8.2.24 Using Client Identifier and Hardware Address 115

8.2.25 Authoritative DHCPv4 Server Behavior 117

8.2.26 DHCPv4-over-DHCPv6: DHCPv4 Side 117

8.2.27 Sanity Checks in DHCPv4 o 118

8.2.28 Storing Extended Lease Information o oo L. 119

8.2.29 Stash Agent Options i i 0 i e e e e e e e e e e 120

8.2.30 Multi-Threading Settings i e e e e e e 120

8.2.31 Multi-Threading Settings With Different Database Backends 121

8.2.32 IPv6-Only Preferred Networks 121

8.2.33 LeaseCaching e 122

8.2.34 Temporary Allocation on DHCPDISCOVER 123

8.2.35 DNR (Discovery of Network-designated Resolvers) Options for DHCPv4 124

Host Reservations in DHCPv4 0 0. o o e 125

8.3.1 Address Reservation Types e 126

8.3.2 Conflicts in DHCPv4 Reservations ittt 127

833 ReservingaHostname e 128

8.3.4 Including Specific DHCPv4 Options in Reservations 129

8.3.5 Reserving Next Server, Server Hostname, and Boot File Name 130

8.3.6 Reserving Client Classesin DHCPv4 131

8.3.7 Storing Host Reservations in MySQL or PostgreSQL 132

8.3.8 Fine-Tuning DHCPv4 Host Reservation 132

8.3.9 Global Reservations in DHCPv4 e 138

8.3.10 Pool Selection with Client Class Reservations 140
8.3.11 Subnet Selection with Client Class Reservations 141
8.3.12 Multiple Reservations for the Same IP oo 143
8.3.13 Host Reservations as Basic Access Control, 144

8.4 Shared Networks in DHCPv4 e 146
8.4.1 Local and Relayed Traffic in Shared Networks 149

8.4.2 Client Classification in Shared Networks 152

8.4.3 Host Reservations in Shared Networks 154

8.5 Server Identifier in DHCPv4 e 155
8.6 How the DHCPv4 Server Selects a Subnet for the Client 155
8.6.1 Using a Specific Relay AgentforaSubnet 156

8.6.2 Segregating [IPv4 Clients in a Cable Network 157

8.7 Duplicate Addresses (DHCPDECLINE Support) 158
8.8 Statistics in the DHCPv4 Server o 0 e e e e 159
8.9 Management API forthe DHCPv4 Server 164
8.9.1 UNIX Control Socket e e 164

8.9.2 HTTP/HTTPS Control Socket i s 165

8.10 User Contexts in IPv4 o L e 167
8.11 Supported DHCP Standards 168
8.11.1 Known RFC Violations e 170

8.12 DHCPv4 Server Limitations 0 e e e e 170
8.13 Kea DHCPv4 Server Examples o 0 i i e e e e e e e e e 171
8.14 Configuration Backend in DHCPv4 171
8.14.1 Supported Parameters oL e 171
8.14.2 Enabling the Configuration Backend 173

8.15 Kea DHCPv4 Compatibility Configuration Parameters 175
8.15.1 Lenient Option Parsing e 176
8.15.2 Ignore DHCP Server Identifier 176
8.15.3 Ignore RAILink Selection e 176
8.15.4 Exclude First Last Addresses in /24 Subnetsor Larger 177

8.16 Address Allocation Strategies in DHCPv4 177
8.16.1 Allocators Comparison ittt e e e e e e 177
8.16.2 Tterative Allocator e e e e e e 178
8.16.3 Random Allocator e e 178
8.16.4 Free Lease Queue Allocator i i i it e e 178

The DHCPv6 Server 181
9.1 Starting and Stopping the DHCPv6 Server 181
9.2 DHCPv6 Server Configuration e 182
9.2.1 Introduction oL e e e e e 182

9.2.2 Lease StOrage oo it e e e e e e e e e e e e 185
9.2.2.1 Memfile - Basic Storage forLeases 185

9.2.2.2 Why Is Lease File Cleanup Necessary? o v i v v v i 186

9.2.2.3 Lease Database Configuration 186

9.2.24 Tuning Database Timeouts 188

9.23 HostsStorage e 189
9.2.3.1 DHCPv6 Hosts Database Configuration 190

9.2.3.2 Using Read-Only Databases for Host Reservations with DHCPv6 191

9.2.3.3 Tuning Database Timeouts for Hosts Storage 192

9.2.4 Interface Configuration 192

9.2.5 IPv6 SubnetIdentifier L 194

9.2.6 IPv6SubnetPrefix e 194

9.2.7 Unicast Traffic Support e e e e 195

9.3

9.4

9.5

9.2.8 Configuration of IPv6 AddressPools 195
9.2.9 Subnet and Prefix Delegation Pools 197
9.2.10 Prefix Exclude Option e e e 198
9.2.11 Standard DHCPv6 Options i i 199
9.2.12 Common Softwire46 Optionso it 207

9.2.12.1 Softwire46 Container Options e 208

9.2.12.2 S46RuleOption L 208

0.2.12.3 S46BROption e e e 209

9.2.124 S46DMR Optionot e e e 209

9.2.12.5 S46 IPv4/IPv6 Address Binding Option 209

9.2.12.6 S46 PortParameters e e 209
9.2.13 DNR (Discovery of Network-designated Resolvers) Options for DHCPv6 210
9.2.14 NTP Server SUbOptons o o o e e e e e e e e e 212
9.2.15 Custom DHCPv6 Options o o it e e e e e e e 212
9.2.16 DHCPv6 Vendor-Specific Options L .. 214
9.2.17 Nested DHCPv6 Options (Custom Option Spaces) 217
9.2.18 Unspecified Parameters for DHCPv6 Option Configuration 219
9.2.19 Controlling the Values Sent for Tl and T2 Times 219
9.220 IPv6 Subnet Selection. L e e e 220
9.221 Rapid Commit o e e e e e e e 221
9.222 DHCPvORelays o e e e 222
9.2.23 Relay-Supplied Options e e 222
9.2.24 Client Classificationin DHCPv6 223

9.2.24.1 Defining and Using Custom Classes o v v v v i 224

9.2.242 Additional Classification 225
9.225 DDNSforDHCPVO e e 226

9.2.25.1 DHCP-DDNS Server Connectivity 229

9.2.25.2 When Does the kea-dhcp6 Server Generate a DDNS Request? 230

9.2.25.3 kea-dhcp6 Name Generation for DDNS Update Requests 231

9.2.25.4 Sanitizing Client FQDN Names 233
9.2.26 DHCPv4-over-DHCPv6: DHCPv6 Side 234
9.2.27 Sanity Checksin DHCPv6o 235
9.2.28 Storing Extended Lease Information L oL, 236
9.2.29 Multi-Threading Settings i i i e e e e e e e e 237
9.2.30 Multi-Threading Settings With Different Database Backends 238
9.231 LeaseCaching e e e 238
Host Reservations in DHCPv6 o o e 239
9.3.1 Address/Prefix Reservation Types e 241
9.3.2 Conflicts in DHCPv6 Reservations, 242
9.3.3 ReservingaHostname e e e 242
9.3.4 Including Specific DHCPv6 Options in Reservations 244
9.3.5 Reserving Client Classes in DHCPv6 245
9.3.6 Storing Host Reservations in MySQL or PostgreSQL 246
9.3.7 Fine-Tuning DHCPv6 Host Reservation 246
9.3.8 Global Reservationsin DHCPv6 252
9.3.9 Pool Selection with Client Class Reservations 254
9.3.10 Subnet Selection with Client Class Reservations 255
9.3.11 Multiple Reservations forthe Same IP 257
9.3.12 Host Reservations as Basic Access Control, 258
Shared Networks in DHCPVO s e 260
9.4.1 Local and Relayed Traffic in Shared Networks 263
9.4.2 Client Classification in Shared Networks 266
9.4.3 Host Reservations in Shared Networks 268
Server Identifier in DHCPvO o e 269

10

11

12

13

9.6 DHCPvODataDirectory i i i e e e e e e
9.7 Stateless DHCPv6 (INFORMATION-REQUEST Message) v v v v v v oo v v,
9.8 Support for RFC 7550 (now part of RFC 8415) e
9.9 Using a Specific Relay AgentforaSubnet L o L.
9.10 Segregating IPv6 Clients ina Cable Network
9.11 MAC/Hardware Addresses in DHCPvG,
9.12 Duplicate Addresses (DHCPDECLINE Support) o v v i ittt e e
9.13 Statistics in the DHCPv6 Server e
9.14 Management API for the DHCPv6 Server
9.14.1 UNIX Control Socket e e
9.14.2 HTTP/HTTPS Control Socket i et
9.15 UserContextsinIPVO e
9.16 Supported DHCPvV6 Standards 0 0 e e e e e e
9.17 DHCPv6 Server Limitations e e e
9.18 Kea DHCPv6 Server Examples e
9.19 Configuration Backendin DHCPv6
9.19.1 Supported Parameters e
9.19.2 Enabling the Configuration Backend
9.20 Kea DHCPv6 Compatibility Configuration Parameters
9.20.1 LenientOption Parsing
9.21 Allocation Strategiesin DHCPv6
9.21.1 Allocators CompariSOn v v v v i v e e e e e e e e e
9.21.2 Tterative Allocator o e e e e e e
9.21.3 Random Allocator e e e e e e
9.21.4 Free Lease Queue Allocator (Prefix DelegationOnly)

Database Connectivity

Lease Expiration

11.1 Lease Reclamation e e e
11.2 Lease Reclamation Configuration Parameters
11.3 Configuring Lease Reclamation e
11.4 Configuring Lease Affinity L
11.5 Reclaiming Expired Leases viaCommand

Congestion Handling
12.1 Whatis Congestion? e e e e e e e e e e e
12.2 Configuring Congestion Handling

The DHCP-DDNS Server
13,1 OVEIVIEW o o e e e e e e e e e e e e e
13.1.1 DNS Server Selection e e e e e e
13.1.2 Conflict Resolution e e e e e
13.1.3 Dual-Stack Environments e e e e e
13.2 Starting and Stopping the DHCP-DDNS Server
13.3 Configuring the DHCP-DDNS Server
13.3.1 Global Server Parameters
13.3.2 Management APl forthe D2 Server e
13.3.2.1 UNIX Control Socket e e e e e e e e e e
13.3.2.2 HTTP/HTTPS Control Socket
1333 TSIGKeyList. o o e
13.3.4 Forward DDNS e e e e
13.3.4.1 Adding Forward DDNS Domains
13.3.4.1.1 Adding Forward DNS Servers
13.3.5 Reverse DDNS e e e e e e

299

301
301
302
302
304
305

307
307
307

vi

13.3.5.1 Adding Reverse DDNS Domains 318

13.3.5.1.1 Adding Reverse DNS Servers 319

13.3.5.2 Per-DNS-Server TSIGKeys o e 320

13.3.6 User Contexts in DDNS o e 321
13.3.7 Example DHCP-DDNS Server Configuration 321

13.4 DHCP-DDNS Server StatisticS« o v v v e e e e e e e e 324
1341 NCRSEatistics v v v v o e et e e e e e e e e e e e e e e e 324
13.4.2 DNS Update Statistics o v v i o e e e e e e e e e e e e e e e e e 324
13.4.3 Per-TSIG-Key DNS Update Statistics 325

13.5 DHCP-DDNS Server Limitations e e 325
13.6 Supported Standards e e 325
14 The LFC Process 327
141 OVerview o e e e e e e e e e e e e e e e 327
142 Command-Line Options o o e e e 327
15 Client Classification 329
15.1 Client Classification OVerview v ittt s e e e e e 329
15.1.1 Classification Steps o i i e e e e 330

15.2 Built-in Client Classes ot v i it e e e e e e e e e 331
15.3 Using Expressions in Classification e 331
153.1 Predicates o o L e e e e e e e e e e e 335
15.3.2 Logical Operators e e 335
1533 Substring 335
1534 Concat. oo i e e e e e e e 336

15.3.5 Split . . o o e e e 336
153.6 Ifelse o e 336
15377 Hexstring oL e 337

15.4 Configuring Classes o i i i e e e e e 337
15.4.1 Template Classes o v vt i it e e e e e e e 339

15.5 Using Static Host Reservations in Classification 341
15.6 Configuring Subnets With Class Information 341
15.7 Configuring Pools With Class Information 343
15.8 Class Priority o o e e 344
15.9 Option Class-Tagging 0 i i e e e e 345
15.10 Classes and HoOks o L L i e e e 346
15.11 Debugging EXpressions o o . o e e e e e e e e e 346
16 Hook Libraries 349
16.1 Introduction e e e e e e 349
16.2 Installing Hook Packages o e e e 349
16.3 Configuring Hook Libraries 351
16.3.1 Order of Configuration: e 352
16.3.2 UserContextsin Hooks 352

16.3.3 Parked-Packet Limit. e 354

16.4 Available Hook Libraries e 355
16.5 1libdhcp_bootp.so: Support for BOOTP Clients 358
16.5.1 BOOTP Hooks Limitations et 359

16.6 1libdhcp_cb_cmds.so: Configuration Backend Commands 359
16.6.1 Command Structure it e e e e e e e e e e 360
16.6.2 Control Commands for DHCP Servers 361
16.6.3 Metadata e e e e e 361
16.6.4 The remote-server4-del, remote-server6-del Commands 361
16.6.5 The remote-server4-get, remote-server6-get Commands 362

vii

16.6.6 The remote-server4-get-all, remote-server6-get-all Commands 363
16.6.7 The remote-server4-set, remote-server6-set Commands 364
16.6.8 The remote-global-parameter4-del, remote-global-parameter6-del Commands . 365
16.6.9 The remote-global-parameter4-get, remote-global-parameter6-get Commands . 365
16.6.10 The remote-global-parameter4-get-all, remote-global-parameter6-get-all

Commands e e 367

16.6.11 The remote-global-parameter4-set, remote-global-parameter6-set Commands . 368
16.6.12 The remote-network4-del, remote-network6-del Commands 368
16.6.13 The remote-network4-get, remote-network6-get Commands 369
16.6.14 The remote-network4-1ist, remote-network6-list Commands 369
16.6.15 The remote-network4-set, remote-network6-set Commands 371
16.6.16 The remote-option-def4-del, remote-option-def6-del Commands 372
16.6.17 The remote-option-def4-get, remote-option-def6-get Commands 373
16.6.18 The remote-option-def4-get-all, remote-option-def6-get-all Commands . .. 373
16.6.19 The remote-option-def4-set, remote-option-def6-set Commands 374
16.6.20 The remote-option4-global-del, remote-option6-global-del Commands 375
16.6.21 The remote-option4-global-get, remote-option6-global-get Commands 375
16.6.22 The remote-option4-global-get-all, remote-option6-global-get-all Commands 376
16.6.23 The remote-option4-global-set, remote-option6-global-set Commands 376
16.6.24 The remote-option4-network-del, remote-option6-network-del Commands . .. 377
16.6.25 The remote-option4-network-set, remote-option6-network-set Commands ... 378
16.6.26 The remote-option6-pd-pool-del Command 379
16.6.27 The remote-option6-pd-pool-set Command 379
16.6.28 The remote-option4-pool-del, remote-option6-pool-del Commands 380
16.6.29 The remote-option4-pool-set, remote-option6-pool-set Commands 381
16.6.30 The remote-option4-subnet-del, remote-option6-subnet-del Commands 381
16.6.31 The remote-option4-subnet-set, remote-option6-subnet-set Commands 382
16.6.32 The remote-subnet4-del-by-id, remote-subnet6-del-by-id Commands 383
16.6.33 The remote-subnet4-del-by-prefix, remote-subnet6-del-by-prefix Commands . 383
16.6.34 The remote-subnet4-get-by-id, remote-subnet6-get-by-id Commands 384
16.6.35 The remote-subnet4-get-by-prefix, remote-subnet6-get-by-prefix Commands . 384
16.6.36 The remote-subnet4-1ist, remote-subnet6-1list Commands 385
16.6.37 The remote-subnet4-set, remote-subnet6-set Commands 386
16.6.38 The remote-class4-del, remote-class6-del Commands 388
16.6.39 The remote-class4-get, remote-class6-get Commands 388
16.6.40 The remote-class4-get-all, remote-class6-get-all Commands 389
16.6.41 The remote-class4-set, remote-class6-set Commands 390

16.7 libdhcp_class_cmds.so: ClassCommands v v v v v i i i i e i oo e 391
16.7.1 The class-addCommand i it ittt e 392
16.7.2 The class-update Command i e 392
16.7.3 The class-del Command i i i ittt et e et 393
16.7.4 The class-list Command it ittt 394
16.7.5 The class-getCommand i i i ittt e e e 394

16.8 libdhcp_ddns_tuning.so: DDNS Tuning 395
16.8.1 Procedural Host-Name Generation 396
16.8.1.1 DHCPv4 Host-Name Generation v v v v v 397

16.8.1.2 DHCPv6 Host-Name Generation 397

16.8.2 Skipping DDNS Updates oo ittt et et e e 398

169 libdhcp_flex_id.so: Flexible Identifier for Host Reservations 399
16.9.1 The replace-client-idFlag i 401
16.9.2 The ignore-iaidFlag. e 402

16.10 1ibdhcp_flex_option.so: Flexible Option Actions for Option Value Settings 403
16.11 1libddns_gss_tsig.so: Sign DNS Updates With GSS-TSIG 406
16.12 1ibdhcp_ha.so: High Availability Outage Resilience for Kea Servers 406

viii

16.12.1 Supported Configurations e e e 406

16.12.2 Clocks on Active SErvers i v i i it e e e e e e e e e e e e e e e 408
16.12.3 HTTPS Support o o e e e e e e e e e e e e e e e e 408
16.12.4 Server States e 411
16.12.5 Scope Transition in a Partner-Down Case 414
16.12.6 Load-Balancing Configuration e 415
16.12.7 Load Balancing With Advanced Classification 419
16.12.8 Hot-Standby Configuration o e e e 421
16.12.9 Passive-Backup Configuration e 422
16.12.10Lease Information Sharing L 424
16.12.11Controlling Lease-Page Size Limit 425
16.12.12TIiMEOULS o o e e e e e e e e e e e e e e e e e e 425
16.12.13Pausing the HA State Machine e 426
16.12.14Control Agent Configurationo e 429
16.12.15Multi-Threaded Configuration (HA+MT) 429
16.12.16Parked-Packet Limit 431
16.12.17Controlled Shutdown and Maintenance of DHCP Servers 431
16.12.18Control Commands for High Availability 432
16.12.18.1The ha-sync Command v i v it it et e 433
16.12.18.2The ha-scopes Command i i i 433
16.12.18.3The ha-continue Command 434
16.12.18.4The ha-heartbeat Command 434
16.12.18.5The status-get Command 436
16.12.18.6The ha-maintenance-start Command 438
16.12.18.7The ha-maintenance-cancel Command 438
16.12.18.8The ha-maintenance-notify Command 438
16.12.18.9The ha-reset Command i i i ittt e e 439
16.12.18.10he ha-sync-complete-notify Command 440
16.12.19Hub and Spoke Configuration e e e 440
16.13 1libdhcp_host_cache. so: Host Cache Reservations for Improved Performance 444
16.13.1 The cache-flush Command 445
16.13.2 The cache-clear Command i it i e 445
16.13.3 The cache-size Command i i i i ittt ittt et e 446
16.13.4 The cache-write Command 446
16.13.5 The cache-load Command ittt 446
16.13.6 The cache-get Command i it i ittt e 447
16.13.7 The cache-get-by-idCommand 447
16.13.8 The cache-insert Command i i i i ittt et 447
16.13.9 The cache-remove Command vttt 448
16.14 1libdhcp_host_cmds.so: Host Commandso, 449
16.14.1 The subnet-id Parameter i i i ittt e e e e 450
16.14.2 The operation-target Parameter 450
16.14.3 The reservation-add Command 451
16.14.4 The reservation-get Command e, 453
16.14.5 The reservation-get-all Command 454
16.14.6 The reservation-get-pageCommand 455
16.14.7 The reservation-get-by-addressCommand 457
16.14.8 The reservation-get-by-hostname Command 461
16.14.9 The reservation-get-by-idCommand 462
16.14.10The reservation-del Command i, 464
16.14.11The reservation-update Command 465
16.14.12General Mentions v vt i e e e e e e e e e e e e e e e e 467
16.15 1ibdhcp_lease_cmds. so: Lease Commands for Easier Lease Management 467
16.15.1 The lease4-add, lease6-add Commands v 469

16.15.2 The lease6-bulk-apply Command 471

16.15.3 The lease4d-get, lease6-get Commands 472
16.15.4 The leased4-get-all, lease6-get-all Commands 474
16.15.5 The lease4-get-page, lease6-get-page Commands 476
16.15.6 The lease4-get-by-*, lease6-get-by-* Commands 477
16.15.7 The lease4-del, lease6-del Commands v v v v v v v v v v 478
16.15.8 The lease4-update, lease6-update Commands 479
16.15.9 The lease4-wipe, lease6-wipe Commands 480
16.15.10The lease4-resend-ddns, lease6-resend-ddns Commands 481
16.15.11The lease4-write, lease6-write Commands 482

16.16 1libdhcp_lease_query.so: Leasequery SUpport v i i i 482
16.16.1 DHCPV4 Leasequery v v v v v ittt e e e e e e e e e e e e e 482
16.16.2 DHCPv4 Leasequery Configuration o v v vt it v et e oo 483
16.16.3 DHCPVO Leasequery v v v v it e e e e e e e e e e e e e e e e e e 484
16.16.4 DHCPvV6 Leasequery Configuration 486
16.16.5 DHCPv4 Bulk Leasequery o o ittt it e et e e e e 486
16.16.6 DHCPv6 Bulk Leasequery o o it i ittt e e et e e e 487
16.16.7 Bulk Leasequery Configuration o v v v i i it e e e 488
16.16.8 Updating Existing Leases in SQL Lease Backends 490

16.17 1ibdhcp_legal_log.so: Forensic Logging 491
16.17.1 LogFile Naming e 491
16.17.2 Configuring the Forensic Logging Hooks 492
16.17.3 DHCPv4 Log Entries i e e e e e e e e e e e e e 495
16.17.4 DHCPv6 Log Entries i e e e e e e e e e e e 499
16.17.5 Database Backend e 505

16.18 1ibdhcp_limits.so: Limits to Manage Lease Allocation and Packet Processing 506
16.18.1 Configuration e e e e e 506
16.18.2 Lease Limiting e e 508
16.18.3 Rate Limiting o . e e e e e e e e e e e 508

16.19 libdhcp_mysql.so: Database Backend for MySQL, 509
16.19.1 MySQL Configuration Backend oo 0oL, 509

16.20 1libdhcp_perfmon.so: Performance Monitoring oL 510
16.20.1 OVEIVIEW o i ittt e e e e e e e e e e e 510
16.20.2 Passive Event Logging e e e 511
16.20.3 Duration Monitoring L e e e e e e e e e 511
16.20.4 Statistics Reporting L e 512
16.20.5 Alarms L e e e e e e e e e e e e e 513
16.20.6 APTCommands o v i i i e e e e e e e e e e e e e e e e e e e 513
16.20.6.1 The perfmon-control Command 513

16.20.6.2 The perfmon-get-all-durations Command 514

16.20.7 Configuration e e e e e e 516

16.21 libdhcp_ping_check.so: PingCheck 517
16.21.1 OVEIVIEW . . . o v v i o e 517
16.21.2 Configuration L i e e e e e e e e 519

16.22 1ibdhcp_pgsql.so: Database Backend for PostgreSQL 520
16.22.1 PostgreSQL Configuration Backendo oL, 520

16.23 1ibdhcp_radius.so: RADIUS Server Support 520
16.24 libdhcp_rbac.so: Role-Based Access Control 520
16.24.1 Role-Based Access Control (RBAC) Overview v v .. 520
16.24.2 Role-Based Access Control Configuration v .. 521
16.24.2.1 Role AsSignment o v v i i e e e e e e e e e e e e 521

16.24.2.2 Role Configuration 521

16.24.2.3 APICommands e e 522

16.24.2.4 Access Control Lists o o i e e 522

16.24.2.5 Response Filters e 523

16.24.2.6 Global Parameters e e e e e e e e e 523

16.24.3 Sample Configuration L e e e e e e e e 523
16.24.4 Accept/Reject Algorithmo L 525
16.24.5 Custom Hook Commands and Command Redefinition 526
16.24.6 Extensive Example L 527

16.25 libdhcp_run_script.so: Run Script Support for External Hook Scripts 530
16.26 1libdhcp_stat_cmds. so: Statistics Commands for Supplemental Lease Statistics 541
16.26.1 The stat-lease4-get, stat-lease6-get Commands 542

16.27 1ibdhcp_subnet_cmds. so: Subnet Commands to Manage Subnets and Shared Networks 544
16.27.1 The subnet4-list Command i i i i ittt et 545
16.27.2 The subnet6-list Command 546
16.27.3 The subnetd4-get Command it 546
16.27.4 The subnet6-get Command i i i i ittt ittt 547
16.27.5 The subnet4-add Command i ittt 548
16.27.6 The subnet6-add Command i ittt 549
16.27.7 The subnet4-update Command 550
16.27.8 The subnet6-update Command i v 551
16.27.9 The subnet4-del Command i i i i i ittt ittt 551
16.27.10The subnet6-del Command i i it ittt e e 552
16.27.11The subnet4-delta-add Command 553
16.27.12The subnet6-delta-add Command 554
16.27.13The subnet4-delta-del Commandu.u.o... 556
16.27.14The subnet6-delta-del Commando.... 557
16.27.15The network4-1ist, network6-list Commands 558
16.27.16The network4-get, network6-get Commands 559
16.27.17The network4-add, network6-add Commands 560
16.27.18The network4-del, network6-del Commands 561
16.27.19The network4-subnet-add, network6-subnet-add Commands 562
16.27.20The network4-subnet-del, network6-subnet-del Commands 563

16.28 libdhcp_user_chk.so: UserCheck 563
17 Statistics 565
17.1 Statistics OVErVIEW it e e e e e e e e e e e e e e e e e e 565
17.2 Statistics Lifecycle L e 566
17.3 Commands for Manipulating Statistics 566
17.3.1 The statistic-getCommand v i i i 566
17.3.2 The statistic-resetCommand. i, 567
17.3.3 The statistic-remove Command 567
17.3.4 The statistic-get-allCommand unuenin.. 568
17.3.5 The statistic-reset-allCommand 580
17.3.6 The statistic-remove-all Command 581
17.3.7 The statistic-sample-age-set Command 581
17.3.8 The statistic-sample-age-set-all Command 581
17.3.9 The statistic-sample-count-set Command 582
17.3.10 The statistic-sample-count-set-all Command 582

174 Time Series o e e e e e e e e e 582
18 Management API 583
18.1 DataSyntax e e e e 584
18.2 Control Agent Command Response Format 586
18.3 Usingthe Control Channel e e e e e 587
18.4 Commands Supported by Both the DHCPv4 and DHCPv6 Servers 588
18.4.1 Thebuild-report Command i i ittt it e e 588

Xi

19

20

21

18.4.2 The config-get Command i i it
18.4.3 The config-hash-getCommand
18.4.4 The config-reload Command
18.4.5 The config-test Command i
18.4.6 The config-writeCommand e
18.4.7 The leases-reclaimCommand
18.4.8 The list-commands Command vttt
18.4.9 The config-set Command it
18.4.10 The shutdown Command ittt it et e e
18.4.11 The dhcp-disable Command i it
18.4.12 The dhcp-enable Command it ittt
18.4.13 The status-get Command it
18.4.14 The server-tag-get Command:
18.4.15 The config-backend-pull Command:
18.4.16 The version-get Command i vttt
18.5 Commands Supported by the DHCPv4 Server.,
18.5.1 The subnet4-select-testCommand,
18.5.2 The subnet4o6-select-test Command
18.6 Commands Supported by the DHCPv6 Server.
18.6.1 The subnet6-select-testCommand
18.7 Commands Supported by the D2 Server
18.8 Commands Supported by the Control Agent
18.9 Migration from the Control Agent i i e e e e e e

Logging
19.1 Logging Configuration e e e e
I9.1.1 LOZEEIS . o v v o e e e e e e e e e e e e e e e e e e e
19.1.1.1 The name (string) Logger i i e e
19.1.1.2 The severity (string) Logger
19.1.1.3 The debuglevel (integer) Logger
19.1.1.4 The output-options (list) Logger
19.1.1.4.1 The output (string) Option
19.1.1.42 The flush (boolean) Option
19.1.1.4.3 Themaxsize (integer) Option
19.1.1.4.4 The maxver (integer) Option
19.1.1.4.5 The pattern (string) Option
19.1.2 Logging Message Format e
19.1.2.1 Example Logger Configurations v i v v v i
19.1.3 Logging During Kea Startup e
19.2 LoggingLevels e

The Kea Shell

20.1 Overview of the Kea Shell e
20.2 Shell Usage o o o o e e e e e e e e e
203 TLS Support o o e e e e e e e e e e

Integration With External Systems
21.1 YANG/NETCONF e e e e e e e e e e e e e e
2111 OVerview o o o e e e e e e e e e e e e e e
21.1.2 Installing NETCONF e e e e
21.1.2.1 Installing libyang From Sources
21.1.2.2 Installing sysrepo From Sources oo
21.1.2.3 Installing libyang-cpp From Sources
21.1.2.4 [Installing sysrepo-cpp From Sources, .

599
599
599
600
605
606
606
606
606
606
607
607
607
610
611
611

613
613
613
615

618
618
618

Xii

21.1.3 Compiling With NETCONF e et 619

21.1.4 Quick Sysrepo OVEIVIEW o v v i i e e e e e e e e e e e e 620
21.1.5 Supported YANG Models e e e 623
21.1.6 Using the NETCONF Agent it 623
21.1.7 Configuration L. e e e e e 623
21.1.8 A kea-netconf Configuration Example 625
21.1.9 Starting and Stopping the NETCONF Agent 627
21.1.10 A Step-by-Step NETCONF Agent Operation Example 628
21.1.10.1 Setup of NETCONF Agent Operation Example 628

21.1.10.2 Example of Error Handling in NETCONF Operation 630

21.1.10.3 NETCONF Operation Example with TwoPools 632

21.1.10.4 NETCONF Operation Example with Two Subnets 632

21.1.10.5 NETCONF Operation Example With Logging 633

21.1.10.6 Migrating YANG Data From a Prior Sysrepo Version 635

21.2 GSS-TSIG . . . e 635
21.2.1 GSS-TSIG OVerview v v it et e e e e e e e e e e e e e e e e e e 635
21.2.2 GSS-TSIG Compilation. oo e e 636
21.2.3 GSS-TSIG Deployment o v v vt e e e e e e e e e e e e e e 637
21.2.3.1 Kerberos S Setup e e e 637

21.2.3.2 BIND 9 with GSS-TSIG Configuration 640

21.2.3.3 Windows Active Directory Configuration 641

21.2.3.4 GSS-TSIG Troubleshooting 642

21.24 Using GSS-TSIG 642
21.2.4.1 GSS-TSIG Automatic Key Removal 649

21.2.42 GSS-TSIG Configuration for Deployment 649

21.2.5 GSS-TSIG Statistics o o o e e e e e e 650
21.2.6 GSS-TSIGCommands v v it e e e e e e e e e e e e e e 650
21.2.6.1 The gss-tsig-get-all Command 650

21.2.6.2 The gss-tsig-getCommand 651

21.2.6.3 The gss-tsig-listCommand 652

21.2.6.4 The gss-tsig-key-get Command 653

21.2.6.5 The gss-tsig-key-expireCommand 653

21.2.6.6 The gss-tsig-key-del Command 654

21.2.6.7 The gss-tsig-purge-allCommand 654

21.2.6.8 The gss-tsig-purgeCommand, 654

21.2.6.9 The gss-tsig-rekey-allCommand 655

21.2.6.10 The gss-tsig-rekeyCommand 655

21.3 RADIUS . . . o e e 656
21.3.1 RADIUS OVerview o v it e e e e e e e e e e e e e e e e 656
21.3.2 RADIUS Hook Library Configuration 656
21.3.3 RADIUS Server Setup Example o 661
21.3.4 RADIUS Workflows for Lease Allocation 662
21.3.4.1 Parked-PacketLimit e 662

21.3.5 Differences Between RADIUS Hook Libraries Prior To Kea 2.4.0 and As Of 2.6.0. 664

22 Monitoring Kea With Stork 665
22.1 Kea Statisticsin Grafana e e e e e e e e e 665
23 Kea Security 667
23.1 TLS/HTTPS SUpport o o o o o o e 667
23.1.1 Building Kea with TLS/HTTPS Support e 667
23.1.2 TLS/HTTPS Configuration i i it et e e e e e e e e e e e 668
23.1.3 OpenSSLTuning o o i i e e e e 669

23.2 Securing a Kea Deployment L L e e e e 670

xiii

24

23.2.1 Component-Based Design e e e e 670

23.2.2 Limiting Application Permissions L o 670

23.2.3 Securing Kea Administrative Access Lo e 670

23.2.4 Securing Database Connections e 670

23.2.5 Information Leakage Through Logging 671

23.2.6 Cryptography Components o v v vt v ittt e e e e e 671

23.2.7 TSIG Signatures v v v v e 671

23.2.8 Raw Socket Support e e e e e e e 672

23.2.9 Remote Administrative ACCESS o L it e e e e e e e e e e 672

23.2.10 Authentication for Kea's RESTful API, 672
23.3 Kea Security Processes e 672

23.3.1 Vulnerability Handling e e 673

23.3.2 Code Quality and Testing o i i e e e e e e e 673

2333 FuzzTesting o o i e e e e e e e e 673

23.3.4 Release Integrityo e e e e e e 674

2335 BusFactor. e 674
API Reference 675
24.1 build-report L. e 677
242 cache-clear e 677
243 cache-flush 678
244 cache-get i e e e e e e e e e e 679
24.5 cache-get-by-id L e e e e e 679
24.6 cache-InSert L e e e e e e e e e e 680
2477 cache-load e 681
24.8 cache-remove e e e 682
249 cache-size. e e e 683
24.10 cache-write e e e e e 684
2411 class-add L. e e e e e 684
2412 class-del L. e e e e 685
2413 ClasS-Zet e e e e 686
2414 class-listo e e 687
24. 15 class-update L e e e e e e e e e e e e e e e e 687
24.16 config-backend-pull 688
2417 config-get L. e 689
24.18 config-hash-get L 689
24.19 config-reload e e e e e e e e e e e 690
24.20 CONfI-SEL . . v v v e 691
2421 config—test L e e e e e e e e e e e e e e e e 691
2422 config-write L. L e e e 692
2423 dhep-disableo L e 693
2424 dhep-enable L L L e e e e e e e e e e e e e e e 694
24.25 extended-infod-upgrade L e e e e e e e e 694
24.26 extended-infob-upgrade e e e e e e e e 695
2427 @SS-ISIZ-ZEL .« v v i e e e e e e e e e e e e e e e e e e e 695
24.28 gss-tsig-get-all L. 697
2429 gss-tsig-key-del . . . L. 698
24.30 gss-tsig-Key-eXpire e e e e e e e e e e e e e e e 699
2431 gss-tsig-Key-get e e e e e e e e e e 699
24.32 gss-tsig-list L e e e e e e e 700
2433 @SS-ISI-PUIZE e e e e e 701
24.34 gss-tsig-purge-all 702
24.35 @SS-tSIG-TEKEY o o e e e e e e e e e e e e e e e e e e 702
24.36 gss-tsig-rekey-all . . . L. L e e e e e e 703

Xiv

2437 ha-CONtinUE o ot e e e e e e e e e e e e e 704

24.38 ha-heartbeat e e 704
24.39 ha-maintenance-cancel L L. oL e e e e e e e e e e 705
24.40 ha-maintenance-notify oL e 706
24.41 ha-maintenance-Start o .t e 707
2442 NA-TESEL . . v v v i e 707
2443 NAa-SCOPLS « v v v v e 708
2444 Na-SYNC © v v v v e 709
24.45 ha-sync-complete-notify oL e 710
2446 leased-add L e e e e 710
2447 leased-del Lo e e 711
2448 18aSe4-0t e e e e e e e e e e e e e e e e e e e 712
24.49 leased-get-all L. e e e e e e e e 713
24.50 leased-get-by-client-id e 714
2451 leased-get-by-hostname oL e 715
24.52 leased-get-by-hw-address L. oL L e e e e 716
24.53 1eased-get-PAgEt i e e e e e e e e e e e e e e e e 717
24.54 leased-resend-ddns L e e e 718
24.55 leased-update e e e e e e e e e e e e e e e e 718
24.56 leased-wipe L. e e 719
24.57 leased-Write o i e e e e e e e e e e e e e 720
24.58 lease6-add e e e e e e e e 720
24.59 lease6-bulk-apply e e e e e e e e e e 721
24.60 lease6-del L. e e e e 723
24.61 1ease6-eL o e e e e e e e e e e e e e 723
24.62 lease6-get-all e e e e e 724
24.63 lease6-get-by-duid L e 726
24.64 lease6-get-by-hoStname i i e e e e e e e e e e e e e e e e 727
24.65 18aSe0-ZEL-PAZE . .+ v v v e 728
24.66 lease6-resend-ddns L L L e e e e e e e e 729
24.67 leaseb-update e e e 730
24.68 1easeO-Wipe L. e e e e e 730
24.69 1easeO-WIIite v i i e e e e e e e e e e e e e e e e e e 731
2470 leases-reclaimo e e e e e e 732
2471 list-commandso e e e e e e e e e 732
2472 network4-addo L L e e e e e 733
24.73 networkd-delo L L e e 734
2474 network4-get L e e 735
2475 network4-listo L L e e 736
2476 network4-subnet-add e 737
2477 network4-subnet-del L L L e e e e e e e e 738
2478 network6-add L L L e 739
2479 network6-del L. e e e e e e e e 740
24.80 networkO-get e e e e e e e e e e e e e e e e e 741
2481 networkO-list e e e e 742
24.82 network6-subnet-add L L e e e e e e e 743
24.83 network6-subnet-del L L e 743
24.84 perfmon-control e 744
24.85 perfmon-get-all-durationso 745
24.86 remote-classd-del e 747
24.87 remote-classd-et L . e e e e e e e e e e e e 748
24.88 remote-classd-get-all e 749
24.89 remote-Class4-Set i e e e e e e e e e e e e e e 750
24.90 remote-classo-del e e e e e e e 751

XV

2491 remote-classO-et e e e e e e e e e e e e e e e e e 752

24.92 remote-classo-get-all L e e e e e e e e 753
24.93 remote-class6-Set L e e e e e e e e 754
24.94 remote-global-parameterd-del oL 755
24.95 remote-global-parameterd-geto Lo e 756
24.96 remote-global-parameterd-get-all L 757
24.97 remote-global-parameterd-set e e e e e e e e e e e e e 758
24.98 remote-global-parameter6-del L e 759
24.99 remote-global-parameter6-geto L e e 760
24.100remote-global-parameter6-get-all 0oL 761
24.101remote-global-parameter6-set L. L e e e e e 762
24.10remote-network4-delo 763
24.103%remote-network4-get L L e e e e e e e e e e e e 764
24.104remote-network4-list L L. e e 765
24.105remote-network4-set L e e e e e e e e e 766
24 10@emote-network6-delo 767
24 107remote-network6-get e e e 768
24.10&emote-network6-list Lo 769
24.109emote-network6-set e e 770
24 110remote-option-defd-del L e 771
24 11lremote-option-defd-get 772
24.112Zremote-option-defd-get-all L e 773
24. 113%emote-option-defd-set L e e e e e e e e e e e e 774
24.114remote-option-def6-del L e e e e e 775
24 115emote-option-def6-get L e 776
24.11aemote-option-def6-get-all oL e 777
24 11remote-option-def6-set L e e 778
24.11&emote-optiond-global-del e e e 779
24.11%emote-optiond-global-get e e e e e e e e e 780
24.12(remote-optiond-global-get-all o 781
24.12Tremote-optiond-global-set oL e 782
24.122remote-optiond-network-del oL oL 783
24.123remote-optiond-Network-Set o e e e e e e e e e e e e e e e e e 784
24.124remote-optiond-pool-del L L e e e e e 785
24.125remote-optiond-pool-Set L L. L e e e e e e e e e e e e e 786
24.12@emote-optiond-subnet-del oL e 788
24 12remote-option4-subnet-set oL e e 789
24.12&emote-option6-global-delo oo 790
24.12%emote-option6-global-get e e e e e e e e e e 791
24.13(0remote-option6-global-get-all L e e e 792
24.13Iremote-option6-global-set oL e 793
24.13Zremote-option6-network-del oo Lo 794
24.133%remote-option6-network-seto o e e 795
24.134remote-option6-pd-pool-del e e e e e 796
24.135remote-optionO-pd-pool-Set L L e e e e e e e e e e 797
24.13@emote-option6-pool-del L 798
24.13remote-option6-pool-set L. 799
24.13&emote-option6-subnet-del oL Lo e 801
24.13%emote-optionO-SUDNE-SEt o e e e e e e e e e e e e e e e e e e e 802
24.140remote-serverd-del L. 803
24, 14Tremote-SeTVETA-ZEt . . . v v v v e i e 804
24 14Zremote-serverd-get-all L. oL e 805
24.143%emote-SeTVeT4-Sel L i i e 806
24 144remote-servero-del oL e 807

xvi

24, 145emMOte-SETVETO-ZCL . . v v v v v v i e 808

24. 14aremote-servero-get-all L L L e e e e e e e e e 809
24 14Temote-ServerO-Set i e e e e e e e e e e e e e e e e e 810
24 14&emote-subnetd-del-by-id oL 811
24.14%emote-subnetd-del-by-prefixo e 812
24.150remote-subnetd-get-by-id L L L L 813
24. 15 Iremote-subnetd-get-by-prefix L e e e e e e e e e e e e 814
24.15Zremote-subnetd-list L e e e e 815
24.153remote-subnetd-set L L e e e 816
24.154remote-subnet6o-del-by-id L. 817
24.155remote-subneto-del-by-prefix oL 818
24.15aemote-subneto-get-by-id L . L L e e e e e e e e e e 819
24.15Tremote-subneto-get-by-prefix L. oL e e e e e e e e e e 820
24.158&emote-subneto-listo e e e 821
24.15%emote-subneth-Set oL L e e e e e e e e e e e e e e e e e e e 822
24.16(reservation-add e e e 823
24.161Ireservation-del e e 824
24.162reservation-geL i e 825
24.163reservation-get-allo e e 826
24.164reservation-get-by-address oL e 827
24.165eservation-get-by-hostname oL L oL 827
24.16Geservation-get-by-id L. L e 828
24, 167reservation-get-PAC v v vt e 829
24. 168 eservation-update L e e e e e e e e e e e e e e e e e 829
24, 10FErVer-tag-get e 831
24 1706hutdown L. o e e e e e e e e e e e e 831
24 171stat-leased-get e e e e e e 832
24, 172tat-1ease0-GEt e 833
24 1736tatiStiC-GEL . . . v v o e 834
24 174statistic-get-all e e 835
24 1756tatiStiC-TEMOVE . .+« v v v v v e it e 848
24 176statistic-remove-all oL 848
24 1THRLAtiSHC-TESEL v v v o e e e e e e e e e e e e e 849
24 178&tatistic-reset-all e e e 850
24. 17%tatistic-sample-age-Set L. o e e e e e e e e e e e e e e e e e e e 851
24 .180statistic-sample-age-set-all L e 851
24 181statistic-sample-count-set oL L e e 852
24.18%tatistic-sample-count-set-allo e 853
24 1836tAtUS-ZEL © « v v e 854
24.184subnetd-add L L e e e 855
24.185%ubnetd-delo e e 856
24.186subnetd-delta-add L L e e e e 857
24.18Kubnetd-delta-del L 858
24.188UbNEt4-ZEt e e e e e e e e e e e e e e e 859
24.18%ubnetd-list L e e e e 860
24.190subnetd-select-test e e e e e e e e 861
24.191subnetd-update L e e e 862
24.19%ubnetdo6-select-test e e e e e e 863
24.193%ubneto-add L L L e e 863
24.194subneto-del L L e e 864
24.195ubneto-delta-add oL e e e 865
24.196subneto-delta-del e e e e 866
24.1978ubneto-get . . . L. L e e e 867
24.108ubnetO-list e e e 868

24.19%ubnetO-select-test e e e e e e e e e e e e e 869

24.2005ubneto-update e e e e e e e e e e e e e e e e e e e 869
24.20IVersion-get oL e e e e e e e e e e e e e e e e e e 870
25 Manual Pages 873
25.1 kea-dhcp4 - DHCPv4 serverinKea e 873
25. 1.1 SynopsSis e e e e e e e e e e e e e e 873
25.1.2 Description e e e 873

25.1.3 ArgUMENLS L. e 873
25.1.4 Documentation L. e e e e e e e e e e e e 874
25.1.5 Mailing Lists and Support L. e e e e e e 874
25.1.6 HIStOTY o o e e e e e e e e e e 874
25.1.7 See AlSO o o e e e e 874

25.2 kea-dhcp6 - DHCPv6serverinKea 874
2521 Synopsis. oi i e e e e 874
25.2.2 DesCription o i e e e e e e e e e e e e e e e e e 875
2523 ATZUMENLS . . v v vt it e 875
2524 Documentationo e e e e e e e e e e e e e 875
25.2.5 Mailing Lists and Support e 876
25.2.6 HIiStOry o o i e e e 876
25277 See AlSO . . . o o i e e e e 876

25.3 kea-ctrl-agent - Control AgentprocessinKea 876
25.3.1 SynopsSis e e e e e e e e e e e 876
25.3.2 Descriptiono e e e e e 876
2533 ArgUMENtS e e e e e e e e e e 876
25.3.4 Documentation L . e e e e e e e e e e e e 877
25.3.5 Mailing Lists and Support L e e e e 877
25.3.6 HIiStOTy o e e e e e e e e 877
2537 See AlSO o e e e e e 877

25.4 keactrl - Shell script for managingKea 0oL ool 877
2541 Synopsiso i i e e e e e e e 877
25.4.2 DesCription o i e e e e e e e e e e e e e e e e e 878
25.4.3 Configuration File o . e e e e 878
2544 OpLONS .« v v v v e e e e e e e e e e e e e e e e e 878
25.4.5 Documentationo i e e e e e e e e e e e e e e e e e 879
25.4.6 Mailing Lists and Support e 879
2547 See AlSO . . . oo i e e 879

25.5 kea-admin - Shell script for managing Kea databases 879
25.5.1 Synopsiso e e e e e e e e e e e e 879
25.5.2 Description e e e e 879
2553 ArgUMENLSo e e e e e e e e e e e e e e e e 880
25.5.4 Documentation L . e e e e e e e e e e e 881
25.5.5 Mailing Lists and Support L. e e e e e e 881
25.5.6 See AlSO e e e 881

25.6 kea-dhcp-ddns - DHCP-DDNS processinKea 882
25.6.1 Synopsis. 882
25.6.2 DesCription i e e e e e e e e e 882
25.6.3 ATZUMENLS . . . v v v i e 882
25.6.4 Documentation e e e e e e e e e e e 882
25.6.5 Mailing Lists and Support L e 883
25.6.6 History e 883
25.6.7 See AlSO v i i e e 883

25.7 kea-1lfc - Lease File Cleanup processinKea. 883
25.7.1 SYNOPSIS . « v v e 883

xviii

25.7.2 DesCription i i e e e e e e e e e e e e e e e e e e 883

2573 ATZUMENLS . . . v v i e 883
25.7.4 Documentation e e e e e e e e e 884
25.7.5 Mailing Lists and Support e 885
25.77.6 History 885
2577 See AlSO . . . oo i e e 885
25.8 kea-shell - Text client for Control Agent process v v v v v v v v v v v v e e e 885
25.8.1 SynopsSiso e e e e e e e e e e 885
25.8.2 Description e e e e e e e e e e e 885
25.83 Arguments e 885
25.8.4 Documentation L. e e e e e e e e e e e 886
25.8.5 Mailing Lists and Support L. e e e e e 886
25.8.6 HIiStOTy o e e e e e e e e e 887
25.87 See AlSO e e e 887
25.9 kea-netconf - NETCONF agent for configuringKea 887
25.9.1 Synopsis. e e e e 887
25.9.2 DesCription o i e e e e e e e e e e e e e e e e e 887
25.9.3 ATZUMENLS . . . v vt e 887
25.9.4 Documentation e e e e e e e e 888
25.9.5 Mailing Lists and Support L e 888
25.9.6 History 888
2597 See AlSO o L e 888
25.10 perfdhcp - DHCP benchmarking tool e 888
25.10.1 Synopsis . . . v o e e e e e e e e e e e e e e 888
25.10.2 Descriptiono e e e e e e e e e 889
25.10.3 Templates L e e e 889
25.10.4 Options o e e e e 890
25.10.5 DHCPv4-Only Options v v v v v i e e e e e e e e e e e e e e e e e e e 893
25.10.6 DHCPvO-Only Options v v v v i e e e e e e e e e e e e e e e e e e 893
25.10.7 Template-Related Options e 893
25.10.8 Options ControllingaTest e 894
25.10.9 Arguments e 894
25.10.10EITOrS + o o o v v e e e e e e e e e e e e e e e 894
25.10.TIEXIt Status o o o e e e e e e e e e e e e 895
25.10.12Usage Examples o o e e e e e e e e e e 895
25.10.13Documentationo e e e e e e e e e e e e e e e e e e e 895
25.10.14Mailing Lists and Support L. e 896
25.10.05HIStOry . . . e e e e e 896
25.10.16See AISO . . . o v i i e e e e 896
26 Kea Messages Manual 897
26.1 ALLOC e e 897
26.1.1 ALLOC_ENGINE_IGNORING_UNSUITABLE_GLOBAL_ADDRESS 897
26.1.2 ALLOC_ENGINE_IGNORING_UNSUITABLE_GLOBAL_ADDRESS6 897
26.1.3 ALLOC_ENGINE_LEASE RECLAIMED 897
26.1.4 ALLOC_ENGINE_V4_ALLOC_ERROR 898
26.1.5 ALLOC_ENGINE_V4_ALLOC_FAIL it 898
26.1.6 ALLOC_ENGINE_V4_ALLOC_FAIL_CLASSES 898
26.1.7 ALLOC_ENGINE_V4_ALLOC_FAIL_NO_POOLS 898
26.1.8 ALLOC_ENGINE_V4_ALLOC_FAIL_SHARED_NETWORK 899
26.1.9 ALLOC_ENGINE_V4_ALLOC_FAIL_SUBNET. 899
26.1.10 ALLOC_ENGINE_V4_DECLINED_RECOVERED 899
26.1.11 ALLOC_ENGINE_V4_DISCOVER_ADDRESS_CONFLICT 899
26.1.12 ALLOC_ENGINE_V4_DISCOVER_HR 900

xix

26.1.13
26.1.14
26.1.15
26.1.16
26.1.17
26.1.18
26.1.19
26.1.20
26.1.21
26.1.22
26.1.23
26.1.24
26.1.25
26.1.26
26.1.27
26.1.28
26.1.29
26.1.30
26.1.31
26.1.32
26.1.33
26.1.34
26.1.35
26.1.36
26.1.37
26.1.38
26.1.39
26.1.40
26.1.41
26.1.42
26.1.43
26.1.44
26.1.45
26.1.46
26.1.47
26.1.48
26.1.49
26.1.50
26.1.51
26.1.52
26.1.53
26.1.54
26.1.55
26.1.56
26.1.57
26.1.58
26.1.59
26.1.60
26.1.61
26.1.62
26.1.63
26.1.64
26.1.65
26.1.66

ALLOC_ENGINE_V4_LEASES_RECLAMATION_COMPLETE 900
ALLOC_ENGINE_V4_LEASES_RECLAMATION_FAILED 900
ALLOC_ENGINE_V4_LEASES_RECLAMATION_SLOW 900
ALLOC_ENGINE_V4_LEASES_RECLAMATION_START 900
ALLOC_ENGINE_V4_LEASES_RECLAMATION_TIMEOUT 901
ALLOC_ENGINE_V4 _LEASE RECLAIM 901
ALLOC_ENGINE_V4_LEASE_RECLAMATION_FAILED 901
ALLOC_ENGINE_V4_NO_MORE_EXPIRED_LEASES 901
ALLOC_ENGINE_V4_OFFER_EXISTING_LEASE 901
ALLOC_ENGINE_V4_OFFER_NEW_LEASE 902
ALLOC_ENGINE_V4_OFFER_REQUESTED_LEASE 902
ALLOC_ENGINE_V4_RECLAIMED_LEASES DELETE 902
ALLOC_ENGINE_V4_RECLAIMED_LEASES _DELETE_COMPLETE 902
ALLOC_ENGINE_V4_RECLAIMED_LEASES DELETE FAILED 902
ALLOC_ENGINE_V4_REQUEST_ADDRESS RESERVED 903
ALLOC_ENGINE_V4_REQUEST_ALLOC_REQUESTED 903
ALLOC_ENGINE_V4_REQUEST EXTEND LEASE. 903
ALLOC_ENGINE_V4_REQUEST_INVALID 903
ALLOC_ENGINE_V4_REQUEST_IN_USE 903
ALLOC_ENGINE_V4_REQUEST_OUT_OF _POOL 904
ALLOC_ENGINE_V4_REQUEST_PICK_ADDRESS 904
ALLOC_ENGINE_V4_REQUEST_REMOVE_LEASE 904
ALLOC_ENGINE_V4 REQUEST USE_ HR 904
ALLOC_ENGINE_V4_REUSE_EXPIRED_LEASE DATA 904
ALLOC_ENGINE_V6_ALLOC_ERROR 904
ALLOC_ENGINE_V6_ALLOC_FAIL 905
ALLOC_ENGINE_V6_ALLOC_FAIL_CLASSES 905
ALLOC_ENGINE_V6_ALLOC_FAIL_NO_POOLS 905
ALLOC_ENGINE_V6_ALLOC_FAIL_SHARED_NETWORK 905
ALLOC_ENGINE_V6_ALLOC_FAIL_ SUBNET 906
ALLOC_ENGINE_V6_ALLOC_HR_LEASE _EXISTS 906
ALLOC_ENGINE_V6_ALLOC_LEASES HR 906
ALLOC_ENGINE_V6_ALLOC_LEASES_NO_HR 906
ALLOC_ENGINE_V6_ALLOC_NO_LEASES HR 907
ALLOC_ENGINE_V6_ALLOC_NO_V6_HR 907
ALLOC_ENGINE_V6_ALLOC_UNRESERVED 907
ALLOC_ENGINE_V6_CALCULATED_PREFERRED _LIFETIME 907
ALLOC_ENGINE_V6_DECLINED_RECOVERED 907
ALLOC_ENGINE_V6_EXPIRED_HINT_RESERVED 908
ALLOC_ENGINE_V6_EXTEND_ALLOC_UNRESERVED. 908
ALLOC_ENGINE_V6_EXTEND_ERROR 908
ALLOC_ENGINE_V6_EXTEND_LEASE 908
ALLOC_ENGINE_V6_EXTEND_LEASE DATA 908
ALLOC_ENGINE_V6_EXTEND_NEW_LEASE DATA 909
ALLOC_ENGINE_V6_HINT _RESERVED 909
ALLOC_ENGINE_V6_HR_ADDR_GRANTED 909
ALLOC_ENGINE_V6_HR _PREFIX GRANTED 909
ALLOC_ENGINE_V6_LEASES RECLAMATION_COMPLETE 909
ALLOC_ENGINE_V6_LEASES_RECLAMATION_FAILED 909
ALLOC_ENGINE_V6_LEASES_RECLAMATION_SLOW 910
ALLOC_ENGINE_V6_LEASES_RECLAMATION_START 910
ALLOC_ENGINE_V6_LEASES_RECLAMATION_TIMEOUT 910
ALLOC_ENGINE_V6_LEASE RECLAIM i 910
ALLOC_ENGINE_V6_LEASE RECLAMATION_FAILED 910

XX

26.1.67 ALLOC_ENGINE_V6_NO_MORE_EXPIRED_LEASES 911
26.1.68 ALLOC_ENGINE_V6_RECLAIMED_LEASES DELETE 911
26.1.69 ALLOC_ENGINE_V6_RECLAIMED_LEASES DELETE COMPLETE 911
26.1.70 ALLOC_ENGINE_V6_RECLAIMED_LEASES DELETE FAILED 911
26.1.71 ALLOC_ENGINE_V6_RENEW_HR 911
26.1.72 ALLOC_ENGINE_V6_RENEW_REMOVE_RESERVED 911
26.1.73 ALLOC_ENGINE_V6_REUSE_EXPIRED_LEASE _DATA 912
26.1.74 ALLOC_ENGINE_V6_REVOKED_ADDR_LEASE 912
26.1.75 ALLOC_ENGINE_V6_REVOKED_PREFIX LEASE 912
26.1.76 ALLOC_ENGINE_V6_REVOKED_SHARED_ADDR_LEASE 912
26.2 ASIODNS . . . 912
26.2.1 ASIODNS_FETCH_COMPLETED 912
26.2.2 ASIODNS_FETCH_STOPPED 913
26.23 ASIODNS_OPEN_SOCKET o e 913
26.2.4 ASIODNS_READ_DATA e e 913
26.2.5 ASIODNS_READ_TIMEOUT e 913
26.2.6 ASIODNS_SEND_DATA e 913
26.2.7 ASIODNS_UNKNOWN_ORIGIN oo o e 913
263 BOOTP 914
26.3.1 BOOTP_BOOTP_QUERY e 914
26.3.2 BOOTP_LOAD e e e e e 914
26.3.3 BOOTP_PACKET_OPTIONS_SKIPPED 914
26.3.4 BOOTP_PACKET_PACK i 914
26.3.5 BOOTP_PACKET _PACK FAIL 914
26.3.6 BOOTP_PACKET_UNPACK_FAILED 915
264 COMMAND 915
26.4.1 COMMAND_ACCEPTOR_START e 915
264.2 COMMAND_DEREGISTERED 915
26.4.3 COMMAND_EXTENDED_REGISTERED 915
26.4.4 COMMAND_HTTP_LISTENER_COMMAND_REJECTED 915
26.4.5 COMMAND_HTTP_LISTENER_STARTED 916
264.6 COMMAND_HTTP_LISTENER_STOPPED 916
2647 COMMAND_HTTP_LISTENER_STOPPING 916
264.8 COMMAND_PROCESS_ERRORI 916
2649 COMMAND_PROCESS_ERROR2 916
26.4.10 COMMAND_RECEIVED e 917
26.4.11 COMMAND_REGISTERED e 917
26.4.12 COMMAND_RESPONSE_ERROR 917
26.4.13 COMMAND_SOCKET_ACCEPT_FAIL 917
26.4.14 COMMAND_SOCKET_CLOSED_BY_FOREIGN_HOST 917
26.4.15 COMMAND_SOCKET_CONNECTION_CANCEL_FAIL 917
26.4.16 COMMAND_SOCKET_CONNECTION_CLOSED 918
26.4.17 COMMAND_SOCKET_CONNECTION_CLOSE_FAIL 918
26.4.18 COMMAND_SOCKET_CONNECTION_OPENED 918
26.4.19 COMMAND_SOCKET_CONNECTION_SHUTDOWN_FAIL 918
26.4.20 COMMAND_SOCKET_CONNECTION_TIMEOUT 918
26.4.21 COMMAND_SOCKET READ e 918
26.4.22 COMMAND_SOCKET READ_FAIL e 919
26.4.23 COMMAND_SOCKET _WRITE. e 919
26.4.24 COMMAND_SOCKET_WRITE_FAIL 919
26.4.25 COMMAND_WATCH_SOCKET_CLEAR_ERROR 919
26.4.26 COMMAND_WATCH_SOCKET_CLOSE_ERROR 919
26.4.27 COMMAND_WATCH_SOCKET_MARK_READY_ERROR 919
26.5 CTRL 920

xxi

26.6

26.5.1 CTRL_AGENT_COMMAND_FORWARDED 920
26.5.2 CTRL_AGENT_COMMAND_FORWARD BEGIN 920
26.5.3 CTRL_AGENT_COMMAND_FORWARD _FAILED 920
26.54 CTRL_AGENT_COMMAND _RECEIVED 920
26.5.5 CTRL_AGENT_CONFIG_CHECK FAIL. 920
26.5.6 CTRL_AGENT_CONFIG_FAIL e 920
26.5.7 CTRL_AGENT_CONFIG_SYNTAX WARNING 921
26.5.8 CTRL_AGENT_FAILED e 921
26.5.9 CTRL_AGENT_HTTPS_SERVICE REUSED 921
26.5.10 CTRL_AGENT_HTTPS_SERVICE_STARTED 921
26.5.11 CTRL_AGENT_HTTP_SERVICE REUSED 921
26.5.12 CTRL_AGENT_HTTP_SERVICE_STARTED 921
26.5.13 CTRL_AGENT_RUN_EXIT o e 922
DATABASE e 922
26.6.1 DATABASE_INVALID_ACCESS e it 922
26.6.2 DATABASE MYSQL_COMMIT e 922
26.6.3 DATABASE_MYSQL_FATAL_ERROR. 922
26.6.4 DATABASE_MYSQL_INITIALIZE_SCHEMA 922
26.6.5 DATABASE MYSQL_ROLLBACK 922
26.6.6 DATABASE MYSQL_START_TRANSACTION. 923
26.6.7 DATABASE PGSQL_COMMIT e 923
26.6.8 DATABASE_PGSQL_CREATE_SAVEPOINT 923
26.6.9 DATABASE_PGSQL_DEALLOC_ERROR 923
26.6.10 DATABASE_PGSQL_FATAL_ERROR 923
26.6.11 DATABASE_PGSQL_INITIALIZE_SCHEMA 924
26.6.12 DATABASE _PGSQL_ROLLBACK o 924
26.6.13 DATABASE_PGSQL_ROLLBACK_SAVEPOINT 924
26.6.14 DATABASE_PGSQL_START_TRANSACTION 924
26.6.15 DATABASE_PGSQL_TCP_USER_TIMEOUT_UNSUPPORTED 924
26.6.16 DATABASE_TO_JSON_BOOLEAN_ERROR 924
26.6.17 DATABASE_TO_JSON_INTEGER_ERROR 925
DCTL e e 925
26.7.1 DCTL_ALREADY_RUNNING e 925
26.7.2 DCTL_CFG_FILE_RELOAD_ERROR 925
26.7.3 DCTL_CFG_FILE_RELOAD_SIGNAL_RECVD 925
26.7.4 DCTL_CONFIG_CHECK_COMPLETE 925
26.7.5 DCTL_CONFIG_COMPLETE e 926
26.7.6 DCTL_CONFIG_DEPRECATED 926
26.7.7 DCTL_CONFIG_FETCH it 926
26.7.8 DCTL_CONFIG_FILE LOAD_FAIL e 926
2679 DCTL_CONFIG_START e 926
26.7.10 DCTL_DB_OPEN_CONNECTION_WITH_RETRY_FAILED. 926
26.7.11 DCTL_DEPRECATED_OUTPUT_OPTIONS 927
26.7.12 DCTL_DEVELOPMENT_VERSION e 927
26.7.13 DCTL_INIT_PROCESS e 927
26.7.14 DCTL_INIT_PROCESS_FAIL e 927
26.7.15 DCTL_NOT_RUNNING e et e 927
26.7.16 DCTL_OPEN_CONFIG_DB e 927
26.7.17 DCTL_PARSER _FAIL e 928
26.7.18 DCTL_PID_FILE_ERROR e 928
26.7.19 DCTL_PROCESS_FAILED i 928
26.7.20 DCTL_RUN_PROCESS e 928
26.7.21 DCTL_SHUTDOWN e e s 928
26.7.22 DCTL_SHUTDOWN_SIGNAL_RECVD 928

xxii

26.8

26.7.23 DCTL_STANDALONE e 929

26.7.24 DCTL_STARTING e 929
26.7.25 DCTL_UNLOAD_LIBRARIES_ERROR 929
DHCP4 . . . e 929
26.8.1 DHCP4_ADDITIONAL_CLASS_EVAL _ERROR 929
26.8.2 DHCP4_ADDITIONAL_CLASS_EVAL RESULT 929
26.8.3 DHCP4_ADDITIONAL_CLASS_NO_TEST 930
26.8.4 DHCP4_ADDITIONAL_CLASS_UNDEFINED 930
26.8.5 DHCP4_ALREADY_RUNNING 930
26.8.6 DHCP4_BUFFER_RECEIVED 930
26.8.7 DHCP4_BUFFER_RECEIVE FAIL 930
26.8.8 DHCP4_BUFFER_UNPACK i 931
26.8.9 DHCP4_BUFFER_WAIT_SIGNAL 931
26.8.10 DHCP4_CB_ON_DEMAND_FETCH_UPDATES_FAIL 931
26.8.11 DHCP4_CB_PERIODIC_FETCH_UPDATES FAIL 931
26.8.12 DHCP4_CB_PERIODIC_FETCH_UPDATES_RETRIES_EXHAUSTED 931
26.8.13 DHCP4_CLASSES_ASSIGNED e 932
26.8.14 DHCP4_CLASSES_ASSIGNED_AFTER_SUBNET_SELECTION 932
26.8.15 DHCP4_CLASS_ASSIGNED e 932
26.8.16 DHCP4_CLASS_UNCONFIGURED 932
26.8.17 DHCP4_CLIENTID_IGNORED_FOR_LEASES 932
26.8.18 DHCP4_CLIENT_FQDN_DATA e 933
26.8.19 DHCP4_CLIENT_FQDN_PROCESS 933
26.8.20 DHCP4_CLIENT_HOSTNAME DATA e 933
26.8.21 DHCP4_CLIENT_HOSTNAME_MALFORMED 933
26.8.22 DHCP4_CLIENT_HOSTNAME PROCESS 933
26.8.23 DHCP4_CLIENT_NAME_PROC_FAIL e 933
26.8.24 DHCP4_CONFIG_COMPLETE e 934
26.8.25 DHCP4_CONFIG_LOAD_FAIL e 934
26.8.26 DHCP4_CONFIG_PACKET QUEUE, 934
26.8.27 DHCP4_CONFIG_RECEIVED e 934
26.8.28 DHCP4_CONFIG_START o e 934
26.8.29 DHCP4_CONFIG_SYNTAX WARNING e 934
26.8.30 DHCP4_CONFIG_UNRECOVERABLE ERROR 935
26.8.31 DHCP4_CONFIG_UNSUPPORTED_OBJECT 935
26.8.32 DHCP4_DB_RECONNECT_DISABLED 935
26.8.33 DHCP4_DB_RECONNECT_FAILED e 935
26.8.34 DHCP4_DB_RECONNECT_LOST CONNECTION 935
26.8.35 DHCP4_DB_RECONNECT_NO_DB_CTL, 935
26.8.36 DHCP4_DB_RECONNECT_SUCCEEDED 936
26.8.37 DHCP4_DDNS_REQUEST_SEND_FAILED 936
26.8.38 DHCP4_DECLINE_FAIL e 936
26.8.39 DHCP4_DECLINE_LEASE e 936
26.8.40 DHCP4_DECLINE_LEASE MISMATCH 936
26.8.41 DHCP4_DECLINE_LEASE NOT_FOUND 937
26.8.42 DHCP4_DEFERRED_OPTION_MISSING 937
26.8.43 DHCP4_DEFERRED_OPTION_UNPACK FAIL 937
26.8.44 DHCP4_DEVELOPMENT _VERSION e 937
26.8.45 DHCP4_DHCP406_BAD_PACKET e 937
26.8.46 DHCP4_DHCP406_HOOK_SUBNET4_SELECT_DROP 937
26.8.47 DHCP4_DHCP406_HOOK_SUBNET4_SELECT_SKIP 938
26.8.48 DHCP4_DHCP406_PACKET_RECEIVED 938
26.8.49 DHCP4_DHCP406_PACKET_SEND 938
26.8.50 DHCP4_DHCP406_PACKET_SEND_FAIL 938

26.8.51 DHCP4_DHCP40O6_RECEIVE_FAIL 938
26.8.52 DHCP4_DHCP40O6_RECEIVING e 939
26.8.53 DHCP4_DHCP406_RESPONSE_DATA 939
26.8.54 DHCP4_DHCP406_SUBNET_DATA 939
26.8.55 DHCP4_DHCP406_SUBNET _SELECTED 939
26.8.56 DHCP4_DHCP406_SUBNET_SELECTION_FAILED. 939
26.8.57 DHCP4_DISCOVER s 940
26.8.58 DHCP4_DYNAMIC_RECONFIGURATION 940
26.8.59 DHCP4_DYNAMIC_RECONFIGURATION_FAIL 940
26.8.60 DHCP4_DYNAMIC_RECONFIGURATION_SUCCESS 940
26.8.61 DHCP4_EMPTY_HOSTNAME e 940
26.8.62 DHCP4_FLEX ID et e e s 940
26.8.63 DHCP4_GENERATE_FQDN e 941
26.8.64 DHCP4_HOOK_BUFFER_RCVD_DROP 941
26.8.65 DHCP4_HOOK_BUFFER RCVD_SKIP 941
26.8.66 DHCP4_HOOK_BUFFER_SEND_SKIP 941
26.8.67 DHCP4_HOOK_DDNS _UPDATE e 941
26.8.68 DHCP4_HOOK_DECLINE _SKIP 942
26.8.69 DHCP4_HOOK_LEASE4 _OFFER_ARGUMENT_MISSING 942
26.8.70 DHCP4_HOOK_LEASE4 OFFER_DROP 942
26.8.71 DHCP4_HOOK_LEASE4 OFFER_PARK 942
26.8.72 DHCP4_HOOK_LEASE4 OFFER_PARKING_LOT_FULL 942
26.8.73 DHCP4_HOOK_LEASE4 RELEASE SKIP 942
26.8.74 DHCP4_HOOK_LEASES4 COMMITTED_DROP. 943
26.8.75 DHCP4_HOOK_LEASES4 COMMITTED_PARK 943
26.8.76 DHCP4_HOOK_LEASES4_COMMITTED_PARKING_LOT FULL 943
26.8.77 DHCP4_HOOK_PACKET RCVD_SKIP 943
26.8.78 DHCP4_HOOK_PACKET_SEND _DROP 943
26.8.79 DHCP4_HOOK_PACKET_SEND_SKIP 943
26.8.80 DHCP4_HOOK_SUBNET4_SELECT_406_PARKING_LOT_FULL 944
26.8.81 DHCP4_HOOK_SUBNET4_SELECT DROP 944
26.8.82 DHCP4_HOOK_SUBNET4_SELECT PARK 944
26.8.83 DHCP4_HOOK_SUBNET4_SELECT_PARKING_LOT_FULL 944
26.8.84 DHCP4_HOOK_SUBNET4_SELECT_SKIP 944
26.8.85 DHCP4_HOOK_SUBNET6_SELECT_PARKING_LOT_FULL 945
26.8.86 DHCP4_INFORM_DIRECT_REPLY 945
26.8.87 DHCP4_INIT _FAIL e e e e e e 945
26.8.88 DHCP4_INIT_REBOOT e 945
26.8.89 DHCP4_LEASE_ALLOC e 945
26.8.90 DHCP4_LEASE OFFER e 946
26.8.91 DHCP4_LEASE REUSE i 946
26.8.92 DHCP4_MULTI_THREADING_INFO 946
26.8.93 DHCP4_NCR_CREATION_FAILED 946
26.8.94 DHCP4_NOT_RUNNING i e 946
26.8.95 DHCP4_NO_LEASE_INIT_REBOOT 947
26.8.96 DHCP4_OPEN_SOCKET e 947
26.8.97 DHCP4_OPEN_SOCKETS_FAILED 947
26.8.98 DHCP4_OPEN_SOCKETS_NO_RECONNECT_CTL 947
26.8.99 DHCP4_PACKET_DROP_0001 e 947
26.8.100DHCP4_PACKET_DROP_0002 e 947
26.8.101DHCP4_PACKET_DROP_0003 e 948
26.8.102DHCP4_PACKET_DROP_0004 948
26.8.103DHCP4_PACKET_DROP_0005 e 948
26.8.104DHCP4_PACKET_DROP_0006 e 948

XXiv

26.8.105DHCP4_PACKET_DROP_0007 i e 948

26.8.106DHCP4_PACKET_DROP_0008 e 949
26.8.107DHCP4_PACKET_DROP_0009 e 949
26.8.108DHCP4_PACKET_DROP_0010 949
26.8.109DHCP4_PACKET_DROP_0011 e 949
26.8.110DHCP4_PACKET_DROP_0012 e 949
26.8.111DHCP4_PACKET_DROP_0013 e 950
26.8.112DHCP4_PACKET_DROP_0014 o e 950
26.8.113DHCP4_PACKET_NAK_0001 o e 950
26.8.114DHCP4_PACKET _NAK 0002 i et 950
26.8.115DHCP4_PACKET_NAK 0003 o i e e 950
26.8.116DHCP4_PACKET_NAK 0004 e 951
26.8.117DHCP4_PACKET_OPTIONS_SKIPPED 951
26.8.118DHCP4_PACKET_PACK 951
26.8.119DHCP4_PACKET _PACK_FAIL oo 951
26.8.120DHCP4_PACKET_PROCESS_EXCEPTION 951
26.8.121DHCP4_PACKET_PROCESS_EXCEPTION_MAIN 951
26.8.122DHCP4_PACKET_PROCESS_STD_EXCEPTION 952
26.8.123DHCP4_PACKET_PROCESS_STD_EXCEPTION_MAIN 952
26.8.124DHCP4_PACKET_QUEUE_FULL 952
26.8.125DHCP4_PACKET_RECEIVED e 952
26.8.126DHCP4_PACKET_SEND e 952
26.8.127TDHCP4_PACKET_SEND_FAIL e 953
26.8.128DHCP4_PARSER_COMMIT_EXCEPTION 953
26.8.129DHCP4_PARSER_COMMIT_FAIL 953
26.8.130DHCP4_PARSER_EXCEPTION oo o 953
26.8.131DHCP4_PARSER _FAIL 953
26.8.132DHCP4_POST_ALLOCATION_NAME_UPDATE_FAIL 954
26.8.133DHCP4_QUERY_DATA 954
26.8.134DHCP4_QUERY_LABEL e 954
26.8.135DHCP4_RECLAIM_EXPIRED_LEASES FAIL 954
26.8.136DHCP4_RECOVERED_STASHED RELAY_AGENT_INFO 954
26.8.137TDHCP4_RELEASE 954
26.8.138DHCP4_RELEASE _DELETED 955
26.8.139DHCP4_RELEASE_EXCEPTION e 955
26.8.140DHCP4_RELEASE _EXPIRED 955
26.8.141DHCP4_RELEASE _FAIL e e 955
26.8.142DHCP4_RELEASE_FAIL_NO_LEASE 955
26.8.143DHCP4_RELEASE_FAIL_WRONG_CLIENT 956
26.8.144DHCP4_REQUEST 956
26.8.145DHCP4_RESERVATIONS_LOOKUP_FIRST_ENABLED 956
26.8.146DHCP4_RESERVED_HOSTNAME_ASSIGNED 956
26.8.147TDHCP4_RESPONSE_DATA e e 956
26.8.148DHCP4_RESPONSE_FQDN_DATA e 957
26.8.149DHCP4_RESPONSE_HOSTNAME_DATA 957
26.8.150DHCP4_RESPONSE_HOSTNAME_GENERATE 957
26.8.151DHCP4_SERVER_FAILED e 957
26.8.152DHCP4_SERVER_INITIATED_DECLINE 957
26.8.153DHCP4_SERVER_INITIATED_DECLINE_ADD_FAILED 958
26.8.154DHCP4_SERVER_INITIATED_DECLINE_RESOURCE_BUSY 958
26.8.155DHCP4_SERVER_INITIATED_DECLINE_UPDATE_FAILED 958
26.8.156DHCP4_SHUTDOWN e 958
26.8.157DHCP4_SHUTDOWN_REQUEST 958
26.8.158DHCP4_SRV_CONSTRUCT_ERROR o 958

XXV

26.9

26.8.159DHCP4_SRV_D2STOP_ERROR 959

26.8.160DHCP4_SRV_DHCP406_ERROR 959
26.8.161DHCP4_SRV_UNLOAD_LIBRARIES_ERROR 959
26.8.162DHCP4_STARTED 959
26.8.163DHCP4_STARTING o e e e e e e 959
26.8.164DHCP4_START_INFO e 959
26.8.165DHCP4_SUBNET_DATA e 960
26.8.166DHCP4_SUBNET_DYNAMICALLY CHANGED 960
26.8.167TDHCP4_SUBNET_SELECTED e 960
26.8.168DHCP4_SUBNET_SELECTION_FAILED 960
26.8.169DHCP4_TESTING_MODE_SEND_TO_SOURCE_ENABLED 960
26.8.170DHCP4_UNKNOWN_ADDRESS REQUESTED 961
26.8.171DHCP4_V6_ONLY_PREFERRED_MISSING_IN_ACK 961
DHCPO o e 961
26.9.1 DHCP6_ADDITIONAL_CLASS_EVAL_ERROR 961
26.9.2 DHCP6_ADDITIONAL_CLASS EVAL RESULT 961
26.9.3 DHCP6_ADDITIONAL_CLASS_NO_TEST 961
26.9.4 DHCP6_ADDITIONAL_CLASS_UNDEFINED 962
26.9.5 DHCP6_ADD_GLOBAL_STATUS_CODE 962
26.9.6 DHCP6_ADD_STATUS_CODE_FOR_IA 962
26.9.7 DHCP6_ALREADY_RUNNING e 962
26.9.8 DHCP6_BUFFER_RECEIVED 962
26.9.9 DHCP6_BUFFER_UNPACK i 963
26.9.10 DHCP6_BUFFER_WAIT_SIGNAL 963
26.9.11 DHCP6_CB_ON_DEMAND_FETCH_UPDATES_FAIL 963
26.9.12 DHCP6_CB_PERIODIC_FETCH_UPDATES FAIL 963
26.9.13 DHCP6_CB_PERIODIC_FETCH_UPDATES_RETRIES_EXHAUSTED 963
26.9.14 DHCP6_CLASSES_ASSIGNED e 964
26.9.15 DHCP6_CLASSES_ASSIGNED_AFTER_SUBNET_SELECTION 964
26.9.16 DHCP6_CLASS_ASSIGNED e 964
26.9.17 DHCP6_CLASS_UNCONFIGURED 964
26.9.18 DHCP6_CONFIG_COMPLETE e 964
26.9.19 DHCP6_CONFIG_LOAD_FAIL e 965
26.9.20 DHCP6_CONFIG_PACKET _QUEUE 965
26.9.21 DHCP6_CONFIG_RECEIVED 965
26.9.22 DHCP6_CONFIG_START e 965
26.9.23 DHCP6_CONFIG_SYNTAX WARNING e 965
26.9.24 DHCP6_CONFIG_UNRECOVERABLE ERROR 965
26.9.25 DHCP6_CONFIG_UNSUPPORTED_OBJECT 966
26.9.26 DHCP6_DB_RECONNECT_DISABLED 966
26.9.27 DHCP6_DB_RECONNECT_FAILED 966
26.9.28 DHCP6_DB_RECONNECT_LOST _CONNECTION 966
26.9.29 DHCP6_DB_RECONNECT_NO_ DB _CTL 966
26.9.30 DHCP6_DB_RECONNECT_SUCCEEDED 966
26.9.31 DHCP6_DDNS_CREATE_ADD_NAME_CHANGE_REQUEST 967
26.9.32 DHCP6_DDNS_FQDN_GENERATED 967
26.9.33 DHCP6_DDNS_GENERATED_FQDN_UPDATE _FAIL 967
26.9.34 DHCP6_DDNS_GENERATE_FQDN e 967
26.9.35 DHCP6_DDNS_RECEIVE_FQDN e 967
26.9.36 DHCP6_DDNS_REMOVE_OLD_LEASE FQDN 968
26.9.37 DHCP6_DDNS_REQUEST_SEND_FAILED 968
26.9.38 DHCP6_DDNS_RESPONSE _FQDN_DATA 968
26939 DHCP6_DECLINE_FAIL o e 968
26.9.40 DHCP6_DECLINE_FAIL_DUID_MISMATCH 968

xXxvi

26.9.41
26.9.42
26.9.43
26.9.44
26.9.45
26.9.46
26.9.47
26.9.48
26.9.49
26.9.50
26.9.51
26.9.52
26.9.53
26.9.54
26.9.55
26.9.56
26.9.57
26.9.58
26.9.59
26.9.60
26.9.61
26.9.62
26.9.63
26.9.64
26.9.65
26.9.66
26.9.67
26.9.68
26.9.69
26.9.70
26.9.71
26.9.72
26.9.73
26.9.74
26.9.75
26.9.76
26.9.77
26.9.78
26.9.79
26.9.80
26.9.81
26.9.82
26.9.83
26.9.84
26.9.85
26.9.86
26.9.87
26.9.88
26.9.89
26.9.90
26.9.91
26.9.92
26.9.93
26.9.94

DHCP6_DECLINE_FAIL_TIAID_MISMATCH 969
DHCP6_DECLINE_FAIL_LEASE WITHOUT DUID. 969
DHCP6_DECLINE_FAIL_NO_LEASE 969
DHCP6_DECLINE_LEASE 969
DHCP6_DECLINE_PROCESS TA 969
DHCP6_DEVELOPMENT_VERSION 970
DHCP6_DHCP406_PACKET _RECEIVED 970
DHCP6_DHCP406_RECEIVE_FAIL i 970
DHCP6_DHCP406_RECEIVING o e 970
DHCP6_DHCP406_RESPONSE DATA 970
DHCP6_DHCP40O6_SEND_FAIL 970
DHCP6_DYNAMIC_RECONFIGURATION, 971
DHCP6_DYNAMIC_RECONFIGURATION_FAIL 971
DHCP6_DYNAMIC_RECONFIGURATION_SUCCESS 971
DHCP6_FLEX ID e e 971
DHCP6_HOOK_BUFFER_RCVD_DROP 971
DHCP6_HOOK_BUFFER_RCVD_SKIP 971
DHCP6_HOOK_BUFFER_SEND_SKIP 972
DHCP6_HOOK_DDNS_UPDATE o i 972
DHCP6_HOOK_DECLINE_DROP 972
DHCP6_HOOK_DECLINE _SKIP 972
DHCP6_HOOK_LEASE6_RELEASE NA SKIP. 972
DHCP6_HOOK_LEASE6_RELEASE PD_SKIP 973
DHCP6_HOOK_LEASES6_COMMITTED_DROP. 973
DHCP6_HOOK_LEASES6_COMMITTED_PARK 973
DHCP6_HOOK_LEASES6_PARKING_LOT_FULL 973
DHCP6_HOOK_PACKET_RCVD_SKIP 973
DHCP6_HOOK_PACKET_SEND DROP 974
DHCP6_HOOK_PACKET_SEND_SKIP 974
DHCP6_HOOK_SUBNET6_SELECT_DROP 974
DHCP6_HOOK_SUBNET6_SELECT_PARK 974
DHCP6_HOOK_SUBNET6_SELECT _SKIP 974
DHCPO_INIT_FAIL e e e e e e s e 975
DHCP6_LEASE _ADVERT e 975
DHCP6_LEASE _ADVERT _FAIL i i 975
DHCP6_LEASE _ALLOC e e e 975
DHCP6_LEASE_ALLOC_FAIL 975
DHCP6_LEASE DATA e e e e 976
DHCP6_LEASE NA_WITHOUT_ DUID 976
DHCP6_LEASE _PD_WITHOUT_DUID 976
DHCP6_LEASE RENEW e 976
DHCP6_LEASE REUSE e 976
DHCP6_MULTI_THREADING_INFO 977
DHCP6_NOT_RUNNING e e e e e 977
DHCP6_NO_INTERFACES e 977
DHCP6_OPEN_SOCKET e 977
DHCP6_OPEN_SOCKETS_FAILED 971
DHCP6_OPEN_SOCKETS_NO_RECONNECT_CTL 977
DHCP6_PACKET_DROP_DHCP_DISABLED 978
DHCP6_PACKET_DROP_DROP_CLASS 978
DHCP6_PACKET_DROP_DROP_CLASS2 978
DHCP6_PACKET_DROP_DROP_CLASS_EARLY 978
DHCP6_PACKET_DROP_DUPLICATE 978
DHCP6_PACKET _DROP_PARSE FAIL 979

26.9.95 DHCP6_PACKET_DROP_SERVERID_MISMATCH 979

26.9.96 DHCP6_PACKET_DROP_UNICAST e 979
26.9.97 DHCP6_PACKET_OPTIONS_SKIPPED 979
26.9.98 DHCP6_PACKET_PROCESS_EXCEPTION 979
26.9.99 DHCP6_PACKET_PROCESS_EXCEPTION_MAIN 979
26.9.100DHCP6_PACKET _PROCESS _FAIL e 980
26.9.101DHCP6_PACKET_PROCESS_STD_EXCEPTION 980
26.9.102DHCP6_PACKET_PROCESS_STD_EXCEPTION_MAIN 980
26.9.103DHCP6_PACKET_QUEUE_FULL, 980
26.9.104DHCP6_PACKET RECEIVED 980
26.9.105DHCP6_PACKET _RECEIVE _FAIL e 981
26.9.106DHCP6_PACKET_SEND e 981
26.9.107DHCP6_PACKET_SEND_FAIL e 981
26.9.108DHCP6_PACK _FAIL e 981
26.9.109DHCP6_PARSER_COMMIT_EXCEPTION 981
26.9.110DHCP6_PARSER_COMMIT _FAIL e 981
26.9.111DHCP6_PARSER_EXCEPTION e 982
26.9.112DHCP6_PARSER _FAIL 982
26.9.113DHCP6_PD_LEASE_ADVERT 982
26.9.114DHCP6_PD_LEASE_ADVERT _FAIL 982
26.9.115DHCP6_PD_LEASE _ALLOC i e e e 982
26.9.116DHCP6_PD_LEASE ALLOC_FAIL 983
26.9.117DHCP6_PD_LEASE RENEW e 983
26.9.118DHCP6_PD_LEASE REUSE e 983
26.9.119DHCP6_PROCESS_TA_NA _EXTEND, 983
26.9.120DHCP6_PROCESS_IA_NA RELEASE 983
26.9.121DHCP6_PROCESS_IA_NA _REQUEST 984
26.9.122DHCP6_PROCESS_IA_NA_SOLICIT e 984
26.9.123DHCP6_PROCESS_IA_PD_EXTEND 984
26.9.124DHCP6_PROCESS_IA_PD_REQUEST 984
26.9.125DHCP6_PROCESS_IA_PD_SOLICIT e 984
26.9.126DHCP6_QUERY_DATA 985
26.9.127TDHCP6_QUERY_LABEL e 985
26.9.128DHCP6_RAPID_COMMIT e 985
26.9.129DHCP6_RECLAIM_EXPIRED_LEASES FAIL 985
26.9.130DHCP6_RELEASE _NA 985
26.9.131DHCP6_RELEASE _NA _DELETED, 985
26.9.132DHCP6_RELEASE NA _EXPIRED 986
26.9.133DHCP6_RELEASE _NA _FAIL e 986
26.9.134DHCP6_RELEASE_NA_FAIL_ WRONG_DUID 986
26.9.135DHCP6_RELEASE_NA_FAIL_WRONG_IAID 986
26.9.136DHCP6_RELEASE PD e 986
26.9.137DHCP6_RELEASE _PD_DELETED e 987
26.9.138DHCP6_RELEASE PD_EXPIRED 987
26.9.139DHCP6_RELEASE_PD_FAIL e 987
26.9.140DHCP6_RELEASE_PD_FAIL_WRONG_DUID 987
26.9.141DHCP6_RELEASE PD_FAIL WRONG_IAID 987
26.9.142DHCP6_REQUIRED_OPTIONS _CHECK FAIL 988
26.9.143DHCP6_RESERVATIONS_LOOKUP_FIRST ENABLED 988
26.9.144DHCP6_RESPONSE _DATA e 988
26.9.145DHCP6_SERVER_FAILED 988
26.9.146DHCP6_SHUTDOWN e 988
26.9.147DHCP6_SHUTDOWN_REQUEST oo . 988
26.9.148DHCP6_SRV_CONSTRUCT_ERROR e 989

xxviii

26.9.149DHCP6_SRV_D2STOP_ERROR e 989

26.9.150DHCP6_SRV_UNLOAD_LIBRARIES_ERROR 989
26.9.151DHCP6_STARTED 989
26.9.152DHCP6_STARTING e 989
26.9.153DHCP6_START_INFO e e 989
26.9.154DHCP6_SUBNET _DATA e e e 990
26.9.155DHCP6_SUBNET_DYNAMICALLY CHANGED 990
26.9.156DHCP6_SUBNET_SELECTED e 990
26.9.157TDHCP6_SUBNET_SELECTION_FAILED 990
26.9.158DHCP6_UNKNOWN_MSG_RECEIVED, 990
26.10 DHCPSRYV o e 991
26.10.1 DHCPSRV_CFGMGR_ADD_IFACE 991
26.10.2 DHCPSRV_CFGMGR_ADD_SUBNET4 991
26.10.3 DHCPSRV_CFGMGR_ADD_SUBNET6 991
26.10.4 DHCPSRV_CFGMGR_ALL_IFACES_ACTIVE 991
26.10.5 DHCPSRV_CFGMGR_CFG_DHCP_DDNS 991
26.10.6 DHCPSRV_CFGMGR_CONFIG4 MERGED 991
26.10.7 DHCPSRV_CFGMGR_CONFIG6_MERGED 992
26.10.8 DHCPSRV_CFGMGR_CONFIGURE_SERVERID 992
26.10.9 DHCPSRV_CFGMGR_DEL_SUBNET4 992
26.10.10DHCPSRV_CFGMGR_DEL_SUBNET6 992
26.10.11DHCPSRV_CFGMGR_FLQ_POPULATE_FREE_ADDRESS_LEASES 992
26.10.12DHCPSRV_CFGMGR_FLQ_POPULATE_FREE_ADDRESS_LEASES_DONE 993
26.10.13DHCPSRV_CFGMGR_FLQ_POPULATE_FREE_PREFIX LEASES 993
26.10.14DHCPSRV_CFGMGR_FLQ_POPULATE_FREE_PREFIX LEASES DONE 993
26.10.15SDHCPSRV_CFGMGR_IPV4_RESERVATIONS_NON_UNIQUE_IGNORED 993
26.10.16DHCPSRV_CFGMGR_IPV6_RESERVATIONS_NON_UNIQUE_IGNORED 993
26.10.17DHCPSRV_CFGMGR_IP_RESERVATIONS_UNIQUE_DUPLICATES_DETECTED . . . 994
26.10.18DHCPSRV_CFGMGR_IP_RESERVATIONS_UNIQUE_DUPLICATES_POSSIBLE 994
26.10.19DHCPSRV_CFGMGR_NEW_SUBNET4 994
26.10.20DHCPSRV_CFGMGR_NEW_SUBNET6 994
26.10.21DHCPSRV_CFGMGR_OPTION_DUPLICATE 994
26.10.22DHCPSRV_CFGMGR_RENEW_GTR_REBIND 994
26.10.23DHCPSRV_CFGMGR_SOCKET_RAW_UNSUPPORTED 995
26.10.24DHCPSRV_CFGMGR_SOCKET_TYPE_DEFAULT 995
26.10.25DHCPSRV_CFGMGR_SOCKET_TYPE_SELECT 995
26.10.26DHCPSRV_CFGMGR_SUBNET4 e 995
26.10.27DHCPSRV_CFGMGR_SUBNET4_ADDR 995
26.10.28DHCPSRV_CFGMGR_SUBNET4_IFACE 996
26.10.29DHCPSRV_CFGMGR_SUBNET4_RELAY 996
26.10.30DHCPSRV_CFGMGR_SUBNETO6 o oo e 996
26.10.31DHCPSRV_CFGMGR_SUBNET6_IFACE 996
26.10.32DHCPSRV_CFGMGR_SUBNET6_IFACE_ID 996
26.10.33DHCPSRV_CFGMGR_SUBNET6_RELAY 997
26.10.34DHCPSRV_CFGMGR_UNICAST LINK LOCAL 997
26.10.35DHCPSRV_CFGMGR_UPDATE_SUBNET4 997
26.10.36DHCPSRV_CFGMGR_UPDATE_SUBNET6, 997
26.10.37DHCPSRV_CFGMGR_USE_ADDRESS 997
26.10.38DHCPSRV_CFGMGR_USE_ALLOCATOR 997
26.10.39DHCPSRV_CFGMGR_USE_UNICAST e 998
26.10.40DHCPSRV_CLASS_WITH_ADDITIONAL_AND_LIFETIMES 998
26.10.41DHCPSRV_CLIENT_CLASS_DEPRECATED 998
26.1042DHCPSRV_CLOSE_DB e 998
26.10.43DHCPSRV_DDNS_TTL_PERCENT_TOO_SMALL 998

26.10.44DHCPSRV_DHCP406_RECEIVED_BAD_PACKET 998

26.10.45DHCPSRV_DHCP_DDNS_ERROR_EXCEPTION 999

26.10.46DHCPSRV_DHCP_DDNS_HANDLER NULL 999

26.10.47DHCPSRV_DHCP_DDNS_NCR_REJECTED 999

26.10.48DHCPSRV_DHCP_DDNS_NCR_SENT e 999

26.10.49DHCPSRV_DHCP_DDNS_SENDER_STARTED 999

26.10.50DHCPSRV_DHCP_DDNS_SENDER_STOPPED 999

26.10.51DHCPSRV_DHCP_DDNS_SUSPEND_UPDATES 1000
26.10.52DHCPSRV_EVAL_ERROR 1000
26.10.53DHCPSRV_EVAL RESULT e 1000
26.10.54DHCPSRV_HOOK_LEASE4 RECOVER_SKIP 1000
26.10.55DHCPSRV_HOOK_LEASE4 RENEW_SKIP 1000
26.10.56DHCPSRV_HOOK_LEASE4_SELECT_SKIP 1001
26.10.57DHCPSRV_HOOK_LEASE6_EXTEND_SKIP 1001
26.10.58DHCPSRV_HOOK_LEASE6_RECOVER_SKIP 1001
26.10.59DHCPSRV_HOOK_LEASE6_SELECT _SKIP 1001
26.10.60DHCPSRV_HOST_MGR_DB_OPEN_CONNECTION_WITH_RETRY_FAILED 1001
26.10.61DHCPSRV_LEASE4_EXTENDED_INFO_SANITY_FAIL 1002
26.10.62DHCPSRV_LEASE4_EXTENDED_INFO_UPGRADED 1002
26.10.63DHCPSRV_LEASE6_EXTENDED_INFO_SANITY_FAIL 1002
26.10.64DHCPSRV_LEASE6_EXTENDED_INFO_UPGRADED 1002
26.10.65DHCPSRV_LEASE_MGR_BACKENDS_REGISTERED 1002
26.10.66DHCPSRV_LEASE_MGR_BACKEND_DEREGISTER 1002
26.10.67DHCPSRV_LEASE_MGR_BACKEND_REGISTER 1003
26.10.68DHCPSRV_LEASE_MGR_CALLBACK_EXCEPTION 1003
26.10.69DHCPSRV_LEASE MGR_CALLBACK_UNKNOWN_EXCEPTION. 1003
26.10.70DHCPSRV_LEASE_MGR_DB_OPEN_CONNECTION_WITH_RETRY_FAILED 1003
26.10.71IDHCPSRV_LEASE_SANITY_FAIL 1003
26.10.72DHCPSRV_LEASE_SANITY_FAIL_DISCARD 1004
26.10.73DHCPSRV_LEASE_SANITY_FIXED, 1004
26.10.74DHCPSRV_MEMFILE _ADD_ADDR4, 1004
26.10.7SDHCPSRV_MEMFILE _ADD_ADDRG6 1004
26.10.76DHCPSRV_MEMFILE_BEGIN_BUILD_EXTENDED_INFO_TABLES6 1004
26.10.77DHCPSRV_MEMFILE_BEGIN_EXTRACT_EXTENDED_INFO4 1004
26.10.78DHCPSRV_MEMFILE_BUILD_EXTENDED_INFO_TABLES6 1005
26.10.79DHCPSRV_MEMFILE _BUILD_EXTENDED_INFO_TABLES6_ERROR 1005
26.10.80DHCPSRV_MEMFILE COMMIT e 1005
26.10.81DHCPSRV_MEMFILE_CONVERTING_LEASE FILES 1005
26.10.82DHCPSRV_MEMFILE DB 1005
26.10.83DHCPSRV_MEMFILE DELETE_ADDR4 1005
26.10.84DHCPSRV_MEMFILE DELETE_ADDRG6 1006
26.10.85DHCPSRV_MEMFILE DELETE_EXPIRED_RECLAIMED4 1006
26.10.86DHCPSRV_MEMFILE_DELETE_EXPIRED_RECLAIMEDG. 1006
26.10.87DHCPSRV_MEMFILE_DELETE_EXPIRED_RECLAIMED_START 1006
26.10.88DHCPSRV_MEMFILE_EXTRACT_EXTENDED_INFO4 1006
26.10.89DHCPSRV_MEMFILE_EXTRACT_EXTENDED_INFO4 ERROR 1006
26.10.90DHCPSRV_MEMFILE GET4 i e 1007
26.10.91DHCPSRV_MEMFILE GET6 e 1007
26.10.92DHCPSRV_MEMFILE GET6_DUID oo 1007
26.10.93DHCPSRV_MEMFILE GET_ADDR4 1007
26.10.94DHCPSRV_MEMFILE GET_ADDR6 1007
26.10.95DHCPSRV_MEMFILE GET_CLIENTID 1007
26.10.96DHCPSRV_MEMFILE _GET EXPIRED4 1008
26.10.97DHCPSRV_MEMFILE _GET EXPIRED6 1008

XXX

26.10.98DHCPSRV_MEMFILE_GET _HOSTNAME4 1008

26.10.99DHCPSRV_MEMFILE _GET _HOSTNAMEG 1008
26.10.100HCPSRV_MEMFILE _GET_HWADDR 1008
26.10.10DHCPSRV_MEMFILE _GET_IAID_DUID 1008
26.10.10bHCPSRV_MEMFILE_GET IAID_SUBID DUID 1009
26.10.10PHCPSRV_MEMFILE GET PAGE4 1009
26.10.10DHCPSRV_MEMFILE GET PAGE6 1009
26.10.10PHCPSRV_MEMFILE _GET_RELAYID4 1009
26.10.10pHCPSRV_MEMFILE_GET_RELAYID6 1009
26.10.100DHCPSRV_MEMFILE GET_REMOTEID4 1009
26.10.10DHCPSRV_MEMFILE_GET _REMOTEID6 1010
26.10.10DHCPSRV_MEMFILE GET _SUBID4 1010
26.10.11OHCPSRV_MEMFILE _GET_SUBID6 1010
26.10.11DHCPSRV_MEMFILE_GET_SUBID_CLIENTID 1010
26.10.11DHCPSRV_MEMFILE_GET_SUBID_HWADDR 1010
26.10.11PHCPSRV_MEMFILE_GET SUBID_PAGE6 1010
26.10.11DHCPSRV_MEMFILE_LEASE _FILE LOAD 1011
26.10.11PHCPSRV_MEMFILE LEASE LOAD oo 1011
26.10.11®HCPSRV_MEMFILE_LEASE_LOAD_ROW_ERROR 1011
26.10.11DHCPSRV_MEMFILE LFC_EXECUTE 1011
26.10.11DHCPSRV_MEMFILE_LFC_LEASE FILE RENAME _FAIL 1011
26.10.11DHCPSRV_MEMFILE_LFC_LEASE FILE REOPEN_FAIL 1011
26.10.120HCPSRV_MEMFILE LFC_SETUP o 1012
26.10.12DHCPSRV_MEMFILE LFC_SPAWN_FAIL 1012
26.10.12DHCPSRV_MEMFILE LFC_START oo 1012
26.10.12DHCPSRV_MEMFILE_LFC_UNREGISTER_TIMER FAILED 1012
26.10.12DHCPSRV_MEMFILE_NEEDS_DOWNGRADING 1012
26.10.12DHCPSRV_MEMFILE_NEEDS_UPGRADING 1013
26.10.120HCPSRV_MEMFILE_NO_STORAGE 1013
26.10.12DHCPSRV_MEMFILE_READ _HWADDR _FAIL 1013
26.10.12DHCPSRV_MEMFILE ROLLBACK oo o 1013
26.10.12DHCPSRV_MEMFILE _UPDATE _ADDR4 1013
26.10.13DHCPSRV_MEMFILE_UPDATE_ADDRG6 1013
26.10.13DHCPSRV_MEMFILE WIPE_LEASES4 1014
26.10.13DHCPSRV_MEMFILE_WIPE_LEASES4 FINISHED 1014
26.10.13BHCPSRV_MEMFILE_WIPE_LEASES6. 1014
26.10.13DHCPSRV_MEMFILE_WIPE_LEASES6_FINISHED 1014
26.10.13DHCPSRV_MT_DISABLED_QUEUE_CONTROL 1014
26.10.13®HCPSRV_MULTIPLE_RAW_SOCKETS_PER_IFACE 1014
26.10.13DHCPSRV_NOTYPE DB e 1015
26.10.13BHCPSRV_NO_SOCKETS_OPEN e 1015
26.10.13DHCPSRV_ONLY_IF_REQUIRED_DEPRECATED 1015
26.10.14DHCPSRV_OPEN_SOCKET _FAIL e 1015
26.10.14DHCPSRV_QUEUE_NCR e 1015
26.10.14DHCPSRV_QUEUE_NCR_FAILED, 1015
26.10.14BDHCPSRV_QUEUE_NCR_SKIP 1016
26.10.14DHCPSRV_REQUIRE_CLIENT_CLASSES_DEPRECATED 1016
26.10.14DHCPSRV_SUBNET406_SELECT FAILED 1016
26.10.14BDHCPSRV_SUBNET4_SELECT_BY_ADDRESS_NO_MATCH 1016
26.10.14DHCPSRV_SUBNET4_SELECT_BY_INTERFACE_NO_MATCH 1016
26.10.14DHCPSRV_SUBNET4_SELECT_BY_RELAY_ADDRESS_NO_MATCH 1016
26.10.14DHCPSRV_SUBNET4_SELECT_NO_RAI_OPTIONS 1017
26.10.15DHCPSRV_SUBNET4_SELECT_NO_RELAY_ADDRESS 1017
26.10.15DHCPSRV_SUBNET4_SELECT_NO_USABLE_ADDRESS 1017

26.10.15DHCPSRV_SUBNET6_SELECT_BY_ADDRESS_NO_MATCH 1017

26.10.15PHCPSRV_SUBNET6_SELECT_BY_INTERFACE_ID_NO_MATCH 1017
26.10.15DHCPSRV_SUBNET6_SELECT_BY_INTERFACE_NO_MATCH 1017
26.10.15SPHCPSRV_TEMPLATE_EVAL ERROR, 1018
26.10.150HCPSRV_TEMPLATE_EVAL_RESULT 1018
26.10.15DHCPSRV_TIMERMGR_CALLBACK _FAILED 1018
26.10.15WHCPSRV_TIMERMGR_REGISTER_TIMER 1018
26.10.15DHCPSRV_TIMERMGR_RUN_TIMER_OPERATION 1018
26.10.160HCPSRV_TIMERMGR_START_TIMER 1018
26.10.16DHCPSRV_TIMERMGR_STOP_TIMER, 1019
26.10.16DHCPSRV_TIMERMGR_UNREGISTER_ALL_TIMERS 1019
26.10.16BPHCPSRV_TIMERMGR_UNREGISTER_TIMER 1019
26.11 DHCP 1019
26.11.1 DHCP_DDNS_ADD _FAILED e 1019
26.11.2 DHCP_DDNS_ADD_SUCCEEDED 1019
26.11.3 DHCP_DDNS_AT_MAX_TRANSACTIONS 1019
26.11.4 DHCP_DDNS_CLEARED_FOR_SHUTDOWN 1020
26.11.5 DHCP_DDNS_CONFIGURE i e 1020
26.11.6 DHCP_DDNS_CONFIGURED_CALLOUT_DROP 1020
26.11.7 DHCP_DDNS_CONFIG_CHECK_FAIL 1020
26.11.8 DHCP_DDNS_CONFIG_FAIL e 1020
26.11.9 DHCP_DDNS_CONFIG_SYNTAX_WARNING 1020
26.11.10DHCP_DDNS_FAILED e 1021
26.11.11DHCP_DDNS_FORWARD_ADD_BAD_DNSCLIENT_STATUS 1021
26.11.12DHCP_DDNS_FORWARD_ADD_BUILD_FAILURE 1021
26.11.13DHCP_DDNS_FORWARD_ADD_IO_ERROR 1021
26.11.14DHCP_DDNS_FORWARD_ADD_REJECTED 1021
26.11.15DHCP_DDNS_FORWARD_ADD_RESP_CORRUPT 1022
26.11.16DHCP_DDNS_FORWARD_ADD_TIMEOUT 1022
26.11.17DHCP_DDNS_FORWARD_REMOVE_ADDRS_BAD_DNSCLIENT_STATUS 1022
26.11.18DHCP_DDNS_FORWARD_REMOVE_ADDRS_BUILD_FAILURE 1022
26.11.19DHCP_DDNS_FORWARD_REMOVE_ADDRS IO _ERROR 1022
26.11.20DHCP_DDNS_FORWARD_REMOVE_ADDRS_REJECTED 1023
26.11.21DHCP_DDNS_FORWARD_REMOVE_ADDRS_RESP_CORRUPT 1023
26.11.22DHCP_DDNS_FORWARD_REMOVE_ADDRS_TIMEOUT 1023
26.11.23DHCP_DDNS_FORWARD_REMOVE_RRS_BAD_DNSCLIENT_STATUS 1023
26.11.24DHCP_DDNS_FORWARD_REMOVE_RRS_BUILD_FAILURE 1023
26.11.25DHCP_DDNS_FORWARD_REMOVE_RRS_IO_ERROR 1024
26.11.26DHCP_DDNS_FORWARD_REMOVE_RRS_REJECTED 1024
26.11.27DHCP_DDNS_FORWARD_REMOVE_RRS_RESP_CORRUPT 1024
26.11.28DHCP_DDNS_FORWARD_REMOVE_RRS_TIMEOUT 1024
26.11.29DHCP_DDNS_FORWARD_REPLACE_BAD_DNSCLIENT_STATUS 1024
26.11.30DHCP_DDNS_FORWARD_REPLACE_BUILD_FAILURE 1025
26.11.31DHCP_DDNS_FORWARD_REPLACE_IO_ERROR 1025
26.11.32DHCP_DDNS_FORWARD_REPLACE _REJECTED 1025
26.11.33DHCP_DDNS_FORWARD_REPLACE_RESP_CORRUPT 1025
26.11.34DHCP_DDNS_FORWARD_REPLACE_TIMEOUT 1025
26.11.35DHCP_DDNS_FWD_REQUEST IGNORED 1026
26.11.36DHCP_DDNS_INVALID_NCR o e 1026
26.11.37DHCP_DDNS_INVALID_RESPONSE 1026
26.11.38DHCP_DDNS_LISTENING_ON_ALL_INTERFACES 1026
26.11.39DHCP_DDNS_NCR_FLUSH_IO_ERROR 1026
26.11.40DHCP_DDNS_NCR_LISTEN_CLOSE_ERROR, 1027
26.11.41DHCP_DDNS_NCR_RECV_NEXT ERROR 1027

xxxii

26.11.42DHCP_DDNS_NCR_SEND_CLOSE_ERROR 1027

26.11.43DHCP_DDNS_NCR_SEND_NEXT ERROR 1027
26.11.44DHCP_DDNS_NCR_UDP_CLEAR_READY_ERROR. 1027
26.11.45DHCP_DDNS_NCR_UDP_RECV_CANCELED 1028
26.11.46DHCP_DDNS_NCR_UDP_RECV_ERROR. 1028
26.11.47DHCP_DDNS_NCR_UDP_SEND _CANCELED 1028
26.11.48DHCP_DDNS_NCR_UDP_SEND ERROR 1028
26.11.49DHCP_DDNS_NOT_ON_LOOPBACK e 1028
26.11.50DHCP_DDNS_NO_ELIGIBLE_JOBS, 1028
26.11.51DHCP_DDNS_NO_FWD_MATCH_ERROR 1029
26.11.52DHCP_DDNS_NO_MATCH o o e 1029
26.11.53DHCP_DDNS_NO_REV_MATCH_ERROR 1029
26.11.54DHCP_DDNS_QUEUE_MGR_QUEUE_FULL 1029
26.11.55DHCP_DDNS_QUEUE_MGR_QUEUE_RECEIVE 1029
26.11.56DHCP_DDNS_QUEUE_MGR_RECONFIGURING 1030
26.11.57DHCP_DDNS_QUEUE_MGR_RECOVERING. 1030
26.11.58DHCP_DDNS_QUEUE_MGR_RECV_ERROR 1030
26.11.59DHCP_DDNS_QUEUE_MGR_RESUME_ERROR 1030
26.11.60DHCP_DDNS_QUEUE_MGR_RESUMING 1030
26.11.61DHCP_DDNS_QUEUE_MGR_STARTED 1031
26.11.62DHCP_DDNS_QUEUE_MGR_START ERROR 1031
26.11.63DHCP_DDNS_QUEUE_MGR_STOPPED 1031
26.11.64DHCP_DDNS_QUEUE_MGR_STOPPING 1031
26.11.65DHCP_DDNS_QUEUE_MGR_STOP_ERROR 1031
26.11.66DHCP_DDNS_QUEUE_MGR_UNEXPECTED_HANDLER_ERROR 1031
26.11.67DHCP_DDNS_QUEUE_MGR_UNEXPECTED_STOP 1032
26.11.68DHCP_DDNS_REMOVE_FAILED e 1032
26.11.6ODHCP_DDNS_REMOVE_SUCCEEDED, 1032
26.11.70DHCP_DDNS_REQUEST_DROPPED 1032
26.11.71DHCP_DDNS_REVERSE _REMOVE_BAD_DNSCLIENT_STATUS 1032
26.11.72DHCP_DDNS_REVERSE REMOVE_BUILD_FAILURE 1033
26.11.73DHCP_DDNS_REVERSE_REMOVE IO ERROR 1033
26.11.74ADHCP_DDNS_REVERSE_REMOVE REJECTED 1033
26.11.75DHCP_DDNS_REVERSE_REMOVE_RESP_CORRUPT 1033
26.11.76DHCP_DDNS_REVERSE_REMOVE_TIMEOUT 1033
26.11.77DHCP_DDNS_REVERSE REPLACE BAD_DNSCLIENT_STATUS 1034
26.11.78DHCP_DDNS_REVERSE_REPLACE_BUILD_FAILURE 1034
26.11.79DHCP_DDNS_REVERSE_REPLACE_IO_ERROR 1034
26.11.80DHCP_DDNS_REVERSE_REPLACE_REJECTED 1034
26.11.81DHCP_DDNS_REVERSE_REPLACE_RESP_CORRUPT 1034
26.11.82DHCP_DDNS_REVERSE_REPLACE_TIMEOUT 1035
26.11.83DHCP_DDNS_REV_REQUEST_IGNORED 1035
26.11.84DHCP_DDNS_RUN_EXIT e e 1035
26.11.85DHCP_DDNS_SHUTDOWN_COMMAND e 1035
26.11.86DHCP_DDNS_STARTED e 1035
26.11.87DHCP_DDNS_STARTING_TRANSACTION 1035
26.11.88DHCP_DDNS_STATE_MODEL_UNEXPECTED_ERROR 1036
26.11.89DHCP_DDNS_TRANS_SEND_ERROR 1036
26.11.90DHCP_DDNS_UDP_SENDER_WATCH_SOCKET_CLOSE_ERROR 1036
26.11.91DHCP_DDNS_UNCAUGHT_NCR_RECV_HANDLER _ERROR 1036
26.11.92DHCP_DDNS_UPDATE_REQUEST_SENT 1036
26,12 EVAL 1037
26.12.1 EVAL_DEBUG_AND e 1037
26.12.2 EVAL_DEBUG_BRANCH e 1037

xxxiii

26.12.3 EVAL_DEBUG_CONCAT e 1037

26.12.4 EVAL_DEBUG_EQUAL i 1037
26.12.5 EVAL_DEBUG_HEXSTRING e 1037
26.12.6 EVAL_DEBUG_IFELSE FALSE 1037
26.12.7 EVAL_DEBUG_IFELSE _TRUE e 1038
26.12.8 EVAL_DEBUG_INTI6TOTEXT e 1038
26.12.9 EVAL_DEBUG_INT32TOTEXT e 1038
26.12.10EVAL_DEBUG_INT8TOTEXT e 1038
26.12.11EVAL_DEBUG_IPADDRESS 1038
26.12.12EVAL_DEBUG_IPADDRESSTOTEXT 1038
26.12.13EVAL_DEBUG_LCASE 1039
26.12.14EVAL_DEBUG_MATCH it 1039
26.12.15EVAL_DEBUG_MATCH_ERROR 1039
26.12.16EVAL_DEBUG_MEMBER 1039
26.12.17EVAL_DEBUG_NOT e e 1039
26.12.18EVAL_DEBUG_OPTION i e 1039
26.12.19EVAL_DEBUG_OR e 1040
26.12.20EVAL_DEBUG_PKT 1040
26.12.21EVAL_DEBUG_PKT4 e 1040
26.12.22EVAL_DEBUG_PKTO6 o 1040
26.12.23EVAL_DEBUG_POP_AND _BRANCH_FALSE 1040
26.12.24EVAL_DEBUG_POP_OR_BRANCH_FALSE 1040
26.12.25EVAL_DEBUG_POP_OR_BRANCH_TRUE 1041
26.12.26EVAL_DEBUG_RELAYG6 i 1041
26.12.27TEVAL_DEBUG_RELAY6_RANGE oo 1041
26.12.28EVAL_DEBUG_SPLIT e 1041
26.12.29EVAL_DEBUG_SPLIT_DELIM_EMPTY 1041
26.12.30EVAL_DEBUG_SPLIT_EMPTY i 1041
26.12.31EVAL_DEBUG_SPLIT_FIELD_OUT_OF_RANGE 1042
26.12.32EVAL_DEBUG_STRING 1042
26.12.33EVAL_DEBUG_SUBSTRING o e 1042
26.12.34EVAL_DEBUG_SUBSTRING_EMPTY 1042
26.12.35EVAL_DEBUG_SUBSTRING_RANGE 1042
26.12.36EVAL_DEBUG_SUB_OPTION e 1042
26.12.37EVAL_DEBUG_SUB_OPTION_NO_OPTION 1043
26.12.38EVAL_DEBUG_TOHEXSTRING o 1043
26.12.39EVAL_DEBUG_UCASE e 1043
26.12.40EVAL_DEBUG_UINTI6TOTEXT e 1043
26.12.41EVAL_DEBUG_UINT32TOTEXT e 1043
26.12.42EVAL_DEBUG_UINTS8TOTEXT e 1043
26.12.43EVAL_DEBUG_VENDOR_CLASS DATA 1044
26.12.44EVAL_DEBUG_VENDOR_CLASS_DATA _NOT_FOUND 1044
26.12.45EVAL_DEBUG_VENDOR_CLASS_ENTERPRISE ID 1044
26.12.46EVAL_DEBUG_VENDOR_CLASS_ENTERPRISE_ID_MISMATCH 1044
26.12.47TEVAL_DEBUG_VENDOR_CLASS _EXISTSo . 1044
26.12.48EVAL_DEBUG_VENDOR_CLASS NO_OPTION. 1044
26.12.49EVAL_DEBUG_VENDOR_ENTERPRISE ID 1045
26.12.50EVAL_DEBUG_VENDOR_ENTERPRISE_ID MISMATCH 1045
26.12.51EVAL_DEBUG_VENDOR_EXISTS 1045
26.13 FLEX 1045
26.13.1 FLEX_OPTION_LOAD_ERROR 1045
26.13.2 FLEX_OPTION_PROCESS_ADD e 1045
26.13.3 FLEX_OPTION_PROCESS_CLIENT_CLASS 1045
26.13.4 FLEX_OPTION_PROCESS_ERROR 1046

XXXiv

26.13.5 FLEX_OPTION_PROCESS _REMOVE, 1046

26.13.6 FLEX_OPTION_PROCESS_SUB_ADD 1046
26.13.7 FLEX_OPTION_PROCESS_SUB_CLIENT_CLASS 1046
26.13.8 FLEX_OPTION_PROCESS_SUB_REMOVE 1046
26.13.9 FLEX_OPTION_PROCESS_SUB_SUPERSEDE 1046
26.13.10FLEX_OPTION_PROCESS_SUPERSEDE 1047
26.13.11FLEX_OPTION_PROCESS_VENDOR_ID_MISMATCH 1047
260,14 FUZZ e 1047
26.14.1 FUZZ_DATA_READ 1047
26.14.2 FUZZ INIT_COMPLETE i it 1047
26.14.3 FUZZ_INIT_FAIL e e e e e e e 1047
26.14.4 FUZZ_READ_FAIL e 1047
26.14.5 FUZZ_SEND 1048
26.14.6 FUZZ_SEND_ERROR 1048
26.14.7 FUZZ_SHORT_SEND e e 1048
26.15 HA . . 1048
26.15.1 HA_BUFFER4_RECEIVE_FAILED, 1048
26.15.2 HA_BUFFER4_RECEIVE_NOT_FOR_US 1048
26.15.3 HA_BUFFER4_RECEIVE_PACKET_OPTIONS_SKIPPED 1049
26.15.4 HA_BUFFER4_RECEIVE_UNPACK FAILED. 1049
26.15.5 HA_BUFFER6_RECEIVE_FAILED, 1049
26.15.6 HA_BUFFER6_RECEIVE_NOT FOR_US 1049
26.15.7 HA_BUFFER6_RECEIVE_PACKET_OPTIONS_SKIPPED 1049
26.15.8 HA_BUFFER6_RECEIVE _UNPACK _FAILED 1050
26.15.9 HA_COMMAND_PROCESSED_FAILED 1050
26.15.10HA_COMMUNICATION_INTERRUPTED, 1050
26.15.11HA_COMMUNICATION_INTERRUPTED_CLIENT4 1050
26.15.12HA_COMMUNICATION_INTERRUPTED_CLIENT4_UNACKED 1050
26.15.13HA_COMMUNICATION_INTERRUPTED_CLIENT6 1051
26.15.14HA_COMMUNICATION_INTERRUPTED_CLIENT6_UNACKED 1051
26.15.15SHA_CONFIGURATION_FAILED i e 1051
26.15.16HA_CONFIGURATION_SUCCESSFUL e 1051
26.15.17THA_CONFIG_AUTO_FAILOVER _DISABLED 1051
26.15.18HA_CONFIG_DHCP_MT_DISABLED 1052
26.15.19HA_CONFIG_DHCP_MT_DISABLED_AND_KEA _MT_ENABLED 1052
26.15.20HA_CONFIG_LEASE_SYNCING_DISABLED 1052
26.15.21HA_CONFIG_LEASE_SYNCING_DISABLED _REMINDER 1052
26.15.22HA_CONFIG_LEASE_UPDATES_AND_SYNCING_DIFFER 1052
26.15.23HA_CONFIG_LEASE_UPDATES_DISABLED 1053
26.15.24HA_CONFIG_LEASE_UPDATES_DISABLED_REMINDER 1053
26.15.25HA_CONFIG_SYSTEM_MT_UNSUPPORTED 1053
26.15.26HA_CONTINUE_HANDLER _FAILED, 1053
26.1527THA_DEINIT_OK e e e e 1053
26.15.28HA_DHCP4_START_SERVICE_FAILED 1053
26.15.29HA_DHCP6_START_SERVICE_FAILED 1054
26.15.30HA_DHCP_DISABLE_COMMUNICATIONS_FAILED 1054
26.15.31HA_DHCP_DISABLE FAILED e 1054
26.15.32HA_DHCP_ENABLE_COMMUNICATIONS_FAILED 1054
26.15.33HA_DHCP_ENABLE _FAILED 1054
26.15.34HA_HEARTBEAT_COMMUNICATIONS _FAILED 1055
26.15.35HA_HEARTBEAT_FAILED e 1055
26.15.36HA_HEARTBEAT_HANDLER FAILED 1055
26.15.37THA_HIGH_CLOCK_SKEW o e 1055
26.15.38HA_HIGH_CLOCK_SKEW_CAUSED_TERMINATION 1055

XXXV

26.1539HA_INIT_OK e e 1056

26.15.40HA_INVALID_PARTNER_STATE_COMMUNICATION_RECOVERY 1056
26.15.41HA_INVALID_PARTNER_STATE_HOT_STANDBY 1056
26.15.42HA_INVALID_PARTNER_STATE_LOAD_BALANCING 1056
26.15.43HA_LEASE4 SERVER DECLINE FAILED 1056
26.15.44HA_LEASES4 COMMITTED_FAILED 1056
26.15.45HA_LEASES4_COMMITTED_NOTHING_TO_UPDATE 1057
26.15.46HA_LEASES4_COMMITTED_NO_RELATIONSHIP 1057
26.15.47THA_LEASES6_COMMITTED_FAILED 1057
26.15.48HA_LEASES6_ COMMITTED_NOTHING_TO_UPDATE 1057
26.15.49HA_LEASES6_COMMITTED_NO_RELATIONSHIP 1057
26.15.50HA_LEASES_BACKLOG_COMMUNICATIONS _FAILED 1058
26.15.51HA_LEASES BACKLOG_FAILED e 1058
26.15.52HA_LEASES_BACKLOG_NOTHING_TO_SEND 1058
26.15.53HA_LEASES_BACKLOG_START e 1058
26.15.54HA_LEASES_BACKLOG_SUCCESS e 1058
26.15.55HA_LEASES_SYNC_APPLIED_LEASES 1059
26.15.56HA_LEASES_SYNC_COMMUNICATIONS_FAILED 1059
26.15.5THA_LEASES_SYNC_FAILED 1059
26.15.58HA_LEASES_SYNC_LEASE PAGE _RECEIVED 1059
26.15.59HA_LEASE SYNC_FAILED e 1059
26.15.60HA_LEASE _SYNC_STALE LEASE4 SKIP, 1059
26.15.61HA_LEASE_SYNC_STALE _LEASE6_SKIP 1060
26.15.62HA_LEASE_UPDATES_DISABLED 1060
26.15.63HA_LEASE_UPDATES_ENABLED 1060
26.15.64HA_LEASE_UPDATE_COMMUNICATIONS _FAILED 1060
26.15.65HA_LEASE _UPDATE_CONFLICT e 1060
26.15.66HA_LEASE_UPDATE_CREATE_UPDATE_FAILED_ON_PEER 1061
26.15.67THA_LEASE_UPDATE_DELETE_FAILED_ON_PEER 1061
26.15.68HA_LEASE _UPDATE FAILED 1061
26.15.69HA_LEASE_UPDATE_REJECTS_CAUSED_TERMINATION 1061
26.15.70HA_LOAD_BALANCING_DUID_MISSING oo 1061
26.15.71THA_LOAD_BALANCING_IDENTIFIER_ MISSING 1061
26.15.72HA_LOCAL_DHCP_DISABLE e 1062
26.15.73HA_LOCAL_DHCP_ENABLE i 1062
26.15.74HA_MAINTENANCE_CANCEL_HANDLER FAILED 1062
26.15.7SHA_MAINTENANCE_NOTIFY_CANCEL_COMMUNICATIONS_FAILED 1062
26.15.76HA_MAINTENANCE_NOTIFY_CANCEL_FAILED 1062
26.15.7THA_MAINTENANCE_NOTIFY_COMMUNICATIONS_FAILED 1063
26.15.78HA_MAINTENANCE_NOTIFY_FAILED 1063
26.15.79HA_MAINTENANCE_NOTIFY_HANDLER FAILED 1063
26.15.80HA_MAINTENANCE_SHUTDOWN_SAFE, 1063
26.15.81HA_MAINTENANCE_STARTED e 1063
26.15.82HA_MAINTENANCE_STARTED_IN_PARTNER_DOWN 1064
26.15.83HA_MAINTENANCE_START_HANDLER _FAILED 1064
26.15.84HA_MISSING_CONFIGURATION e 1064
26.15.85HA_PAUSE_CLIENT_LISTENER FAILED 1064
26.15.86HA_PAUSE_CLIENT_LISTENER _ILLEGAL 1064
26.15.87THA_RESET_COMMUNICATIONS_FAILED 1065
26.15.88HA_RESET _FAILED e 1065
26.15.89HA_RESET_HANDLER_FAILED 1065
26.15.90HA_RESUME_CLIENT_LISTENER _FAILED 1065
26.1591HA_SCOPES_HANDLER _FAILED 1065
26.15.92HA_SERVICE_STARTED e 1065

XXXVi

26.15.93HA_STATE_MACHINE_CONTINUED e 1066

26.15.94HA_STATE_MACHINE_PAUSED 1066
26.15.95HA_STATE_TRANSITION e 1066
26.15.96HA_STATE_TRANSITION_PASSIVE_BACKUP 1066
26.15.97THA_SUBNET4_SELECT_FAILED e 1066
26.15.98HA_SUBNET4_SELECT_INVALID_HA_SERVER NAME 1067
26.15.99HA_SUBNET4_SELECT_NOT_FOR_US 1067
26.15.108IA_SUBNET4_SELECT_NO_RELATIONSHIP_FOR_SUBNET 1067
26.15.10HA_SUBNET4_SELECT_NO_RELATIONSHIP_SELECTOR_FOR_SUBNET 1067
26.15.10MA_SUBNET4_SELECT_NO_SUBNET _SELECTED 1067
26.15.10HA_SUBNET6_SELECT_FAILED e 1068
26.15.10HA_SUBNET6_SELECT_INVALID_HA_SERVER NAME 1068
26.15.10HA_SUBNET6_SELECT_NOT_FOR_US 1068
26.15.106lA_SUBNET6_SELECT_NO_RELATIONSHIP_FOR_SUBNET 1068
26.15.10HA_SUBNET6_SELECT_NO_RELATIONSHIP_SELECTOR_FOR_SUBNET 1068
26.15.108lA_SUBNET6_SELECT_NO_SUBNET SELECTED 1069
26.15.100IA_SYNC_COMPLETE_NOTIFY_COMMUNICATIONS_FAILED 1069
26.15.118IA_SYNC_COMPLETE_NOTIFY_FAILED 1069
26.15.11HA_SYNC_COMPLETE_NOTIFY_HANDLER _FAILED 1069
26.15.11HHA_SYNC_FAILED 1069
26.15.11HHA_SYNC_HANDLER _FAILED e 1070
26.15.11THA_SYNC_START o 1070
26.15.11HA_SYNC_SUCCESSFUL e 1070
26.15.116IA_TERMINATED 1070
26.15.11THA_TERMINATED_PARTNER_DID_NOT RESTART 1070
26.16 HOOKS e 1071
26.16.1 HOOKS_ALL_CALLOUTS_DEREGISTERED 1071
26.16.2 HOOKS_CALLOUTS_BEGIN e 1071
26.16.3 HOOKS_CALLOUTS_COMPLETE 1071
26.16.4 HOOKS_CALLOUTS_REMOVED 1071
26.16.5 HOOKS_CALLOUT_CALLED i e 1071
26.16.6 HOOKS_CALLOUT _DEREGISTERED 1072
26.16.7 HOOKS_CALLOUT_ERROR o e 1072
26.16.8 HOOKS_CALLOUT_EXCEPTION e 1072
26.16.9 HOOKS_CALLOUT_REGISTRATION o 1072
26.16.10HOOKS_CLOSE_ERROR 1072
26.16.11HOOKS_HOOK_LIST RESET e 1073
26.16.12HOOKS_INCORRECT_VERSION e 1073
26.16.13HOOKS_LIBRARY_CLOSED e 1073
26.16.14HOOKS_LIBRARY_LOADED 1073
26.16.15HOOKS_LIBRARY _LOADING e 1073
26.16.16HOOKS_LIBRARY_MULTI_THREADING_COMPATIBLE 1073
26.16.17HOOKS_LIBRARY_MULTI_THREADING_NOT_COMPATIBLE 1074
26.16.18HOOKS_LIBRARY_UNLOADED e 1074
26.16.19HOOKS_LIBRARY_UNLOADING e 1074
26.16.20HOOKS_LIBRARY_VERSION e 1074
26.16.21HOOKS_LOAD_ERROR e 1074
26.16.22HOOKS_LOAD_EXCEPTION o i e e e 1074
26.16.23HOOKS_LOAD_FRAMEWORK_EXCEPTION 1075
26.16.24HOOKS_LOAD_SUCCESS e 1075
26.16.25HOOKS_MULTI_THREADING_COMPATIBLE_EXCEPTION 1075
26.16.26HOOKS_NO_LOAD 1075
26.16.27THOOKS_NO_UNLOAD e e e e 1075
26.16.28HOOKS_NO_VERSION e 1075

XXXVii

26.16.29HOOKS_OPEN_ERROR o 1076

26.16.30HOOKS_STD_CALLOUT_REGISTERED 1076
26.16.31HOOKS_UNLOAD_ERROR o e 1076
26.16.32HOOKS_UNLOAD_EXCEPTION e 1076
26.16.33HOOKS_UNLOAD_FRAMEWORK_EXCEPTION 1076
26.16.34HOOKS_UNLOAD_SUCCESS o e 1076
26.17 HOSTS . .« o 1077
26.17.1 HOSTS_BACKENDS_REGISTERED 1077
26.17.2 HOSTS_BACKEND_DEREGISTER 1077
26.17.3 HOSTS_BACKEND_REGISTER 1077
26.17.4 HOSTS_CFG_ADD_HOST e 1077
26.17.5 HOSTS_CFG_CACHE_HOST_DATA_SOURCE 1077
26.17.6 HOSTS_CFG_CLOSE_HOST_DATA_SOURCE 1077
26.17.77 HOSTS_CFG_DEL e 1078
26.17.8 HOSTS_CFG_DEL4 et e 1078
26.17.9 HOSTS_CFG_DELG ottt e e e e e 1078
26.17.10HOSTS_CFG_DEL_ALL _SUBNET4 e 1078
26.17.11HOSTS_CFG_DEL_ALL _SUBNETO6 1078
26.17.12HOSTS_CFG_GET_ALL e 1079
26.17.13HOSTS_CFG_GET_ALL_ADDRESS4, 1079
26.17.14HOSTS_CFG_GET_ALL_ADDRESS4 COUNT 1079
26.17.15HOSTS_CFG_GET_ALL_ADDRESS4 HOST 1079
26.17.16HOSTS_CFG_GET_ALL_ADDRESS6 1079
26.17.17THOSTS_CFG_GET_ALL_ADDRESS6_COUNT 1079
26.17.18HOSTS_CFG_GET_ALL_ADDRESS6_HOST 1080
26.17.19HOSTS_CFG_GET_ALL_COUNT o e 1080
26.17.20HOSTS_CFG_GET_ALL_HOST e 1080
26.17.21HOSTS_CFG_GET_ALL_HOSTNAME 1080
26.17.22HOSTS_CFG_GET_ALL_HOSTNAME_COUNT 1080
26.17.23HOSTS_CFG_GET_ALL_HOSTNAME_HOST 1080
26.17.24HOSTS_CFG_GET_ALL_HOSTNAME_SUBNET ID4 1081
26.17.25HOSTS_CFG_GET_ALL_HOSTNAME_SUBNET_ID4 COUNT. 1081
26.17.26HOSTS_CFG_GET_ALL_HOSTNAME_SUBNET_ID4 HOST 1081
26.17.2THOSTS_CFG_GET_ALL_HOSTNAME_SUBNET_ID6 1081
26.17.28HOSTS_CFG_GET_ALL_HOSTNAME_SUBNET_ID6_COUNT 1081
26.17.29HOSTS_CFG_GET_ALL_HOSTNAME_SUBNET_ID6_HOST 1081
26.17.30HOSTS_CFG_GET_ALL_IDENTIFIER 1082
26.17.31HOSTS_CFG_GET_ALL_IDENTIFIER_COUNT 1082
26.17.32HOSTS_CFG_GET_ALL_IDENTIFIER_HOST 1082
26.17.33HOSTS_CFG_GET_ALL _SUBNET_ID4 1082
26.17.34HOSTS_CFG_GET_ALL_SUBNET_ID4 COUNT 1082
26.17.35HOSTS_CFG_GET_ALL_SUBNET_ID4 HOST 1082
26.17.36HOSTS_CFG_GET_ALL _SUBNET_ID6 e 1083
26.17.37THOSTS_CFG_GET_ALL_SUBNET_ID6_COUNT 1083
26.17.38HOSTS_CFG_GET_ALL_SUBNET_ID6_HOST 1083
26.17.39HOSTS_CFG_GET_ALL_SUBNET_ID_ADDRESS4 1083
26.17.40HOSTS_CFG_GET_ALL_SUBNET_ID_ADDRESS4 COUNT 1083
26.17.41HOSTS_CFG_GET_ALL_SUBNET_ID_ADDRESS4 HOST 1083
26.17.42HOSTS_CFG_GET_ALL_SUBNET_ID_ADDRESS6 1084
26.17.43HOSTS_CFG_GET_ALL_SUBNET_ID_ADDRESS6_COUNT 1084
26.17.44HOSTS_CFG_GET_ALL_SUBNET_ID_ADDRESS6_HOST 1084
26.1745HOSTS_CFG_GET_ONE_PREFIX 1084
26.17.46HOSTS_CFG_GET_ONE_PREFIX HOST 1084
26.1747THOSTS_CFG_GET_ONE_PREFIX NULL 1084

xxxviii

26.17.48HOSTS_CFG_GET_ONE_SUBNET_ID_ADDRESS4 1085

26.17.49HOSTS_CFG_GET_ONE_SUBNET_ID_ADDRESS4 HOST 1085
26.17.50HOSTS_CFG_GET_ONE_SUBNET_ID_ADDRESS4 NULL 1085
26.17.51HOSTS_CFG_GET_ONE_SUBNET_ID_ADDRESS6 1085
26.17.52HOSTS_CFG_GET_ONE_SUBNET_ID_ADDRESS6_HOST 1085
26.17.53HOSTS_CFG_GET_ONE_SUBNET_ID_ADDRESS6_NULL 1085
26.17.54HOSTS_CFG_GET_ONE_SUBNET_ID_IDENTIFIER 1086
26.17.55HOSTS_CFG_GET_ONE_SUBNET_ID_IDENTIFIER_HOST 1086
26.17.56HOSTS_CFG_GET_ONE_SUBNET_ID_IDENTIFIER_NULL 1086
26.17.57THOSTS_CFG_UPDATE_ADD e 1086
26.17.58HOSTS_CFG_UPDATE_DELA4 e 1086
26.17.59HOSTS_CFG_UPDATE _DEL6 e 1086
26.17.60HOSTS_MGR_ALTERNATE_GET4_SUBNET_ID_ADDRESS4 1087
26.17.61HOSTS_MGR_ALTERNATE_GET4_SUBNET_ID_IDENTIFIER 1087
26.17.62HOSTS_MGR_ALTERNATE_GET4_SUBNET_ID_IDENTIFIER_HOST 1087
26.17.63HOSTS_MGR_ALTERNATE_GET4_SUBNET_ID_IDENTIFIER_NULL 1087
26.17.64HOSTS_MGR_ALTERNATE_GET6_PREFIX 1087
26.17.65HOSTS_MGR_ALTERNATE_GET6_SUBNET_ID_ADDRESS6 1087
26.17.66HOSTS_MGR_ALTERNATE_GET6_SUBNET_ID_IDENTIFIER 1088
26.17.67THOSTS_MGR_ALTERNATE_GET6_SUBNET_ID_IDENTIFIER_ HOST 1088
26.17.68HOSTS_MGR_ALTERNATE_GET6_SUBNET_ID_IDENTIFIER_NULL 1088
26.17.69HOSTS_MGR_ALTERNATE_GET_ALL_SUBNET_ID_ADDRESS4 1088
26.17.70HOSTS_MGR_ALTERNATE_GET_ALL_SUBNET_ID_ADDRESS6 1088
26.18 HTTPS 1088
26.18.1 HTTPS_REQUEST_RECEIVE_START 1088
26,19 HTTP e 1089
26.19.1 HTTP_BAD_CLIENT_REQUEST RECEIVED 1089
26.19.2 HTTP_BAD_CLIENT_REQUEST_RECEIVED_DETAILS 1089
26.19.3 HTTP_BAD_SERVER_RESPONSE RECEIVED 1089
26.19.4 HTTP_BAD_SERVER_RESPONSE_RECEIVED_DETAILS 1089
26.19.5 HTTP_CLIENT _MT_STARTED i 1089
26.19.6 HTTP_CLIENT_QUEUE_SIZE GROWING 1090
26.19.7 HTTP_CLIENT_REQUEST_AUTHORIZED 1090
26.19.8 HTTP_CLIENT_REQUEST_BAD_AUTH_HEADER 1090
26.19.9 HTTP_CLIENT_REQUEST_NOT_AUTHORIZED 1090
26.19.10HTTP_CLIENT_REQUEST_RECEIVED 1090
26.19.11HTTP_CLIENT_REQUEST_RECEIVED _DETAILS 1090
26.19.12HTTP_CLIENT_REQUEST_SEND e 1091
26.19.13HTTP_CLIENT_REQUEST_SEND_DETAILS 1091
26.19.14HTTP_CLIENT_REQUEST_TIMEOUT_OCCURRED 1091
26.19.1SHTTP_COMMAND_MGR_IGNORED_TLS_SETUP_CHANGES 1091
26.19.16HTTP_COMMAND_MGR_SERVICE_STARTED 1091
26.19.17THTTP_CONNECTION_CLOSE_CALLBACK _FAILED 1092
26.19.18HTTP_CONNECTION_HANDSHAKE _FAILED 1092
26.19.19HTTP_CONNECTION_HANDSHAKE_START 1092
26.19.20HTTP_CONNECTION_SHUTDOWN e 1092
26.19.21HTTP_CONNECTION_SHUTDOWN_FAILED 1092
26.19.22HTTP_CONNECTION_STOP o e 1092
26.19.23HTTP_CONNECTION_STOP_FAILED e 1093
26.19.24HTTP_CONNECTION_WATCH_SOCKET_CLEAR_ERROR 1093
26.19.25HTTP_CONNECTION_WATCH_SOCKET_CLOSE_ERROR 1093
26.19.26HTTP_CONNECTION_WATCH_SOCKET_MARK_READY ERROR 1093
26.19.27HTTP_DATA_RECEIVED oo e e 1093
26.19.28HTTP_IDLE_CONNECTION_TIMEOUT OCCURRED 1093

26.19.29HTTP_PREMATURE_CONNECTION_TIMEOUT_OCCURRED 1094

26.19.30HTTP_REQUEST_RECEIVE_START 1094
26.19.31HTTP_SERVER_RESPONSE RECEIVED 1094
26.19.32HTTP_SERVER_RESPONSE_RECEIVED DETAILS 1094
26.19.33HTTP_SERVER_RESPONSE _SEND 1094
26.20 LEASE 1095
26.20.1 LEASE_CMDS_ADD4 1095
26.20.2 LEASE_CMDS_ADD4_CONFLICT 1095
26.20.3 LEASE _CMDS_ADD4_FAILED 1095
26204 LEASE_CMDS_ADDG e 1095
26.20.5 LEASE_CMDS_ADDG6_CONFLICT e 1095
26.20.6 LEASE_CMDS_ADDG_FAILED i 1095
26.20.7 LEASE_CMDS_BULK_APPLY6 1096
26.20.8 LEASE_CMDS_BULK_APPLY6_FAILED 1096
26.20.9 LEASE_CMDS_DEINIT_OK o e 1096
26.20.10LEASE_CMDS_DEL4 e 1096
26.20.11LEASE_CMDS_DEL4 FAILED e 1096
26.20.12LEASE_CMDS _DELG6 oo e 1096
26.20.13LEASE_CMDS_DEL6_FAILED e 1097
26.20.14LEASE_CMDS_GET4 _FAILED e 1097
26.20.15LEASE_CMDS_GET6_FAILED e e 1097
26.20.16LEASE_CMDS_INIT _OK e 1097
26.20.17LEASE_CMDS_RESEND_DDNS4 i 1097
26.20.18LEASE_CMDS_RESEND_DDNS4_FAILED 1097
26.20.19LEASE_CMDS_RESEND_DDNS6 e 1097
26.20.20LEASE_CMDS_RESEND_DDNS6_FAILED 1098
26.20.21LEASE_CMDS_UPDATE4 e 1098
26.20.22LEASE_CMDS_UPDATE4_CONFLICT e 1098
26.20.23LEASE_CMDS_UPDATE4_FAILED 1098
26.20.24LEASE _CMDS_UPDATEG6 i i 1098
26.20.25LEASE_CMDS_UPDATE6_CONFLICT 1098
26.20.26LEASE_CMDS_UPDATE6_FAILED, 1099
26.20.27LEASE_CMDS_WIPE4 1099
26.20.28LEASE_CMDS_WIPE4_DEPRECATED 1099
26.20.29LEASE_CMDS_WIPE4_FAILED e 1099
26.20.30LEASE_CMDS_WIPEG e 1099
26.20.31LEASE_CMDS_WIPE6_DEPRECATED 1099
2021 LEC o e e 1099
26.21.1 LFC_FAIL_PID_CREATE e 1099
26.21.2 LFC_FAIL_PID_DEL 1100
26.21.3 LFC_FAIL_PROCESS 1100
26.21.4 LFC_FAIL_ROTATE et 1100
26.21.5 LFC_PROCESSING e e 1100
26.21.6 LFC_READ_STATS e e e e 1100
26.21.7 LFC_ROTATING e e 1100
26.21.8 LFC_RUNNING 1101
26.21.9 LFC_START e 1101
2621.10LFC_TERMINATE e 1101
2622 LOGIMPL 1101
26.22.1 LOGIMPL_ABOVE_MAX DEBUG, 1101
26.22.2 LOGIMPL_BAD_DEBUG_STRING 1101
2623 LOG . . . 1102
26.23.1 LOG_BAD_DESTINATION i et 1102

26.23.2 LOG_BAD_SEVERITY 1102

26.23.3 LOG_BAD_STREAM 1102

26.23.4 LOG_DUPLICATE _MESSAGE_ID 1102
26.23.5 LOG_DUPLICATE_NAMESPACE 1102
26.23.6 LOG_INPUT_OPEN_FAIL 1102
26.23.7 LOG_INVALID_MESSAGE_ID e 1103
26.23.8 LOG_NAMESPACE_EXTRA_ARGS e 1103
26.23.9 LOG_NAMESPACE_INVALID_ARG e 1103
26.23.10LOG_NAMESPACE_NO_ARGS e 1103
26.23.11LOG_NO_MESSAGE_ID i 1103
26.23.12LOG_NO_MESSAGE_TEXT e i e 1103
26.23.13LOG_NO_SUCH_MESSAGE e 1104
26.23.14LOG_OPEN_OUTPUT _FAIL e 1104
26.23.15LOG_PREFIX_EXTRA_ARGS 1104
26.23.16LOG_PREFIX_INVALID_ARG e 1104
26.23.17LOG_READING_LOCAL_FILE e 1104
26.23.18LOG_READ_ERROR e 1105
26.23.19LOG_UNRECOGNIZED_DIRECTIVE 1105
2024 MT . . o 1105
26.24.1 MT_TCP_LISTENER_MGR_STARTED 1105
26.24.2 MT_TCP_LISTENER_MGR_STOPPED 1105
26.24.3 MT_TCP_LISTENER_MGR_STOPPING oo 1105
26.25 MYSQL .« o o 1105
26.25.1 MYSQL_CB_CREATE_UPDATE_BY_POOL_OPTION4 1105
26.25.2 MYSQL_CB_CREATE_UPDATE_BY_POOL_OPTIONG6 1106
26.25.3 MYSQL_CB_CREATE_UPDATE_BY_PREFIX OPTIONG6 1106
26.25.4 MYSQL_CB_CREATE _UPDATE_BY_SUBNET _ID _OPTION4 1106
26.25.5 MYSQL_CB_CREATE_UPDATE_BY_SUBNET_ID_OPTION6 1106
26.25.6 MYSQL_CB_CREATE_UPDATE_CLIENT _CLASS4 1106
26.25.7 MYSQL_CB_CREATE_UPDATE_CLIENT_CLASS6 1106
26.25.8 MYSQL_CB_CREATE_UPDATE_GLOBAL_PARAMETER4 1106
26.25.9 MYSQL_CB_CREATE_UPDATE_GLOBAL_PARAMETER6 1107
26.25.10MYSQL_CB_CREATE_UPDATE_OPTION4 1107
26.25.11IMYSQL_CB_CREATE_UPDATE_OPTIONG6 1107
26.25.12MYSQL_CB_CREATE_UPDATE_OPTION_DEF4 1107
26.25.13MYSQL_CB_CREATE_UPDATE_OPTION_DEF6 1107
26.25.14MYSQL_CB_CREATE_UPDATE_SERVER4 1107
26.25.15MYSQL_CB_CREATE_UPDATE_SERVER6 1107
26.25.16MYSQL_CB_CREATE_UPDATE_SHARED_NETWORK4 1108
26.25.17TMYSQL_CB_CREATE_UPDATE_SHARED_NETWORKG6 1108
26.25.18MYSQL_CB_CREATE_UPDATE_SHARED_NETWORK_OPTION4 1108
26.25.19MYSQL_CB_CREATE_UPDATE_SHARED_NETWORK_OPTION6 1108
26.25.20MYSQL_CB_CREATE _UPDATE_SUBNET4 1108
26.25.21IMYSQL_CB_CREATE_UPDATE_SUBNET6 1108
26.25.22MYSQL_CB_DELETE_ALL_CLIENT_CLASSES4 1109
26.25.23MYSQL_CB_DELETE_ALL_CLIENT_CLASSES4_RESULT 1109
26.25.24MYSQL_CB_DELETE_ALL_CLIENT_CLASSES6 1109
26.25.25MYSQL_CB_DELETE_ALL_CLIENT_CLASSES6_RESULT 1109
26.25.26MYSQL_CB_DELETE_ALL_GLOBAL_PARAMETERS4 1109
26.25.27TMYSQL_CB_DELETE_ALL_GLOBAL_PARAMETERS4 RESULT 1109
26.25.28MYSQL_CB_DELETE_ALL_GLOBAL_PARAMETERS6 1109
26.25.29MYSQL_CB_DELETE_ALL_GLOBAL_PARAMETERS6_RESULT 1110
26.25.30MYSQL_CB_DELETE_ALL_OPTION_DEFS4 1110
26.25.31MYSQL_CB_DELETE_ALL_OPTION_DEFS4 RESULT 1110
26.25.32MYSQL_CB_DELETE_ALL_OPTION_DEFS6 1110

26.25.33MYSQL_CB_DELETE_ALL_OPTION_DEFS6_RESULT 1110

26.25.34MYSQL_CB_DELETE_ALL_SERVERS4 1110
26.25.35MYSQL_CB_DELETE_ALL_SERVERS4 RESULT 1110
26.25.36MYSQL_CB_DELETE_ALL_SERVERS6 1111
26.25.37TMYSQL_CB_DELETE_ALL_SERVERS6_RESULT 1111
26.25.38MYSQL_CB_DELETE_ALL_SHARED_NETWORKS4 1111
26.25.39MYSQL_CB_DELETE_ALL_SHARED_NETWORKS4_RESULT 1111
26.25.40MYSQL_CB_DELETE_ALL_SHARED_NETWORKS6 1111
26.2541MYSQL_CB_DELETE_ALL_SHARED_NETWORKS6 RESULT 1111
26.2542MYSQL_CB_DELETE_ALL_SUBNETS4 1111
26.25.43MYSQL_CB_DELETE_ALL_SUBNETS4 RESULT 1112
26.25.44MYSQL_CB_DELETE_ALL_SUBNETS6 1112
26.2545MYSQL_CB_DELETE_ALL_SUBNETS6_RESULT 1112
26.2546MYSQL_CB_DELETE_BY_POOL_OPTION4 1112
26.25.47TMYSQL_CB_DELETE_BY_POOL_OPTION4_RESULT 1112
26.25.48MYSQL_CB_DELETE_BY_POOL_OPTIONG6 1112
26.25.49MYSQL_CB_DELETE_BY_POOL_OPTION6_RESULT 1112
26.25.50MYSQL_CB_DELETE_BY_POOL_PREFIX OPTIONG. 1113
26.25.51MYSQL_CB_DELETE_BY_POOL_PREFIX_OPTION6_RESULT 1113
26.25.52MYSQL_CB_DELETE_BY_PREFIX SUBNET4 1113
26.25.53MYSQL_CB_DELETE_BY_PREFIX_SUBNET4 RESULT 1113
26.25.54MYSQL_CB_DELETE_BY_PREFIX SUBNET6 1113
26.25.55MYSQL_CB_DELETE_BY_PREFIX_SUBNET6_RESULT 1113
26.25.56MYSQL_CB_DELETE_BY_SUBNET_ID_OPTION4 1113
26.25.57TMYSQL_CB_DELETE_BY_SUBNET_ID_OPTION4_RESULT 1114
26.25.58MYSQL_CB_DELETE_BY_SUBNET_ID_OPTIONG6 1114
26.25.59MYSQL_CB_DELETE_BY_SUBNET_ID_OPTION6_RESULT 1114
26.25.600MYSQL_CB_DELETE_BY_SUBNET_ID_SUBNET4 1114
26.25.61MYSQL_CB_DELETE_BY_SUBNET_ID_SUBNET4_RESULT 1114
26.25.62MYSQL_CB_DELETE_BY_SUBNET_ID_SUBNET6 1114
26.25.63MYSQL_CB_DELETE_BY_SUBNET_ID_SUBNET6_RESULT 1114
26.25.64AMYSQL_CB_DELETE_CLIENT_CLASS4 e 1115
26.25.65MYSQL_CB_DELETE_CLIENT_CLASS4 RESULT 1115
26.25.66MYSQL_CB_DELETE_CLIENT_CLASS6 1115
26.25.67TMYSQL_CB_DELETE_CLIENT_CLASS6_RESULT 1115
26.25.68MYSQL_CB_DELETE_GLOBAL_PARAMETER4 1115
26.25.69OMYSQL_CB_DELETE_GLOBAL_PARAMETER4 RESULT 1115
26.25.70MYSQL_CB_DELETE_GLOBAL_PARAMETERG6 1115
26.25.7IMYSQL_CB_DELETE_GLOBAL_PARAMETER6_RESULT 1116
26.25.72MYSQL_CB_DELETE_OPTION4 e 1116
26.25. 73MYSQL_CB_DELETE_OPTION4_RESULT 1116
26.25.74AMYSQL_CB_DELETE_OPTIONG e e 1116
26.25.7SMYSQL_CB_DELETE_OPTION6_RESULT 1116
26.25.76MYSQL_CB_DELETE_OPTION_DEF4 1116
26.25.7TMYSQL_CB_DELETE_OPTION_DEF4 RESULT 1116
26.25.78MYSQL_CB_DELETE_OPTION_DEF6 1117
26.25.79MYSQL_CB_DELETE_OPTION_DEF6_RESULT 1117
26.25.80MYSQL_CB_DELETE_SERVER4 1117
26.25.81MYSQL_CB_DELETE_SERVER4 RESULT 1117
26.25.82MYSQL_CB_DELETE_SERVERG 1117
26.25.83MYSQL_CB_DELETE_SERVER6_RESULT 1117
26.25.84MYSQL_CB_DELETE_SHARED_NETWORK4 1117
26.25.85MYSQL_CB_DELETE_SHARED_NETWORK4_RESULT 1118
26.25.86MYSQL_CB_DELETE_SHARED_NETWORKG6 1118

xlii

26.25.87TMYSQL_CB_DELETE_SHARED_NETWORK6_RESULT 1118

26.25.88MYSQL_CB_DELETE_SHARED_NETWORK_OPTION4 1118
26.25.89MYSQL_CB_DELETE_SHARED_NETWORK_OPTION4_RESULT. 1118
26.25.90MYSQL_CB_DELETE_SHARED_NETWORK_OPTIONG6 1118
26.25.91MYSQL_CB_DELETE_SHARED_NETWORK_OPTION6_RESULT. 1118
26.25.92MYSQL_CB_DELETE_SHARED_NETWORK_SUBNETS4 1119
26.25.93MYSQL_CB_DELETE_SHARED_NETWORK_SUBNETS4_RESULT 1119
26.25.94MYSQL_CB_DELETE_SHARED_NETWORK_SUBNETS6 1119
26.25.95MYSQL_CB_DELETE_SHARED_NETWORK_SUBNETS6_RESULT 1119
26.25.96MYSQL_CB_GET_ALL_CLIENT _CLASSES4 1119
26.25.97TMYSQL_CB_GET_ALL_CLIENT_CLASSES4 RESULT 1119
26.25.98MYSQL_CB_GET_ALL_CLIENT_CLASSES6 1119
26.25.99MYSQL_CB_GET_ALL_CLIENT_CLASSES6_RESULT 1120
26.25.10MYSQL_CB_GET_ALL_GLOBAL_PARAMETERS4 1120
26.25.10MYSQL_CB_GET_ALL_GLOBAL_PARAMETERS4 RESULT 1120
26.25.10MYSQL_CB_GET_ALL_GLOBAL_PARAMETERS6 1120
26.25.10MYSQL_CB_GET_ALL_GLOBAL_PARAMETERS6_RESULT 1120
26.25.10MYSQL_CB_GET_ALL_OPTIONS4 e 1120
26.25.10MYSQL_CB_GET_ALL_OPTIONS4_RESULT 1120
26.25.10MYSQL_CB_GET_ALL_OPTIONSG6 e 1121
26.25.10MYSQL_CB_GET_ALL_OPTIONS6_RESULT 1121
26.25.10MYSQL_CB_GET_ALL_OPTION_DEFS4 1121
26.25.10MYSQL_CB_GET_ALL_OPTION_DEFS4_RESULT 1121
26.25.11MYSQL_CB_GET_ALL_OPTION_DEFS6 1121
26.25.11IMYSQL_CB_GET_ALL_OPTION_DEFS6_RESULT 1121
26.25. 11MYSQL_CB_GET_ALL _SERVERS4 1121
26.25.11MYSQL_CB_GET_ALL_SERVERS4 RESULT 1122
26.25.11MYSQL_CB_GET_ALL_SERVERSG6 1122
26.25.11IMYSQL_CB_GET_ALL_SERVERS6_RESULT 1122
26.25.11MMYSQL_CB_GET_ALL_SHARED_NETWORKS4 1122
26.25.11MYSQL_CB_GET_ALL_SHARED_NETWORKS4_RESULT 1122
26.25.11MMYSQL_CB_GET_ALL_SHARED _NETWORKS6 1122
26.25.11MYSQL_CB_GET_ALL_SHARED_NETWORKS6_RESULT 1122
26.25.12MYSQL_CB_GET_ALL_SUBNETS4 e 1123
26.25.12MYSQL_CB_GET_ALL_SUBNETS4_RESULT 1123
26.25.12MYSQL_CB_GET_ALL_SUBNETS6. 1123
26.25.12MYSQL_CB_GET_ALL_SUBNETS6_RESULT 1123
26.25.12MYSQL_CB_GET_CLIENT_CLASS4 e 1123
26.25.12MYSQL_CB_GET_CLIENT_CLASS6 e 1123
26.25.1281YSQL_CB_GET_GLOBAL_PARAMETER4 1123
26.25.12MYSQL_CB_GET_GLOBAL_PARAMETERG6 1124
2625 12RMMYSQL_CB_GET_HOST4 e 1124
26.25.12MYSQL_CB_GET_HOSTO6 1124
26.25.13MYSQL_CB_GET_MODIFIED_CLIENT_CLASSES4 1124
26.25.13MYSQL_CB_GET_MODIFIED_CLIENT_CLASSES4 RESULT 1124
26.25.13MYSQL_CB_GET_MODIFIED_CLIENT_CLASSES6 1124
26.25.13MYSQL_CB_GET_MODIFIED_CLIENT_CLASSES6_RESULT 1125
26.25.13MYSQL_CB_GET_MODIFIED_GLOBAL_PARAMETERS4 1125
26.25.13MYSQL_CB_GET_MODIFIED_GLOBAL_PARAMETERS4_RESULT 1125
26.25.131YSQL_CB_GET_MODIFIED_GLOBAL_PARAMETERS6 1125
26.25.13MYSQL_CB_GET_MODIFIED_GLOBAL_PARAMETERS6_RESULT 1125
26.25.13MMYSQL_CB_GET_MODIFIED_OPTIONS4 1125
26.25.13MYSQL_CB_GET_MODIFIED_OPTIONS4_RESULT 1126
26.25.14MYSQL_CB_GET_MODIFIED_OPTIONS6 1126

26.25.14MYSQL_CB_GET_MODIFIED_OPTIONS6_RESULT 1126

26.25.14MYSQL_CB_GET_MODIFIED_OPTION_DEFS4 1126
26.25.14MYSQL_CB_GET_MODIFIED_OPTION_DEFS4_RESULT 1126
26.25.14MYSQL_CB_GET_MODIFIED_OPTION_DEFS6 1126
26.25.14MYSQL_CB_GET_MODIFIED_OPTION_DEFS6_RESULT 1127
26.25.1481YSQL_CB_GET_MODIFIED_SHARED_NETWORKS4 1127
26.25.14MYSQL_CB_GET_MODIFIED_SHARED_NETWORKS4_RESULT 1127
26.25.1481YSQL_CB_GET_MODIFIED_SHARED_NETWORKS6 1127
26.25.14MYSQL_CB_GET_MODIFIED_SHARED_NETWORKS6 RESULT 1127
26.25.15MYSQL_CB_GET_MODIFIED_SUBNETS4 1127
26.25.15MYSQL_CB_GET_MODIFIED_SUBNETS4 RESULT 1128
26.25.15MYSQL_CB_GET_MODIFIED_SUBNETS6 1128
26.25.15MYSQL_CB_GET_MODIFIED_SUBNETS6_RESULT 1128
26.25.15MYSQL_CB_GET_OPTION4 e 1128
26.25.15SMYSQL_CB_GET_OPTIONG i e 1128
26.25.15MYSQL_CB_GET _OPTION_DEF4 e 1128
26.25.15MYSQL_CB_GET_OPTION_DEF6 e 1129
26.25.15BMIYSQL_CB_GET_PORT4 i 1129
26.25.15MYSQL_CB_GET_PORTO6 e 1129
26.25.16MMYSQL_CB_GET_RECENT_AUDIT_ENTRIES4 1129
26.25.16MYSQL_CB_GET_RECENT_AUDIT_ENTRIES4 RESULT 1129
26.25.16MYSQL_CB_GET_RECENT_AUDIT ENTRIES6 1129
26.25.16MYSQL_CB_GET_RECENT_AUDIT_ENTRIES6_RESULT 1130
26.25.16MYSQL_CB_GET_SERVER4 1130
26.25.16MYSQL_CB_GET_SERVERG 1130
26.25.16MYSQL_CB_GET_SHARED NETWORK4 1130
26.25.16MYSQL_CB_GET_SHARED_NETWORKG6 1130
26.25.16MMYSQL_CB_GET_SHARED_NETWORK_SUBNETS4. 1130
26.25.16MYSQL_CB_GET_SHARED_NETWORK_SUBNETS4_RESULT 1130
26.25.17TMYSQL_CB_GET_SHARED_NETWORK_SUBNETS6. 1131
26.25.17MYSQL_CB_GET_SHARED_NETWORK_SUBNETS6_RESULT 1131
26.25.17TMYSQL_CB_GET_SUBNET4 BY_PREFIX 1131
26.25.17TMYSQL_CB_GET_SUBNET4_BY_SUBNET_ID 1131
26.25.17TMYSQL_CB_GET_SUBNET6_BY_PREFIX 1131
26.25.17TMYSQL_CB_GET_SUBNET6_BY_SUBNET_ID 1131
26.25.17TMYSQL_CB_GET_TYPE4 1131
26.25.17TMYSQL_CB_GET_TYPEG6 e 1132
26.25.17TMIYSQL_CB_NO_TLS 1132
26.25.1TMYSQL_CB_RECONNECT_ATTEMPT_FAILED4 1132
26.25.18MYSQL_CB_RECONNECT_ATTEMPT_FAILEDG6 1132
26.25.18MYSQL_CB_RECONNECT_ATTEMPT_SCHEDULE4 1132
26.25.18MYSQL_CB_RECONNECT_ATTEMPT SCHEDULE6 1132
26.25.18MYSQL_CB_RECONNECT_FAILED4 e 1133
26.25.18MYSQL_CB_RECONNECT_FAILEDG e 1133
26.25.18MYSQL_CB_REGISTER_BACKEND_TYPE4 1133
26.25.188YSQL_CB_REGISTER_BACKEND_TYPE6 1133
2625 18MYSQL_CB_TLS_CIPHER e e 1133
26.25.18MMYSQL_CB_UNREGISTER_BACKEND _TYPE4 1133
26.25.18MYSQL_DEINIT_OK 1134
26.25.19MMYSQL_HB_DB 1134
26.25.19MYSQL_HB_DB_GET_VERSION 1134
26.25.19MYSQL_HB_DB_READONLY 1134
26.25.19MYSQL_HB_DB_RECONNECT_ATTEMPT _FAILED 1134
26.25.19MYSQL_HB_DB_RECONNECT_ATTEMPT SCHEDULE 1134

xliv

26.25.19MYSQL_HB_DB_RECONNECT_FAILED, 1135

26.25.198MYSQL_HB_NO_TLS 1135
2625 19MYSQL_INIT_OK 1135
26.25.198MYSQL_LB_ADD_ADDR4 e 1135
26.25.19MYSQL_LB_ADD_ADDRG e 1135
26.2520MYSQL_LB_COMMIT 1135
26.2520MYSQL_LB_DB 1136
26.25.20MYSQL_LB_DB_RECONNECT_ATTEMPT_FAILED 1136
26.25.20MYSQL_LB_DB_RECONNECT_ATTEMPT_SCHEDULE 1136
26.25.20MYSQL_LB_DB_RECONNECT_FAILED 1136
26.25.20MYSQL_LB_DELETED_EXPIRED_RECLAIMED 1136
26.25200MYSQL_LB_DELETE_ADDR4 e 1136
26.2520MYSQL_LB_DELETE_ADDRG6 i 1137
26.25.20MYSQL_LB_DELETE_EXPIRED _RECLAIMED4 1137
26.25.20MYSQL_LB_DELETE_EXPIRED_RECLAIMEDG6 1137
26.2521MYSQL_LB_GET4 1137
26.2521IMYSQL_LB_GETO 1137
26.2521MYSQL_LB_GET_ADDR4 1137
26.2521MYSQL_LB_GET_ADDRG 1138
2625 21MYSQL_LB_GET_CLIENTID e 1138
26.2521IMYSQL_LB_GET_DUID i e 1138
26.2521MYSQL_LB_GET_EXPIRED4 1138
26.2521MYSQL_LB_GET_EXPIREDG i 1138
26.2521MMYSQL_LB_GET_HOSTNAME4 e 1138
26.2521MYSQL_LB_GET_HOSTNAMEG i 1139
26.2522MYSQL_LB_GET _HWADDR e 1139
26.2522MYSQL_LB_GET_IAID_DUIDo o e e 1139
26.25.22MYSQL_LB_GET_IAID_SUBID_DUID e 1139
26.25.22MYSQL_LB_GET_PAGE4 1139
26.25.22MYSQL_LB_GET_PAGEG6 o 1139
26.25.22MYSQL_LB_GET_RELAYID4 e 1140
26.25.22MYSQL_LB_GET_RELAYIDO o o e 1140
26.25.22MYSQL_LB_GET_REMOTEID4 e 1140
26.25.22MYSQL_LB_GET_REMOTEIDG e 1140
26.25.22MYSQL_LB_GET_SUBID4o e 1140
26.25.23MYSQL_LB_GET_SUBIDGo o o 1140
26.25.23MYSQL_LB_GET_SUBID_CLIENTID oo 1141
26.25.23MYSQL_LB_GET_SUBID_HWADDR 1141
26.25.23MYSQL_LB_GET_SUBID_PAGEG6 1141
26.25.23MYSQL_LB_GET_VERSION o 1141
26.25.23MYSQL_LB_NEGATIVE_LEASES_STAT 1141
26.2523MYSQL_LB_NO_TLS e 1141
26.25.23MYSQL_LB_ROLLBACK o 1142
26.25.23MMYSQL_LB_TLS_CIPHER e 1142
26.25.23MYSQL_LB_UPDATE_ADDR4 1142
26.25.24MYSQL_LB_UPDATE_ADDRG 1142
26.25.24MYSQL_LB_UPGRADE_EXTENDED_INFO4 1142
26.25.24MYSQL_LB_UPGRADE_EXTENDED_INFO4 _ERROR 1142
26.25.24MYSQL_LB_UPGRADE_EXTENDED_INFO4_ PAGE 1143
26.25.24MYSQL_LB_UPGRADE_EXTENDED_INFO6 1143
26.25.24MYSQL_LB_UPGRADE_EXTENDED_INFO6_ERROR 1143
26.26 NETCONF 1143
26.26.1 NETCONF_BOOT_UPDATE_COMPLETED 1143
26.26.2 NETCONF_CONFIG_CHANGED _DETAIL 1143

26.26.3 NETCONF_CONFIG_CHANGE_EVENT 1143

26.26.4 NETCONF_CONFIG_CHECK_FAIL e 1144
26.26.5 NETCONF_CONFIG_FAIL e 1144
26.26.6 NETCONF_CONFIG_SYNTAX WARNING 1144
26.26.7 NETCONF_FAILED e 1144
26.26.8 NETCONF_GET_CONFIG e 1144
26.26.9 NETCONF_GET_CONFIG_FAILED 1144
26.26.10NETCONF_GET_CONFIG_STARTED oo 1145
26.26.1INETCONF_MODULE_CHANGE_INTERNAL_ERROR 1145
26.26.12NETCONF_MODULE_MISSING_ERR o o . .. 1145
26.26.13NETCONF_MODULE_MISSING_WARN 1145
26.26.14NETCONF_MODULE_REVISION_ERR 1145
26.26.15SNETCONF_MODULE_REVISION_WARN 1145
26.26.16NETCONF_NOTIFICATION_INTERNAL_ERROR 1146
26.26.17NETCONF_NOTIFICATION_RECEIVED 1146
26.26.18NETCONF_NOT_SUBSCRIBED_TO_NOTIFICATIONS 1146
26.26.19NETCONF_RUN_EXIT e 1146
26.26.20NETCONF_SET_CONFIG o e 1146
26.26.2INETCONF_SET_CONFIG_FAILED 1146
26.26.22NETCONF_SET_CONFIG_STARTED 1147
26.26.23NETCONF_STARTED e e 1147
26.26.24ANETCONF_SUBSCRIBE_CONFIG e 1147
26.26.25NETCONF_SUBSCRIBE_CONFIG_FAILED 1147
26.26.26NETCONF_SUBSCRIBE_NOTIFICATIONS, 1147
26.26.27TNETCONF_UPDATE_CONFIG e 1147
26.26.28NETCONF_UPDATE_CONFIG_COMPLETED 1148
26.26.29NETCONF_UPDATE_CONFIG_FAILED 1148
26.26.30NETCONF_UPDATE_CONFIG_STARTED 1148
26.26.3INETCONF_VALIDATE CONFIG. e 1148
26.26.32NETCONF_VALIDATE_CONFIG_COMPLETED 1148
26.26.33NETCONF_VALIDATE_CONFIG_FAILED 1148
26.26.34ANETCONF_VALIDATE_CONFIG_REJECTED 1149
26.27 PERFMON 1149
26.27.1 PERFMON_ALARM_CLEARED e 1149
26.27.2 PERFMON_ALARM_TRIGGERED 1149
26.27.3 PERFMON_CMDS_CONTROL_ERROR 1149
26.27.4 PERFMON_CMDS_CONTROL_OK e 1149
26.27.5 PERFMON_CMDS_GET_ALL_DURATIONS_ERROR 1150
26.27.6 PERFMON_CMDS_GET_ALL_DURATIONS_OK 1150
26.27.7 PERFMON_DEINIT_OK e 1150
26.27.8 PERFMON_DHCP4_PKT_EVENTS 1150
26.27.9 PERFMON_DHCP4_PKT_PROCESS ERROR 1150
26.27.10PERFMON_DHCP4_SOCKET_RECEIVED_TIME_SUPPORT 1150
26.27.11PERFMON_DHCP6_PKT_EVENTS o 1151
26.27.12PERFMON_DHCP6_PKT_PROCESS_ERROR 1151
26.27.13PERFMON_DHCP6_SOCKET_RECEIVED_TIME_SUPPORT 1151
26.27.14PERFMON_INIT_FAILED i e 1151
2628 PGSQL o e 1151
26.28.1 PGSQL_CB_CREATE_UPDATE_BY_POOL_OPTION4 1151
26.28.2 PGSQL_CB_CREATE_UPDATE_BY_POOL_OPTION6 1152
26.28.3 PGSQL_CB_CREATE_UPDATE_BY_PREFIX_OPTION6 1152
26.28.4 PGSQL_CB_CREATE_UPDATE_BY_SUBNET ID OPTION4 1152
26.28.5 PGSQL_CB_CREATE_UPDATE_BY_SUBNET_ID_OPTION6 1152
26.28.6 PGSQL_CB_CREATE_UPDATE_CLIENT_CLASS4 1152

xlvi

26.28.7 PGSQL_CB_CREATE_UPDATE_CLIENT_CLASS6 1152

26.28.8 PGSQL_CB_CREATE_UPDATE_GLOBAL_PARAMETER4 1152
26.28.9 PGSQL_CB_CREATE_UPDATE_GLOBAL_PARAMETERG6 1153
26.28.10PGSQL_CB_CREATE_UPDATE_OPTION4 1153
26.28.11PGSQL_CB_CREATE_UPDATE_OPTIONG6 1153
26.28.12PGSQL_CB_CREATE_UPDATE_OPTION_DEF4 1153
26.28.13PGSQL_CB_CREATE_UPDATE_OPTION_DEF6 1153
26.28.14PGSQL_CB_CREATE_UPDATE_SERVER4 1153
26.28.15PGSQL_CB_CREATE_UPDATE_SERVERG6 1153
26.28.16PGSQL_CB_CREATE_UPDATE_SHARED_NETWORK4 1154
26.28.17PGSQL_CB_CREATE_UPDATE_SHARED_NETWORKG6 1154
26.28.18PGSQL_CB_CREATE_UPDATE_SHARED_NETWORK_OPTION4 1154
26.28.19PGSQL_CB_CREATE_UPDATE_SHARED_NETWORK_OPTIONG6 1154
26.28.20PGSQL_CB_CREATE_UPDATE_SUBNET4 1154
26.28.21PGSQL_CB_CREATE_UPDATE_SUBNET6 1154
26.28.22PGSQL_CB_DELETE_ALL_CLIENT_CLASSES4 1155
26.28.23PGSQL_CB_DELETE_ALL_CLIENT_CLASSES4 RESULT 1155
26.28.24PGSQL_CB_DELETE_ALL_CLIENT_CLASSES6 1155
26.28.25PGSQL_CB_DELETE_ALL_CLIENT_CLASSES6_RESULT 1155
26.28.26PGSQL_CB_DELETE_ALL_GLOBAL_PARAMETERS4 1155
26.28.27PGSQL_CB_DELETE_ALL_GLOBAL_PARAMETERS4 RESULT 1155
26.28.28PGSQL_CB_DELETE_ALL_GLOBAL_PARAMETERS6 1155
26.28.29PGSQL_CB_DELETE_ALL_GLOBAL_PARAMETERS6_RESULT 1156
26.28.30PGSQL_CB_DELETE_ALL_OPTION_DEFS4 1156
26.28.31PGSQL_CB_DELETE_ALL_OPTION_DEFS4 RESULT 1156
26.28.32PGSQL_CB_DELETE_ALL_OPTION_DEFS6 1156
26.28.33PGSQL_CB_DELETE_ALL_OPTION_DEFS6_RESULT 1156
26.28.34PGSQL_CB_DELETE_ALL_SERVERS4 1156
26.28.35PGSQL_CB_DELETE_ALL_SERVERS4 RESULT 1156
26.28.36PGSQL_CB_DELETE_ALL_SERVERS6 1157
26.28.37PGSQL_CB_DELETE_ALL_SERVERS6_RESULT 1157
26.28.38PGSQL_CB_DELETE_ALL_SHARED_NETWORKS4 1157
26.28.39PGSQL_CB_DELETE_ALL_SHARED_NETWORKS4 _RESULT 1157
26.28.40PGSQL_CB_DELETE_ALL_SHARED_NETWORKS6 1157
26.28.41PGSQL_CB_DELETE_ALL_SHARED_NETWORKS6_RESULT 1157
26.28.42PGSQL_CB_DELETE_ALL_SUBNETS4 1157
26.28.43PGSQL_CB_DELETE_ALL_SUBNETS4 RESULT 1158
26.28.44PGSQL_CB_DELETE_ALL_SUBNETS6 1158
26.28.45PGSQL_CB_DELETE_ALL_SUBNETS6_RESULT 1158
26.28.46PGSQL_CB_DELETE_BY_POOL_OPTION4 1158
26.28.47TPGSQL_CB_DELETE_BY_POOL_OPTION4_RESULT 1158
26.28.48PGSQL_CB_DELETE_BY_POOL_OPTIONG6 1158
26.28.49PGSQL_CB_DELETE_BY_POOL_OPTION6_RESULT 1158
26.28.50PGSQL_CB_DELETE_BY_POOL_PREFIX_OPTIONG6 1159
26.28.51PGSQL_CB_DELETE_BY_POOL_PREFIX_OPTION6_RESULT 1159
26.28.52PGSQL_CB_DELETE_BY_PREFIX SUBNET4 1159
26.28.53PGSQL_CB_DELETE_BY_PREFIX_SUBNET4_RESULT 1159
26.28.54PGSQL_CB_DELETE_BY_PREFIX SUBNET6 1159
26.28.55PGSQL_CB_DELETE_BY_PREFIX_SUBNET6_RESULT 1159
26.28.56PGSQL_CB_DELETE_BY_SUBNET_ID_OPTION4 1159
26.28.57PGSQL_CB_DELETE_BY_SUBNET_ID_OPTION4_RESULT 1160
26.28.58PGSQL_CB_DELETE_BY_SUBNET_ID_OPTION6 1160
26.28.59PGSQL_CB_DELETE_BY_SUBNET _ID_OPTION6_RESULT 1160
26.28.60PGSQL_CB_DELETE_BY_SUBNET _ID_SUBNET4 1160

26.28.61PGSQL_CB_DELETE_BY_SUBNET_ID_SUBNET4_RESULT. 1160

26.28.62PGSQL_CB_DELETE_BY_SUBNET_ID_SUBNET6 1160
26.28.63PGSQL_CB_DELETE_BY_SUBNET_ID_SUBNET6_RESULT 1160
26.28.64PGSQL_CB_DELETE_CLIENT_CLASS4, 1161
26.28.65PGSQL_CB_DELETE_CLIENT_CLASS4 RESULT. 1161
26.28.66PGSQL_CB_DELETE_CLIENT_CLASS6 1161
26.28.67PGSQL_CB_DELETE_CLIENT_CLASS6_RESULT. 1161
26.28.68PGSQL_CB_DELETE_GLOBAL_PARAMETER4 1161
26.28.69PGSQL_CB_DELETE_GLOBAL_PARAMETER4 RESULT 1161
26.28.70PGSQL_CB_DELETE_GLOBAL_PARAMETER6 1161
26.28.71PGSQL_CB_DELETE_GLOBAL_PARAMETER6_RESULT 1162
26.28.72PGSQL_CB_DELETE_OPTION4 e 1162
26.28.73PGSQL_CB_DELETE_OPTION4_RESULT 1162
26.28. 74PGSQL_CB_DELETE_OPTIONG e 1162
26.28.75PGSQL_CB_DELETE_OPTION6_RESULT 1162
26.28.76PGSQL_CB_DELETE_OPTION_DEF4, 1162
26.28.77TPGSQL_CB_DELETE_OPTION_DEF4 RESULT 1162
26.28.78PGSQL_CB_DELETE_OPTION_DEF6 1163
26.28.79PGSQL_CB_DELETE_OPTION_DEF6_RESULT 1163
26.28.80PGSQL_CB_DELETE_SERVER4 1163
26.28.81PGSQL_CB_DELETE_SERVER4 RESULT 1163
26.28.82PGSQL_CB_DELETE_SERVERG e 1163
26.28.83PGSQL_CB_DELETE_SERVER6_RESULT 1163
26.28.84PGSQL_CB_DELETE_SHARED_NETWORK4 1163
26.28.85PGSQL_CB_DELETE_SHARED_NETWORK4_RESULT 1164
26.28.86PGSQL_CB_DELETE_SHARED_NETWORKG6 1164
26.28.87PGSQL_CB_DELETE_SHARED_NETWORK6_RESULT 1164
26.28.88PGSQL_CB_DELETE_SHARED_NETWORK_OPTION4 1164
26.28.89PGSQL_CB_DELETE_SHARED_NETWORK_OPTION4_RESULT 1164
26.28.90PGSQL_CB_DELETE_SHARED_NETWORK_OPTION6 1164
26.28.91PGSQL_CB_DELETE_SHARED_NETWORK_OPTION6_RESULT 1164
26.28.92PGSQL_CB_DELETE_SHARED_NETWORK_SUBNETS4 1165
26.28.93PGSQL_CB_DELETE_SHARED_NETWORK_SUBNETS4_RESULT 1165
26.28.94PGSQL_CB_DELETE_SHARED_NETWORK_SUBNETS6 1165
26.28.95PGSQL_CB_DELETE_SHARED_NETWORK_SUBNETS6_RESULT 1165
26.28.96PGSQL_CB_GET_ALL_CLIENT_CLASSES4 1165
26.28.97PGSQL_CB_GET_ALL_CLIENT_CLASSES4 RESULT 1165
26.28.98PGSQL_CB_GET_ALL_CLIENT _CLASSES6 1165
26.28.99PGSQL_CB_GET_ALL_CLIENT_CLASSES6_RESULT 1166
26.28.108GSQL_CB_GET_ALL_GLOBAL_PARAMETERS4 1166
26.28.10PGSQL_CB_GET_ALL_GLOBAL_PARAMETERS4 RESULT 1166
26.28.10BGSQL_CB_GET_ALL_GLOBAL_PARAMETERS6 1166
26.28.10BGSQL_CB_GET_ALL_GLOBAL_PARAMETERS6_RESULT 1166
26.28.10PGSQL_CB_GET_ALL_OPTIONS4 e 1166
26.28.10PGSQL_CB_GET_ALL_OPTIONS4_RESULT 1166
26.28.10BGSQL_CB_GET_ALL_OPTIONS6 1167
26.28.10PGSQL_CB_GET_ALL_OPTIONS6_RESULT 1167
26.28.10BGSQL_CB_GET_ALL_OPTION_DEFS4, 1167
26.28.10PGSQL_CB_GET_ALL_OPTION_DEFS4_RESULT 1167
26.28.118GSQL_CB_GET_ALL_OPTION_DEFS6 1167
26.28.11PGSQL_CB_GET_ALL_OPTION_DEFS6_RESULT 1167
26.28.11PGSQL_CB_GET_ALL_SERVERS4 1167
26.28.11BGSQL_CB_GET_ALL_SERVERS4 RESULT 1168
26.28.11PGSQL_CB_GET_ALL_SERVERS6 1168

xlviii

26.28.11PGSQL_CB_GET_ALL_SERVERS6_RESULT 1168

26.28.118GSQL_CB_GET_ALL_SHARED_NETWORKS4 1168
26.28.11PGSQL_CB_GET_ALL_SHARED_NETWORKS4_RESULT 1168
26.28.11BGSQL_CB_GET_ALL_SHARED_NETWORKS6 1168
26.28.119GSQL_CB_GET_ALL_SHARED_NETWORKS6_RESULT 1168
26.28.128GSQL_CB_GET_ALL_SUBNETS4 e 1169
26.28.12PGSQL_CB_GET_ALL_SUBNETS4_RESULT 1169
26.28.12PGSQL_CB_GET_ALL_SUBNETS6 e 1169
26.28.12BGSQL_CB_GET_ALL_SUBNETS6_RESULT 1169
26.28.12BGSQL_CB_GET_CLIENT_CLASS4 o oo 1169
26.28.12PGSQL_CB_GET_CLIENT _CLASS6« e 1169
26.28.12BGSQL_CB_GET_GLOBAL_PARAMETER4 1169
26.28.12PGSQL_CB_GET_GLOBAL_PARAMETER6 1170
26.28.12BGSQL_CB_GET_HOST4 1170
26.28.12PGSQL_CB_GET_HOST6 e 1170
26.28.138GSQL_CB_GET_MODIFIED_CLIENT_CLASSES4, 1170
26.28.13PGSQL_CB_GET_MODIFIED_CLIENT_CLASSES4_RESULT 1170
26.28.13PGSQL_CB_GET_MODIFIED_CLIENT_CLASSES6 1170
26.28.13BGSQL_CB_GET_MODIFIED_CLIENT_CLASSES6_RESULT 1171
26.28.132GSQL_CB_GET_MODIFIED_GLOBAL_PARAMETERS4 1171
26.28.13PGSQL_CB_GET_MODIFIED_GLOBAL_PARAMETERS4 RESULT 1171
26.28.138BGSQL_CB_GET_MODIFIED_GLOBAL_PARAMETERS6 1171
26.28.13PGSQL_CB_GET_MODIFIED_GLOBAL_PARAMETERS6_RESULT 1171
26.28.13BGSQL_CB_GET_MODIFIED_OPTIONS4 1171
26.28.132GSQL_CB_GET_MODIFIED_OPTIONS4_RESULT 1172
26.28.14BGSQL_CB_GET_MODIFIED_OPTIONS6 1172
26.28.14PGSQL_CB_GET_MODIFIED_OPTIONS6_RESULT 1172
26.28.14PGSQL_CB_GET_MODIFIED_OPTION_DEFS4 1172
26.28.14BGSQL_CB_GET_MODIFIED_OPTION_DEFS4_RESULT 1172
26.28.14RGSQL_CB_GET_MODIFIED_OPTION_DEFS6 1172
26.28.14PGSQL_CB_GET_MODIFIED_OPTION_DEFS6_RESULT. 1173
26.28.14BGSQL_CB_GET_MODIFIED_SHARED _NETWORKS4 1173
26.28.14PGSQL_CB_GET_MODIFIED_SHARED_NETWORKS4_RESULT 1173
26.28.14BGSQL_CB_GET_MODIFIED_SHARED_NETWORKS6. 1173
26.28.14pGSQL_CB_GET_MODIFIED_SHARED_NETWORKS6_RESULT 1173
26.28.158GSQL_CB_GET_MODIFIED_SUBNETS4, 1173
26.28.15PGSQL_CB_GET_MODIFIED_SUBNETS4_RESULT 1174
26.28.15PGSQL_CB_GET_MODIFIED_SUBNETS6 1174
26.28.15BGSQL_CB_GET_MODIFIED_SUBNETS6_RESULT 1174
26.28.15RGSQL_CB_GET_OPTION4 e 1174
26.28.15PGSQL_CB_GET_OPTIONG e 1174
26.28.15BGSQL_CB_GET_OPTION_DEF4 oo 1174
26.28.15PGSQL_CB_GET_OPTION_DEF6 e 1175
26.28.15BGSQL_CB_GET_PORT4 1175
26.28.15PGSQL_CB_GET_PORTG6o o i e 1175
26.28.16BGSQL_CB_GET_RECENT_AUDIT_ENTRIES4 1175
26.28.16PGSQL_CB_GET_RECENT_AUDIT_ENTRIES4_RESULT 1175
26.28.16BGSQL_CB_GET_RECENT_AUDIT ENTRIES6 1175
26.28.16BGSQL_CB_GET_RECENT_AUDIT_ENTRIES6_RESULT 1176
26.28.16RGSQL_CB_GET_SERVER4 1176
26.28.16PGSQL_CB_GET_SERVERG e 1176
26.28.16BGSQL_CB_GET_SHARED_NETWORK4 1176
26.28.16PGSQL_CB_GET_SHARED_NETWORKG6 1176
26.28.16BGSQL_CB_GET_SHARED_NETWORK_SUBNETS4 1176

26.28.169GSQL_CB_GET_SHARED_NETWORK_SUBNETS4_RESULT 1176

26.28.178GSQL_CB_GET_SHARED_NETWORK_SUBNETS6 1177
26.28.17PGSQL_CB_GET_SHARED_NETWORK_SUBNETS6_RESULT 1177
26.28.17RGSQL_CB_GET_SUBNET4_BY_PREFIX 1177
26.28.17BGSQL_CB_GET_SUBNET4 BY_SUBNET ID. 1177
26.28.17RGSQL_CB_GET_SUBNET6_BY_PREFIX 1177
26.28.17PGSQL_CB_GET_SUBNET6_BY_SUBNET_ID. 1177
26.28.178BGSQL_CB_GET_TYPE4 o 1177
26.28.17PGSQL_CB_GET_TYPEG o 1178
26.28.17BGSQL_CB_NO_TLS_SUPPORT e 1178
26.28.179GSQL_CB_RECONNECT_ATTEMPT_FAILED4 1178
26.28.188GSQL_CB_RECONNECT_ATTEMPT_FAILEDG6 1178
26.28.18PGSQL_CB_RECONNECT_ATTEMPT_SCHEDULE4 1178
26.28.18PGSQL_CB_RECONNECT_ATTEMPT_SCHEDULEG6 1178
26.28.18BGSQL_CB_RECONNECT_FAILED4 1179
26.28.18RGSQL_CB_RECONNECT_FAILEDG6 1179
26.28.18PGSQL_CB_REGISTER_BACKEND_TYPE4 1179
26.28.188GSQL_CB_REGISTER_BACKEND_TYPE6 1179
26.28.18PGSQL_CB_TLS_SUPPORT e 1179
26.28.18BGSQL_CB_UNREGISTER_BACKEND_TYPE4 1179
26.28.189GSQL_DEINIT_OK e 1180
26.28.198GSQL_HB_DB 1180
26.28.19PGSQL_HB_DB_GET_VERSION 1180
26.28.19PGSQL_HB_DB_READONLY i 1180
26.28.19BGSQL_HB_DB_RECONNECT_ATTEMPT_FAILED 1180
26.28.19BGSQL_HB_DB_RECONNECT_ATTEMPT_SCHEDULE 1180
26.28.19PGSQL_HB_DB_RECONNECT_FAILED 1181
26.28.19BGSQL_HB_NO_TLS_SUPPORT e 1181
26.28.19PGSQL_INIT_OK e e 1181
26.28.19BGSQL_LB_ADD_ADDR4 e 1181
26.28.19PGSQL_LB_ADD_ADDRG e 1181
26.28.208GSQL_LB_COMMIT 1181
26.28220PGSQL_LB_DB 1182
26.28.20PGSQL_LB_DB_RECONNECT_ATTEMPT FAILED. 1182
26.28.20PGSQL_LB_DB_RECONNECT_ATTEMPT_SCHEDULE 1182
26.28.20PGSQL_LB_DB_RECONNECT_FAILED 1182
26.28.20PGSQL_LB_DELETE_ADDR4 e 1182
26.28.20BGSQL_LB_DELETE_ADDRG 1182
26.28.20PGSQL_LB_DELETE_EXPIRED_RECLAIMED4 1183
26.28.20BGSQL_LB_DELETE_EXPIRED_RECLAIMEDG6 1183
26.2820PGSQL_LB_GET4 1183
262821BGSQL_LB_GET6 e 1183
26.2821PGSQL_LB_GET_ADDR4 e 1183
26.2821PGSQL_LB_GET_ADDROG e 1183
26.2821BGSQL_LB_GET_CLIENTID o e 1184
2628 21RGSQL_LB_GET_DUID o e 1184
26.2821PGSQL_LB_GET_EXPIRED4 e 1184
26.28.21BGSQL_LB_GET_EXPIREDG o e 1184
26.28.21PGSQL_LB_GET_HOSTNAME4 e 1184
26.28.21BGSQL_LB_GET_HOSTNAME®G e 1184
26.2821PGSQL_LB_GET_HWADDR 1185
26.28.228GSQL_LB_GET_IAID_DUID e 1185
26.28.22PGSQL_LB_GET_IAID_SUBID_DUID 1185

26.28.22PGSQL_LB_GET_PAGE4 1185

26.28.22BGSQL_LB_GET_PAGEG 1185

26.28.22RGSQL_LB_GET_RELAYID4 i 1185
26.28.22PGSQL_LB_GET_RELAYIDO6 e 1186
26.28.22BGSQL_LB_GET_REMOTEID4 e 1186
26.28.22PGSQL_LB_GET_REMOTEIDG6 e 1186
26.28.22BGSQL_LB_GET_SUBID4 1186
26.28.22PGSQL_LB_GET_SUBIDO o o i e 1186
26.28.238GSQL_LB_GET_SUBID_CLIENTID 1186
26.28.23PGSQL_LB_GET_SUBID_HWADDR 1187
26.28.23PGSQL_LB_GET_SUBID_PAGE6 1187
26.28.23BGSQL_LB_GET_VERSION e 1187
26.28.23RGSQL_LB_NEGATIVE_LEASES_STAT 1187
26.28.23PGSQL_LB_NO_TLS_SUPPORT e 1187
26.28.23BGSQL_LB_ROLLBACK e 1187
26.28.23PGSQL_LB_TLS_SUPPORT e 1188
26.28.23BGSQL_LB_UPDATE_ADDR4 o 1188
26.28.239GSQL_LB_UPDATE_ADDRG 1188
26.28.248GSQL_LB_UPGRADE_EXTENDED_INFO4 1188
26.28.24PGSQL_LB_UPGRADE_EXTENDED_INFO4_ERROR 1188
26.28.24PGSQL_LB_UPGRADE_EXTENDED_INFO4 PAGE 1188
26.28.24BGSQL_LB_UPGRADE_EXTENDED INFO6 1189
26.28.24PGSQL_LB_UPGRADE_EXTENDED_INFO6_ERROR 1189
2029 RUN . . o e 1189
26.29.1 RUN_SCRIPT_LOAD e 1189
26.29.2 RUN_SCRIPT_LOAD_ERROR 1189
26.30 STAT . . . o 1189
26.30.1 STAT_CMDS_DEINIT_OK e 1189
26.30.2 STAT_CMDS_INIT_OK e 1190
26.30.3 STAT_CMDS_LEASE4 FAILED 1190
26.30.4 STAT_CMDS_LEASE4 GET i 1190
26.30.5 STAT_CMDS_LEASE4 GET _FAILED, 1190
26.30.6 STAT_CMDS_LEASE4 GET_INVALID, 1190
26.30.7 STAT_CMDS_LEASE4 GET_NO_SUBNETS 1190
26.30.8 STAT_CMDS_LEASE4 ORPHANED_STATS 1191
26.30.9 STAT_CMDS_LEASE6_FAILED 1191
26.30.10STAT_CMDS_LEASE6_GET e 1191
26.30.11STAT_CMDS_LEASE6_GET_FAILED, 1191
26.30.12STAT_CMDS_LEASE6_GET_INVALID 1191
26.30.13STAT_CMDS_LEASE6_GET_NO_SUBNETS 1191
2031 TCP o 1192
26.31.1 TCP_CLIENT_REQUEST_RECEIVED 1192
26.31.2 TCP_CONNECTION_REJECTED_BY_FILTER 1192
26.31.3 TCP_CONNECTION_SHUTDOWN e 1192
26.31.4 TCP_CONNECTION_SHUTDOWN_FAILED 1192
26.31.5 TCP_CONNECTION_STOP o e 1192
26.31.6 TCP_CONNECTION_STOP_FAILED, 1192
26.31.7 TCP_DATA_RECEIVED e et 1193
26.31.8 TCP_DATA_SENT e e e 1193
26.31.9 TCP_IDLE_CONNECTION_TIMEOUT_OCCURRED 1193
26.31.10TCP_REQUEST_RECEIVED_FAILED 1193
26.31.11TCP_REQUEST_RECEIVE_START 1193
26.31.12TCP_SERVER_RESPONSE _SEND e 1194
2032 TLS . . L o 1194
26.32.1 TLS_CONNECTION_HANDSHAKE FAILED 1194

27

28

29

30

26.32.2 TLS_CONNECTION_HANDSHAKE _START
26.32.3 TLS_REQUEST_RECEIVE_START
2633 USER
26.33.1 USER_CHK HOOK_LOAD_ERROR
26.33.2 USER_CHK_HOOK_UNLOAD_ERROR
26.33.3 USER_CHK_SUBNET4_SELECT_ERROR
26.33.4 USER_CHK_SUBNET4_SELECT_REGISTRY_NULL
26.33.5 USER_CHK_SUBNET6_SELECT_ERROR
26.34 Kea Debug Messages By Log Level o
26.34.1 Messages printed on debuglevel 0 L L L o
26.34.2 Messages printed on debuglevel 10 oL
26.34.3 Messages printed on debuglevel 15 L L
26.34.4 Messages printed ondebuglevel 20o L e
26.34.5 Messages printed on debuglevel 40 oL o Lo
26.34.6 Messages printed on debuglevel 45 o oL oo oo
26.34.7 Messages printed on debuglevel 50 oL
26.34.8 Messages printed on debuglevel 55 L L o
26.34.9 Messages printed ondebuglevel 70 oL L L e

Configuration Templates

27.1 Template: Home Network of a Power User
27.1.1 Deployment Considerations o o v i i v it e e e e
27.1.2 Possible Extensions

27.2 Template: Secure High Availability Kea DHCP with Multi-Threading
27.2.1 Deployment Considerations o e e
27.2.2 Possible Extensions

Kea Flow Diagrams

28.1 MainLoop oL e e e e
28.2 DHCPv4 Packet Processing e e
28.3 DHCPREQUEST Processing v i v v i i e i e e e e e e e e e e e e e e e
28.4 DHCPv4 Subnet Selection e e
28.5 DHCPv4 Special Case of Double-Booting
28.6 DHCPv4 Lease Allocation o o i i ittt s e e e e e
287 Lease Statesttt e e e e e e e e e e e e e
28.8 Checking for Host Reservations i i e e e
28.9 Building the Options List 0 o e e e e e e e
28.10 How Kea Recognizes the Same Client In Different DHCP Messages
28.11 RADIUS workflows for lease allocation

Kea Configuration File Syntax (BNF)

29.1 BNF Grammar for DHCPv4 e
29.2 BNF Grammar for DHCPvV6O e
29.3 BNF Grammar for Control Agent i e
29.4 BNF Grammar for DHCP-DDNS e
29.5 BNF Grammar for the Kea NETCONF Agent o0 i i i it e e

Acknowledgments

Kea Administrator Reference Manual Documentation, Release 2.7.5

Kea is an open source implementation of the Dynamic Host Configuration Protocol (DHCP) servers, developed and
maintained by Internet Systems Consortium (ISC).

This is the reference guide for Kea version 2.7.5. Links to the most up-to-date version of this document (in PDF,
HTML, and plain text formats) can be found on Read the Docs. Other useful Kea information can be found in our
Knowledgebase.

CONTENTS 1

https://kea.readthedocs.io
https://kb.isc.org

Kea Administrator Reference Manual Documentation, Release 2.7.5

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

Kea is the next generation of DHCP software, developed by Internet Systems Consortium (ISC). It supports both the
DHCPv4 and DHCPv6 protocols along with their extensions, e.g. prefix delegation and dynamic updates to DNS.

This guide covers Kea version 2.7.5.

For information about supported platforms see Supported Platforms.

1.1 Supported Platforms

In general, this version of Kea builds and runs on any POSIX-compliant system with a C++ compiler (with C++14
support), the Botan cryptographic library, the logdcplus logging library and the Boost system library.

ISC regularly tests Kea on many operating systems and architectures, but lacks the resources to test all of them. Con-
sequently, ISC is only able to offer support on a "best-effort" basis for some.

1.1.1 Regularly Tested Platforms
Kea is officially supported on Alpine, Debian, Fedora, FreeBSD, RHEL, and Ubuntu systems. Kea-2.7.5 builds have
been tested on:

* Alpine — 3.17, 3.18, 3.19, 3.20

e Debian— 10, 11, 12

e Fedora — 39, 40

e FreeBSD — 13

* RHEL —8§,9

e Ubuntu — 20.04, 22.04, 24.04

There are currently no plans to port Kea to Windows systems.

Kea Administrator Reference Manual Documentation, Release 2.7.5

1.1.2 Best-Effort

The following are platforms on which Kea is known to build and run. ISC makes every effort to fix bugs on these
platforms, but may be unable to do so quickly due to lack of hardware, less familiarity on the part of engineering staff,
and other constraints.

e macOS — 13, 14

1.1.3 Community-Maintained

These systems have once been regularly tested, but official support for it has been abandoned, usually due to discontin-
ued support on their own part. Older versions may not have the required dependencies for building Kea easily available,
although it is possible in many cases to compile on those directly from source. The community and interested parties
may wish to help with maintenance, and we welcome patch contributions, although we cannot guarantee that we will
accept them. All contributions are assessed against the risk of adverse effect on officially supported platforms.

These include platforms past their respective EOL dates, such as:
* Alpine — 3.16 (EOL 23 May 2022) and older
e CentOS — 8 (EOL 31 December 2021) and older
¢ Debian — 9 (EOL 30 June 2022) and older
* Fedora — 38 (EOL 21 May 2024) and older
* FreeBSD — 12 and older
* macOS — 10.15 (EOL 12 September 2022) and older
e Ubuntu — 21.04 (EOL 20 January 2022) and older

1.1.4 Unsupported Platforms

These are platforms on which versions of Kea since 1.7 are known not to build or run:
¢ Windows (all versions)
¢ Windows Server (all versions)
* Any platform with OpenSSL 1.0.1 or earlier, which does not also have Botan as an alternative
* Any platform with log4cplus version 1.0.2 or earlier.

* Any platform with a compiler that doesn't support C++14.

1.2 Required Software at Runtime

Kea uses various extra software packages which may not be provided in the default installation of some operating
systems, nor in the standard package collections. This required software may need to be installed separately. (For the
build requirements, also see Build Requirements.)

» Kea supports two cryptographic libraries: Botan and OpenSSL. Only one of them is required to be installed
during compilation. Kea uses the Botan library for C++ (https://botan.randombit.net/), version 2.0 or later;
support for Botan versions earlier than 2.0 was removed as of Kea 1.7.0. As an alternative to Botan, Kea can use
the OpenSSL cryptographic library (https://www.openssl.org/), version 1.0.2 or later.

* Kea uses the logdcplus C++ logging library (https://sourceforge.net/p/log4cplus/wiki/Home/). It requires
log4cplus version 1.0.3 or later.

4 Chapter 1. Introduction

https://botan.randombit.net/
https://www.openssl.org/
https://sourceforge.net/p/log4cplus/wiki/Home/

Kea Administrator Reference Manual Documentation, Release 2.7.5

Kea requires the Boost system library (https://www.boost.org/). Building with the header-only version of Boost
is no longer recommended.

Some optional features of Kea have additional dependencies.

1.3

To store lease information in a MySQL database, Kea requires MySQL headers and libraries. This is an optional
dependency; Kea can be built without MySQL support.

To store lease information in a PostgreSQL database, Kea requires PostgreSQL headers and libraries. This is an
optional dependency; Kea can be built without PostgreSQL support.

Kea provides a NETCONF interface with the kea-netconf agent. This Kea module requires Sysrepo soft-
ware when used. Building Kea with NETCONF support requires many dependencies to be installed, which are
described in more detail in /nstalling NETCONF . This is an optional dependency; Kea can be built without
NETCONF support.

To sign and verify DNS updates the Kea DDNS server may use GSS-TSIG, which requires MIT Kerberos 5 or
Heimdal libraries. The dependencies required to be installed are described in more detail in GSS-TSIG Compi-
lation. This is an optional dependency; Kea can be built without GSS-TSIG support.

Kea Software

Kea is a modular DHCP server solution. This modularity is accomplished using multiple cooperating processes which,
together, provide the server functionality. The following software is included with Kea:

keactrl — This tool starts, stops, reconfigures, and reports the status of the Kea servers.
kea-dhcp4 — The DHCPv4 server process. This process responds to DHCPv4 queries from clients.
kea-dhcp6 — The DHCPv6 server process. This process responds to DHCPv6 queries from clients.

kea-dhcp-ddns — The DHCP Dynamic DNS process. This process acts as an intermediary between the DHCP
servers and external DNS servers. Itreceives name update requests from the DHCP servers and sends DNS update
messages to the DNS servers.

kea-admin — This is a useful tool for database backend maintenance (creating a new database, checking ver-
sions, upgrading, etc.).

kea-1fc — This process removes redundant information from the files used to provide persistent storage for the
memfile database backend. While it can be run standalone, it is normally run as and when required by the Kea
DHCP servers.

kea-ctrl-agent — The Kea Control Agent (CA) is a daemon that exposes a RESTful control interface for
managing Kea servers.

kea-netconf - kea-netconf is an agent that provides a YANG/NETCONF interface for configuring Kea.
kea-shell — This simple text client uses the REST interface to connect to the Kea Control Agent.

perfdhcp — This is a DHCP benchmarking tool which simulates multiple clients to test both DHCPv4 and
DHCPv6 server performance.

The tools and modules are covered in full detail in this guide. In addition, manual pages are also provided in the default
installation.

Kea also provides C++ libraries and programmer interfaces for DHCP. These include detailed developer documentation
and code examples.

1.3. Kea Software 5

https://www.boost.org/

Kea Administrator Reference Manual Documentation, Release 2.7.5

6 Chapter 1. Introduction

CHAPTER
TWO

QUICK START

This section describes the basic steps needed to get Kea up and running. For further details, full customizations, and
troubleshooting, see the respective chapters elsewhere in this Kea Administrator Reference Manual (ARM).

2.1 Quick Start Guide Using tarball

1. Install required runtime and build dependencies. See Build Requirements for details.

2. Download the Kea source tarball from the main isc.org downloads page, the ISC downloads site, or the ISC
Cloudsmith page.

3. Extract the tarball. For example:
$ tar -xvzf kea-2.7.5.tar.gz
4. Go into the source directory and run the configure script:

$ cd kea-2.7.5
$./configure [your extra parameters]

5. Build it:

[$ make

6. Install it (by default it will be placed in /usr/local/, so root privileges are likely required for this step):

[$ make install

2.2 Quick Start Guide Using Native Packages

ISC provides native Alpine, deb, and RPM packages, which make Kea installation much easier than building from
source. Unless specific compilation options are desired, it is usually easier to install Kea using native packages.

1. Go to Kea on cloudsmith.io.

2. Choose the Cloudsmith repository e.g. kea-dev for Kea 2.7.5. Or kea-2-4 for Kea 2.4.

Note: All stable releases are stored in separate repositories, such as kea-2-4, kea-2-6, and so on. All development
releases, which are not recommended for production use, are located in the kea-dev repository.

3. Click on the arrow beside the "Set Me Up" button and select the desired OS flavor: Alpine, Debian, or RedHat.

https://www.isc.org/download/
https://downloads.isc.org/isc/kea/
https://cloudsmith.io/~isc/packages/?q=format%3Araw
https://cloudsmith.io/~isc/packages/?q=format%3Araw
https://cloudsmith.io/~isc/repos/

Kea Administrator Reference Manual Documentation, Release 2.7.5

4. Follow the onscreen instructions.

Note: For example, the Debian setup instructions for Kea 2.4 can be found here: https://cloudsmith.io/~isc/repos/
kea-2-4/setup/#formats-deb

The dropdown near the top of the page offers instructions for other operating systems.

5. Keais splitinto various packages. The entire list is available on the Cloudsmith repository page under Packages,
or it can be retrieved using apk/apt/dnf.

De-
bian/Ubu § apt search isc-kea

Note: isc-kea-dhcp4-server and isc-kea-dhcp6-server are empty transitional packages. The
working server packages are isc-kea-dhcp4 and isc-kea-dhcp6.

Fe-
dora/Red § dnf search 'isc-kea*'

Alpine
$ apk search isc-kea

6. Install the metapackage containing all the tools, libraries, servers, documentation, and open source hooks:

De-
bian/Ubu § sudo apt install isc-kea

Fe-
dora/Red § sudo dnf install isc-kea

Alpine
apk add isc-kea

or specific packages:

De-
bian/Ubu § sudo apt install isc-kea-dhcp6

Fe-
dora/Red § sudo dnf install isc-kea-dhcp6

Alpine
$ apk add isc-kea-dhcp6

or ALL Kea-related packages, including development headers, debug symbols, and premium hooks (if available):

8 Chapter 2. Quick Start

https://cloudsmith.io/~isc/repos/kea-2-4/setup/#formats-deb
https://cloudsmith.io/~isc/repos/kea-2-4/setup/#formats-deb

Kea Administrator Reference Manual Documentation, Release 2.7.5

De-
bian/Ubu § sudo apt install 'isc-kea*'

Fe-
dora/Red § sudo dnf install 'isc-kea*'

Alpine Installing packages via globbing (*) is not available for Alpine, but it can be simulated with the following
command:

apk search isc-kea | sed 's/-[0-9].%//g' | xargs apk add

or all packages with a specified version number:

De-
bian/Ubu § sudo apt install 'isc-kea*=2.4.0-isc20230921141113"

Fe-
dora/Red § sudo dnf install 'isc-kea®2.4.0-isc20230921141113%"

Alpine Installing packages via globbing (*) is not available for Alpine, but it can be simulated with the following
command:
apk search isc-kea | sed 's/-[0-9].%//g"' | grep r20230921141113 | xargs apk.
—add

8. All installed packages should be now available.

You can start a server manually:

[# kea-dhcp6 -c /etc/kea/kea-dhcp6.conf J

or using systemd:

[# systemct]l restart kea-dhcp6]

or using OpenRC on Alpine:

[# service kea-dhcp6 restart]

Note: keactrl is not available in packages, as similar functionality is provided by the native systemctl scripts.

9. On Debian/Ubuntu systems, the service is automatically enabled at boot time when the package is installed. On
Fedora/RHEL and Alpine, the service is not automatically enabled, so if desired, it must be enabled manually.

With systemd on Fedora/RedHat:

[# systemctl enable kea-dhcp6]

With OpenRC on Alpine:

2.2. Quick Start Guide Using Native Packages 9

Kea Administrator Reference Manual Documentation, Release 2.7.5

[# rc-update add kea-dhcp6 }

2.3 Quick Start Guide Using Docker Containers

1. Go to the ISC docker repository on cloudsmith.io.
2. Create an ipvlan network attached to the client-facing host interface and assigned to the subnet that is served by
Kea.

$ docker network create --driver ipvlan --ipv6 --subnet 2001:db8::/64 --opt parent=eth®.

—ipvlan@®

3. Pick the desired image and pull it locally.

[$ docker pull docker.cloudsmith.io/isc/docker/kea-dhcp6 J

4. Create a container from the image. Mount the configuration volume and the data volume if needed.

$ docker create \
--name kea-dhcp6 \
--network ipvlan® \
--volume /local/kea/config:/etc/kea \
--volume /local/kea/data:/var/lib/kea \
docker.cloudsmith.io/isc/docker/kea-dhcp6

5. Start the docker container.

[$ docker start kea-dhcp6 J

6. To stop the docker container, run:

[$ docker stop kea-dhcp6]

Note: Refer to the kea-docker readme for more complex scenarios.

2.4 Quick Start Guide for DHCPv4 and DHCPv6 Services

1. Edit the Kea configuration files, which by default are installed in the [kea-install-dir]/etc/kea/ direc-
tory. These are: kea-dhcp4.conf, kea-dhcp6.conf, kea-dhcp-ddns.conf and kea-ctrl-agent.conf,
keactrl.conf for the DHCPv4 server, DHCPv6 server, D2, Control Agent, and keactrl script, respectively.

2. To start the DHCPv4 server in the background, run the following command (as root):

[# keactrl start -s dhcp4 J

Or run the following command to start the DHCPv6 server:

[# keactrl start -s dhcp6 J

Note that it is also possible to start all servers simultaneously:

10 Chapter 2. Quick Start

https://cloudsmith.io/~isc/repos/docker/packages/
https://gitlab.isc.org/isc-projects/kea-docker#user-content-docker-files-for-building-kea-containers

Kea Administrator Reference Manual Documentation, Release 2.7.5

[# keactrl start J

3. Verify that the Kea server(s) is/are running:

[# keactrl status J

A server status of "inactive" may indicate a configuration error. Please check the log file (by default named
[kea-install-dir]/var/log/kea-dhcp4.1log, [kea-install-dir]/var/log/kea-dhcp6.1log,
[kea-install-dir]/var/log/kea-ddns.log, or [kea-install-dir]/var/log/kea-ctrl-agent.
log) for the details of any errors.

4. If the server has started successfully, test that it is responding to DHCP queries and that the client receives a
configuration from the server; for example, use the ISC DHCP client.

5. To stop running the server(s):

[# keactrl stop }

For system-specific instructions, please read the system-specific notes, available in the Kea section of ISC's Knowl-
edgebase.

The details of keactrl script usage can be found in Managing Kea with keactrl.

Once Kea services are up and running, consider deploying a dashboard solution to monitor running services. For more
details, see Monitoring Kea With Stork.

2.5 Running the Kea Servers Directly

The Kea servers can be started directly, without the need to use keactrl or systemctl. To start the DHCPv4 server
run the following command:

[# kea-dhcp4 -c /path/to/your/kead4/config/file.json]

Similarly, to start the DHCPv6 server, run the following command:

[# kea-dhcp6 -c /path/to/your/kea6/config/file.json]

2.5. Running the Kea Servers Directly 11

https://www.isc.org/download/
https://kb.isc.org/docs/installing-kea
https://kb.isc.org/docs
https://kb.isc.org/docs

Kea Administrator Reference Manual Documentation, Release 2.7.5

12 Chapter 2. Quick Start

CHAPTER
THREE

INSTALLATION

3.1 Packages

ISC publishes native RPM, deb, and APK packages, as well as tarballs with the source code. The packages are available
in ISC's Cloudsmith repositories. The native packages can be downloaded and installed using the system available in
a specific distribution (such as dpkg or rpm). The Kea repository can also be added to the system, making it easier
to install updates. For details, please go to https://cloudsmith.io/~isc/repos, choose the desired Kea version, and then
click the "Set Me Up" button. For detailed instructions, please refer to this Knowledgebase article.

ISC maintains two types of repositories: stable and development. The stable repositories contain a single stable release
(e.g., kea-2-4 or kea-2-6) along with all its maintenance updates. Separate repositories were introduced to minimize
the risk of unintentionally upgrading from one stable release to another.

The development repository, kea-dev, includes current and future development releases, which ISC does not recommend
for production use. Packages in the kea-dev repository are subject to cleanup, and older versions may be removed.

3.1.1 Installation From Cloudsmith Packages

ISC provides Kea packages for Alpine, Debian, Fedora, RHEL, and Ubuntu. The recommended method for installing
Kea on any of these systems is to install the isc-kea metapackage from the Cloudsmith repository. This metapackage
is included on all supported distros and installs all of the services offered by the Kea software suite.

Specific Kea components can be installed individually, with any of the following packages:
* isc-kea-dhcp4 — Kea DHCPv4 server package
* isc-kea-dhcp6 — Kea DHCPv6 server package
¢ isc-kea-dhcp-ddns — Kea DHCP DDNS server
* isc-kea-ctrl-agent — Kea Control Agent for remote configuration
* isc-kea-admin — Kea database administration tools
* isc-kea-hooks — Kea open source DHCP hooks

Kea premium hook packages are not included in the isc-kea-hooks package. For ISC customers with access to the
premium hooks, those packages have the isc-kea-premium- prefix. Users wishing to purchase the premium hooks
can find them on ISC's website, at https://www.isc.org/shop/.

Once installed, the services can be managed through the distribution's service manager. The services are named:
kea-dhcp4, kea-dhcp6, kea-dhcp-ddns, and kea-ctrl-agent.

Note: The real service names on Debian and Ubuntu use slightly different package names, to maintain compati-
bility with some older scripts. A systemd service alias is used to allow users to refer to them with shorter names.

13

https://cloudsmith.io/~isc/repos
https://cloudsmith.io/~isc/repos
https://kb.isc.org/docs/isc-kea-packages
https://www.isc.org/shop/

Kea Administrator Reference Manual Documentation, Release 2.7.5

Calling systemctl enable on these services requires the real service names, which are: isc-kea-dhcp4-server,
isc-kea-dhcp6-server, isc-kea-dhcp-ddns-server, and isc-kea-ctrl-agent.

3.1.2 Caveats When Upgrading Kea Packages

To upgrade to a current version of Kea from version 2.3.2 or earlier on Debian and Ubuntu systems, run apt
dist-upgrade instead of the usual apt upgrade. Once this upgrade has been completed, it is possible to upgrade to
later versions normally using apt upgrade on Debian and Ubuntu systems.

Users may notice differences in the packages distributed in Kea versions prior to 2.3.2 and those distributed with 2.3.2
and later. As a result of an overhaul of our package design with that release, some packages were renamed or removed.
To ensure that upgrades go as smoothly as possible, pay attention to which packages are being removed and installed
by the upgrade transaction, and ensure that all required packages are reinstalled.

Specifically, there is a possibility for the following packages to be removed during the upgrade, depending on which
packages were originally installed:

¢ isc-kea-dhcp4
* isc-kea-dhcp6
¢ isc-kea-dhcp-ddns
* isc-kea-hooks

To install the entire Kea software suite, simply run apt install isc-kea after upgrading, which will install all of
the relevant subpackages that make up Kea.

This upgrade path issue does not apply to RPM and Alpine systems.

Customers with ISC support contracts who experience difficulties with upgrading are invited to open a ticket in their
support queue. Other users are encouraged to describe their situation on the kea-users mailing list for best-effort support
from other list members.

3.2 Installation Hierarchy

The following is the directory layout of the complete Kea installation. (All directory paths are relative to the installation
directory.)

e etc/kea/ — configuration files.

e include/ — C++ development header files.

e 1ib/ — libraries.

e lib/kea/hooks — additional hook libraries.

e sbin/ — server software and commands used by the system administrator.
» share/doc/kea/ — this guide, other supplementary documentation, and examples.
* share/kea/ — API command examples and database schema scripts.

* share/man/ — manual pages (online documentation).

e var/lib/kea/ — server identification and lease database files.

e var/log/ - log files.

* var/run/kea - PID file and logger lock file.

14 Chapter 3. Installation

https://lists.isc.org/mailman/listinfo/kea-users

Kea Administrator Reference Manual Documentation, Release 2.7.5

3.3

Build Requirements

In addition to the runtime requirements (listed in Required Software at Runtime), building Kea from source code requires
various development include headers and program development tools.

Note:

Some operating systems have split their distribution packages into a runtime and a development package. The

development package versions, which include header files and libraries, must be installed to build Kea from the source

code.

Building from source code requires the following software installed on the system:

Boost C++ libraries (https://www.boost.org/). The oldest Boost version used for testing is 1.57 (although Kea
may also work with older versions). The Boost system library must also be installed. Installing a header-only
version of Boost is not recommended.

OpenSSL (at least version 1.0.2) or Botan (at least version 2). OpenSSL version 1.1.1 or later is strongly recom-
mended.

log4cplus (at least version 1.0.3) development include headers.
A C++ compiler (with C++14 support) and standard development headers.
The development tools automake, libtool, and pkg-config.

The MySQL client and the client development libraries, when using the --with-mysql configuration flag to
build the Kea MySQL database backend. In this case, an instance of the MySQL server running locally or on a
machine reachable over a network is required. Note that running the unit tests requires a local MySQL server.

The PostgreSQL client and the client development libraries, when using the --with-pgsql configuration flag to
build the Kea PostgreSQL database backend. In this case an instance of the PostgreSQL server running locally or
on a machine reachable over a network is required. Note that running the unit tests requires a local PostgreSQL
server.

Sysrepo v1.4.140 and libyang v1.0.240, needed to connect to a Sysrepo datastore. Earlier versions are no longer
supported. When compiling from sources, the configure switches that can be used are --with-libyang and
--with-sysrepo without any parameters. If these dependencies were installed in custom paths, point the
switches to them.

The MIT Kerberos 5 or Heimdal libraries are needed by Kea DDNS server to sign and verify DNS updates
using GSS-TSIG. The configuration switch which enables this functionality is --with-gssapi, without any
parameters. If these dependencies were installed in custom paths, point the switch to them.

googletest (version 1.8 or later) is required when using the --with-gtest configuration option to build the unit
tests.

The documentation generation tools Sphinx, texlive with its extensions, and Doxygen, if using the
--enable-generate-docs configuration option to create the documentation. Specifically, with Fedora,
python3-sphinx, python3-sphinx_rtd_theme, texlive, and texlive-collection-latexextra
are necessary. With Ubuntu, python3-sphinx, python3-sphinx-rtd-theme, texlive, and
texlive-latex-extra are needed. If LaTeX packages are missing, Kea skips PDF generation and
produces only HTML documents.

Visit ISC's Knowledgebase at https://kb.isc.org/docs/installing-kea for system-specific installation tips.

3.3. Build Requirements 15

https://www.boost.org/
https://www.sphinx-doc.org/
https://kb.isc.org/docs/installing-kea

Kea Administrator Reference Manual Documentation, Release 2.7.5

3.4 Installation From Source

Although Kea may be available in pre-compiled, ready-to-use packages from operating system vendors, it is open
source software written in C++. As such, it is freely available in source code form from ISC as a downloadable tar file.
The source code can also be obtained from the Kea GitLab repository at https://gitlab.isc.org/isc-projects/kea. This
section describes how to build Kea from the source code.

3.4.1 Download Tar File

The Kea release tarballs may be downloaded from: https://downloads.isc.org/isc/kea/.

3.4.2 Verify The Tar File Signature

The tar file with the source code is distributed together with its GPG signature. The signature is a file with the same
name as the tar file appended by the .asc extension. You can find the signature file on our download page, FTP, or
CloudSmith.

The signature is created using the ISC code-signing key. The current set of ISC code-signing keys is available from the
ISC website at https://www.isc.org/pgpkey (the Current Set of ISC Code-Signing Keys link).

The signature can be verified using the GnuPGP gpg tool. The following commands import the code-signing keys
(isc-keyblock.asc) and verify the signature:

$ gpg --import isc-keyblock.asc
$ gpg --verify kea-X.Y.Z.tar.gz.asc kea-X.Y.Z.tar.gz

The verification allows users to confirm that the tar file has not been tampered with and that it was created by ISC.

3.4.3 Retrieve From Git

The latest development code is available on GitLab (see https://gitlab.isc.org/isc-projects/kea). The Kea source is
public and development is done in the “master”” branch.

Downloading this "bleeding edge" code is recommended only for developers or advanced users. Using development
code in a production environment is not recommended.

Note: When building from source code retrieved via git, additional software is required: automake (v1.11 or later),
libtoolize, and autoconf (v2.69 or later). These may need to be installed.

The code can be checked out from https://gitlab.isc.org/isc-projects/kea.git:

[$ git clone https://gitlab.isc.org/isc-projects/kea.git]

The code checked out from the git repository does not include the generated configure script or the Makefile.in files,
nor their related build files. Those can be created by running autoreconf with the --install switch, which will run
autoconf, aclocal, 1libtoolize, autoheader, automake, and related commands.

Write access to the Kea repository is only granted to ISC staff. Developers planning to contribute to Kea should check
our Contributor's Guide. The Kea Developer's Guide contains more information about the process, and describes the
requirements for contributed code to be accepted by ISC.

16 Chapter 3. Installation

https://gitlab.isc.org/isc-projects/kea
https://downloads.isc.org/isc/kea/
https://www.isc.org/pgpkey
https://www.isc.org/docs/isc-keyblock.asc
https://gitlab.isc.org/isc-projects/kea
https://gitlab.isc.org/isc-projects/kea/blob/master/contributors-guide.md
https://reports.kea.isc.org/dev_guide/

Kea Administrator Reference Manual Documentation, Release 2.7.5

3.4.4 Configure Before the Build

Kea uses the GNU Build System to discover build environment details. To generate the makefiles using the defaults,
simply run:

[$./configure

Run .

/configure with the --help switch to view the different options. Some commonly used options are:
--prefix Define the installation location (the default is /usr/local).

--with-mysql Build Kea with code to allow it to store leases and host reservations in a MySQL database.
--with-pgsql Build Kea with code to allow it to store leases and host reservations in a PostgreSQL database.
--with-log4cplus Define the path to find the Log4cplus headers and libraries. Normally this is not necessary.
--with-boost-include Define the path to find the Boost headers. Normally this is not necessary.

--with-botan Specify the name of the Botan pkg-config library e.g. botan-2 to build with Botan for crypto-
graphic functions. It is preferable to use OpenSSL (see below).

--with-openssl Use the OpenSSL cryptographic library instead of Botan. By default configure searches
for a valid Botan installation; if one is not found, Kea searches for OpenSSL. Normally this is not necessary.

--enable-shell Build the optional kea-shell tool (see The Kea Shell). The default is to not build it.

--with-site-packages Install the kea-shell Python packages in the specified directory; this is only useful
when kea-shell is enabled, and is mostly helpful for Debian-related distributions. While most systems store
Python packages in ${prefix}/usr/lib/pythonX/site-packages, Debian introduced a separate directory
for packages installed from DEB. Such Python packages are expected to be installed in /usr/1ib/python3/
dist-packages.

--enable-perfdhcp Build the optional perfdhcp DHCP benchmarking tool. The default is to not build it.

Note:

For instructions concerning the installation and configuration of database backends for Kea, see DHCP Database

Installation and Configuration.

There are many options that are typically not necessary for regular users. However, they may be useful for package
maintainers, developers, or people who want to extend Kea code or send patches:

--with-gtest, --with-gtest-source Enable the building of C++ unit tests using the Google Test frame-
work. This option specifies the path to the gtest source. (If the framework is not installed on the system, it can
be downloaded from https://github.com/google/googletest.)

--enable-generate-docs Enable the rebuilding of Kea documentation. ISC publishes Kea documentation
for each release; however, in some cases it may be desirable to rebuild it: for example, to change something in
the docs, or to generate new ones from git sources that are not yet released.

--enable-generate-parser Enable the generation of parsers using flex or bison. Kea sources include .cc and
.h parser files, pre-generated for users' convenience. By default Kea does not use flex or bison, to avoid requiring
installation of unnecessary dependencies for users. However, if anything in the parsers is changed (such as adding
a new parameter), flex and bison are required to regenerate parsers. This option permits that.

--enable-generate-messages Enable the regeneration of messages files from their messages source files, e.g.
regenerate xxx_messages.h and xxx_messages.cc from xxx_messages.mes using the Kea message compiler. By
default Kea is built using these .h and .cc files from the distribution. However, if anything in a .mes file is changed
(such as adding a new message), the Kea message compiler needs to be built and used. This option permits that.

As an example, the following command configures Kea to find the Boost headers in /ust/pkg/include, specifies that
PostgreSQL support should be enabled, and sets the installation location to /opt/kea:

3.4.

Installation From Source 17

https://github.com/google/googletest

Kea Administrator Reference Manual Documentation, Release 2.7.5

$./configure \
--with-boost-include=/usr/pkg/include \
--with-pgsql=/usr/local/bin/pg_config \
--prefix=/opt/kea

Users who have any problems with building Kea using the header-only Boost code, or who would like to use the Boost
system library (assumed for the sake of this example to be located in /usr/pkg/lib), should issue these commands:

$./configure \
--with-boost-libs=-1boost_system \
--with-boost-lib-dir=/usr/pkg/lib

If configure fails, it may be due to missing or old dependencies.

When configure succeeds, it displays a report with the parameters used to build the code. This report is saved into
the file config.report and is also embedded into the executable binaries, e.g. kea-dhcp4.

3.4.5 Build

After the configure step is complete, build the executables from the C++ code and prepare the Python scripts by running
the command:

(5 make |

3.4.6 Install

To install the Kea executables, support files, and documentation, issue the command:

[$ make install J

Do not use any form of parallel or job server options (such as GNU make's -j option) when performing this step; doing
SO may cause errors.

Note: The install step may require superuser privileges.

If required, run 1dconfig as root with /usr/local/1lib (or with prefix/lib if configured with --prefix) in /etc/
1d.so.conf (or the relevant linker cache configuration file for the OS):

[$ ldconfig]

Note: If 1dconfig is not run where required, users may see errors like the following:

cannot open shared object file: No such file or directory

program: error while loading shared libraries: libkea-something.so.1: ’

18 Chapter 3. Installation

Kea Administrator Reference Manual Documentation, Release 2.7.5

3.4.7 Cross-Building

It is possible to cross-build Kea, i.e. to create binaries in a separate system (the build system) from the one where Kea
runs (the host system).

It is outside of the scope of common administrator operations and requires some developer skills, but the Developer
Guide explains how to do that using an x86_64 Linux system to build Kea for a Raspberry Pi box running Raspbian:
see this Kea Cross-Compiling Example.

3.5 DHCP Database Installation and Configuration

Kea stores its leases in a lease database. The software has been written in a way that makes it possible to choose
which database product should be used to store the lease information. Kea supports three database backends: MySQL,
PostgreSQL, and memfile. To limit external dependencies, MySQL and PostgreSQL support are disabled by default
and only memfile is available. Support for the optional external database backend must be explicitly included when
Kea is built. This section covers the building of Kea with one of the optional backends and the creation of the lease
database.

Note: When unit tests are built with Kea (i.e. the --with-gtest configuration option is specified), the databases
must be manually pre-configured for the unit tests to run. The details of this configuration can be found in the Kea
Developer's Guide.

3.5.1 Building with MySQL Support

Install MySQL according to the instructions for the system. The client development libraries must be installed.

Build and install Kea as described in Installation, with the following modification. To enable the MySQL database
code, at the "configure" step (see Configure Before the Build), the --with-mysql switch should be specified:

[$./configure [other-options] --with-mysql }

If MySQL was not installed in the default location, the location of the MySQL configuration program "mysql_config"
should be included with the switch:

[$./configure [other-options] --with-mysgl=path-to-mysql_config]

See First-Time Creation of the MySQL Database for details regarding MySQL database configuration.

3.5.2 Building with PostgreSQL support
Install PostgreSQL according to the instructions for the system. The client development libraries must be installed.
Client development libraries are often packaged as "libpq".

Build and install Kea as described in /nstallation, with the following modification. To enable the PostgreSQL database
code, at the "configure" step (see Configure Before the Build), the --with-pgsql switch should be specified:

[$./configure [other-options] --with-pgsql }

If PostgreSQL was not installed in the default location, the location of the PostgreSQL configuration program
"pg_config" should be included with the switch:

3.5. DHCP Database Installation and Configuration 19

https://reports.kea.isc.org/dev_guide/de/d9a/crossCompile.html
https://reports.kea.isc.org/dev_guide/
https://reports.kea.isc.org/dev_guide/

Kea Administrator Reference Manual Documentation, Release 2.7.5

[$./configure [other-options] --with-pgsql=path-to-pg_config

See First-Time Creation of the PostgreSQL Database for details regarding PostgreSQL database configuration.

3.6 Hammer Building Tool

Hammer is a Python 3 script that lets users automate tasks related to building Kea, such as setting up virtual machines,
installing Kea dependencies, compiling Kea with various options, running unit-tests and more. This tool was created
primarily for internal QA purposes at ISC and it is not included in the Kea distribution; however, it is available in
the Kea git repository. This tool was developed primarily for internal purposes and ISC cannot guarantee its proper
operation. Administrators who decide to use it should do so with care.

Note: Use of this tool is completely optional. Everything it does can be done manually.

The first-time user is strongly encouraged to look at Hammer's built-in help:

[$./hammer.py --help

It will list available parameters.

Hammer is able to set up various operating systems running either in LXC or in VirtualBox. For a list of supported
systems, use the supported-systems command:

$./hammer.py supported-systems
fedora:

- 37: 1xc

- 38:
centos:

- 8: 1lxc, virtualbox

- 8: virtualbox

- 18.04: 1lxc, virtualbox
- 20.04: 1xc
- 22.04: 1xc
debian:
- 10: 1xc, virtualbox
- 11: 1xc
- 12: 1xc
freebsd:
- 12.0: virtualbox
- 12.1:
- 13.0: virtualbox
alpine:
- 3.15: 1xc
- 3.16: 1xc
- 3.17: 1xc

It is also possible to run the build locally, in the current system (if the OS is supported).

20 Chapter 3. Installation

Kea Administrator Reference Manual Documentation, Release 2.7.5

First, the Hammer dependencies must be installed: Vagrant and either VirtualBox or LXC. Hammer can install Vagrant
and the required Vagrant plugins using the command:

[$./hammer.py ensure-hammer-deps J

VirtualBox and LXC must be installed manually.

The basic functions provided by Hammer are to prepare the build environment and perform the actual build, and to run
the unit tests locally in the current system. This can be achieved by running the command:

[$./hammer.py build -p local]

The scope of the process can be defined using the --with (-w) and --without (-x) options. By default, the build
command builds Kea with documentation, installs it locally, and runs unit tests.

To exclude the installation and generation of docs, type:

[$./hammer.py build -p local -x install docs]

The basic scope can be extended by mysql, pgsql, native-pkg, shell, and forge. Please refer to . /hammer.py build
--help for more details.

Note: If building Kea locally, Hammer dependencies like Vagrant are not needed.

Hammer can be told to set up a new virtual machine with a specified operating system, without the build:

[$./hammer.py prepare-system -p virtualbox -s freebsd -r 12.0]

This way, a system can be prepared for our own use. To get to such a system using SSH, invoke:

[$./hammer.py ssh -p virtualbox -s freebsd -r 12.0]

It is possible to speed up subsequent Hammer builds via ccache. During compilation, ccache stores objects in a shared
folder. In subsequent runs, instead of doing an actual compilation, ccache returns the stored earlier objects. The cache
with these objects for reuse must be stored outside of VM or LXC. To indicate the folder, the --ccache-dir parameter
for Hammer must be included. In the indicated folder, there are separate stored objects for each target operating system.

[$./hammer.py build -p 1lxc -s ubuntu -r 18.04 --ccache-dir ~/kea-ccache J

Note: ccache is currently only supported for LXC in Hammer; support for VirtualBox may be added later.

For more information check:

[$./hammer.py --help]

3.6. Hammer Building Tool 21

https://ccache.samba.org/

Kea Administrator Reference Manual Documentation, Release 2.7.5

3.7 Running Kea From a Non-root Account on Linux

Both Kea DHCPv4 and DHCPV6 servers perform operations that in general require root access privileges. In particular,
DHCPv4 opens raw sockets and both DHCPv4 and DHCPv6 open UDP sockets on privileged ports. However, with

some extra system configuration, it is possible to run Kea from non-root accounts.

First, a regular user account must be created:

[useradd admin

]

Then, change the binaries' ownership and group to the new user. Note that the specific path may be different. Please

refer to the --prefix parameter passed to the configure script:

chown -R
chgrp -R
chown -R
chgrp -R
chown -R
chgrp -R

admin /opt/kea
admin /opt/kea
admin /var/log/kea-dhcp4.log
admin /var/log/kea-dhcp4.1log
admin /var/log/kea-dhcp6.log
admin /var/log/kea-dhcp6.log

If using systemd, modify its service file (e.g. /etc/systemd/system/kea-dhcp6.service):

User=admin
Group=admin

The most important step is to set the capabilities of the binaries. Refer to the operating system man page for capabilities
for more information.

setcap 'cap_net_bind_service,cap_net_raw=+ep' /opt/kea/sbin/kea-dhcp4
setcap 'cap_net_bind_service=+ep' /opt/kea/sbin/kea-dhcp6

If using systemd, also add this to the service file (e.g. /etc/systemd/system/kea-dhcp6b.service):

[ExecStartPre=setcap 'cap_net_bind_service=+ep' /opt/kea/sbin/kea-dhcp6

)

After this step is complete, the admin user should be able to run Kea. Note that the DHCPv4 server by default opens
raw sockets. If the network is only using relayed traffic, Kea can be instructed to use regular UDP sockets (refer
to dhcp-socket-type parameter in the /nterface Configuration section) and the cap_net_raw capability can be

skipped.

Note: It is possible to avoid running Kea with root privileges by instructing Kea to use non-privileged (greater than
1024) ports and redirecting traffic. This, however, only works for relayed traffic. This approach in general is considered
experimental and has not been tested for deployment in production environments. Use with caution!

To use this approach, configure the server to listen on other non-privileged ports (e.g. 1547 and 1548) by running the

process with the -p option in /etc/systemd/system/kea-dhcp4.service:

[ExecStart:/opt/kea/sbin/kea—dhcp4 -d -c /etc/kea/kea-dhcp4.conf -p 2067

and /etc/systemd/system/kea-dhcp4.service:

{ExecStartz/opt/kea/sbin/kea—dhcp6 -d -c /etc/kea/kea-dhcp6.conf -p 1547

]

Then configure port redirection with iptables and ip6tables for new ports (e.g. 1547 and 1548). Be sure to replace
ens4 with the specific interface name.

22

Chapter 3. Installation

Kea Administrator Reference Manual Documentation, Release 2.7.5

iptables -t nat -A PREROUTING -i ens4 -p udp --dport 67 -j REDIRECT --to-port 2067
iptables -t nat -A PREROUTING -i ens4 -p udp --dport 2068 -j REDIRECT --to-port 68
ip6tables -t nat -A PREROUTING -i ens4 -p udp --dport 547 -j REDIRECT --to-port 1547
ip6tables -t nat -A PREROUTING -i ens4 -p udp --dport 1548 -j REDIRECT --to-port 548

3.8 Deprecated Features

This section lists significant features that have been or will be removed. We try to deprecate features before removing
them, to signal to current users to plan a migration. New users should not rely on deprecated features.

3.8.1 Sysrepo 0.x or 1.x

Kea 2.3.2 introduced support for Sysrepo 2.x. Unfortunately, Sysrepo continues to undergo major changes that are
backward-incompatible, and current Kea versions do not support Sysrepo earlier than versions 2.x.

3.8. Deprecated Features 23

Kea Administrator Reference Manual Documentation, Release 2.7.5

24

Chapter 3. Installation

CHAPTER
FOUR

KEA DATABASE ADMINISTRATION

4.1 Databases and Schema Versions

Kea may be configured to use a database as storage for leases or as a source of servers' configurations and host reser-
vations (i.e. static assignments of addresses, prefixes, options, etc.). As Kea is updated, new database schemas are
introduced to facilitate new features and correct discovered issues with the existing schemas.

Each version of Kea expects a particular schema structure and checks for this by examining the version of the database
it is using. Separate version numbers are maintained for the schemas, independent of the version of Kea itself. It is
possible that the schema version will stay the same through several Kea revisions; similarly, it is possible that the version
of the schema may go up several revisions during a single Kea version upgrade. Versions for each backend type are
also independent, so an increment in the MySQL backend version does not imply an increment in that of PostgreSQL.

Schema versions are specified in a major.minor format. For the most recent versions, the minor version is always zero
and only the major version is incremented.

Historically, the minor version used to be incremented when backward-compatible changes were introduced to the
schema: for example - when a new index is added. This was opposed to incrementing the major version which implied
an incompatible schema change: for example - changing the type of an existing column. If Kea attempts to run on a
schema that is too old, as indicated by a mismatched schema version, it will fail; administrative action is required to
upgrade the schema.

4.2 The kea-admin Tool

To manage the databases, Kea provides the kea-admin tool. It can initialize a new backend, check its version number,
perform a backend upgrade, and dump lease data to a text file.

kea-admin takes two mandatory parameters: command and backend. Additional, non-mandatory options may be
specified. The currently supported commands are:

e db-init — initializes a new database schema, which is useful during a new Kea installation. The new database
is updated to match the Kea version being installed. kea-admin is automatically invoked with this command if
a missing schema is detected during startup or reconfiguration of Kea DHCP servers.

¢ db-version — reports the database backend version number. This is not necessarily equal to the Kea version
number, as each backend has its own versioning scheme.

* db-upgrade — conducts a database schema upgrade. This is useful when upgrading Kea.

* lease-dump — dumps the contents of the lease database (for MySQL or PostgreSQL backends) to a CSV
(comma-separated values) text file.

25

Kea Administrator Reference Manual Documentation, Release 2.7.5

The first line of the file contains the column names. This can be used as a way to switch from a database backend
to a memfile backend. Alternatively, it can be used as a diagnostic tool, so it provides a portable form of the lease
data.

¢ lease-upload — uploads leases from a CSV (comma-separated values) text file to a MySQL or a PostgreSQL
lease database. The CSV file needs to be in memfile format.

backend specifies the type of backend database. The currently supported types are:
* memfile — lease information is stored on disk in a text file.
¢ mysql — information is stored in a MySQL relational database.
* pgsql — information is stored in a PostgreSQL relational database.

Additional parameters may be needed, depending on the setup and specific operation: username, password, and
database name or the directory where specific files are located. See the appropriate manual page for details (man
8 kea-admin).

4.3 Supported Backends

The following table presents the capabilities of available backends. Please refer to the specific sections dedicated to
each backend to better understand their capabilities and limitations. Choosing the right backend is essential for the
success of the deployment.

Table 1: List of available backends

Feature Memfile MySQL PostgreSQL
Status Stable Stable Stable

Data format CSV file SQLRMDB SQL RMDB
Leases yes yes yes

Host reservations no yes yes

Options defined on per host basis no yes yes
Configuration backend no yes yes

4.3.1 Memfile

The memfile backend is able to store lease information, but cannot store host reservation details; these must be stored
in the configuration file. (There are no plans to add a host reservations storage capability to this backend.)

No special initialization steps are necessary for the memfile backend. During the first run, both kea-dhcp4 and
kea-dhcp6 create an empty lease file if one is not present. Necessary disk-write permission is required.

4.3.1.1 Upgrading Memfile Lease Files From an Earlier Version of Kea

There are no special steps required to upgrade memfile lease files between versions of Kea. During startup, the servers
check the schema version of the lease files against their own. If there is a mismatch, the servers automatically launch
the LFC process to convert the files to the server's schema version. While this mechanism is primarily meant to ease
the process of upgrading to newer versions of Kea, it can also be used for downgrading should the need arise. When
upgrading, any values not present in the original lease files are assigned appropriate default values. When downgrading,
any data present in the files but not in the server's schema are dropped. To convert the files manually prior to starting
the servers, run the lease file cleanup (LFC) process. See The LF'C Process for more information.

26 Chapter 4. Kea Database Administration

Kea Administrator Reference Manual Documentation, Release 2.7.5

4.3.2 MySQL

MySQL is able to store leases, host reservations, options defined on a per-host basis, and a subset of the server config-
uration parameters (serving as a configuration backend).

4.3.2.1 MySQL 5.7 vs MySQL 8 vs MariaDB 10 and 11

In our Kea performance testing, MySQL 8 shows a 60-90% drop in speed in comparison with MySQL 5.7. Due to the
upcoming MySQL 5.7 EOL, we recommend using MariaDB instead of MySQL 8.

MySQL 5.7, MySQL 8, MariaDB 10, and MariaDB 11 are fully compatible, interchangeable, and tested with Kea.

4.3.2.2 First-Time Creation of the MySQL Database

Before preparing any Kea-specific database and tables, the MySQL database must be configured to use the system
timezone. It is recommended to use UTC as the timezone for both the system and the MySQL database.

To check the system timezone:

[date +%Z }

To check the MySQL timezone:

mysql> SELECT @@system_time_zone;
mysql> SELECT @@global.time_zone;
mysql> SELECT @@session.time_zone;

To configure the MySQL timezone for a specific server, please refer to the installed version documentation.

Usually the setting is configured in the [mysqld] section in /etc/mysql/my.cnf, /etc/mysql/mysql.cnf, /etc/
mysql/mysqld.cnf, or /etc/mysql/mysql.conf.d/mysqld.cnf.

[mysqld]
using default-time-zone
default-time-zone="'+00:00"'

or using timezone
timezone="'UTC'

L J

When setting up the MySQL database for the first time, the database area must be created within MySQL, and the
MySQL user ID under which Kea will access the database must be set up. This needs to be done manually, rather than
via kea-admin.

To create the database:

1. Log into MySQL as "root":

$ mysqgl -u root -p
Enter password:
mysql>

2. Create the MySQL database:

[mysq1> CREATE DATABASE database_name;

(database_name is the name chosen for the database.)

4.3. Supported Backends 27

Kea Administrator Reference Manual Documentation, Release 2.7.5

3. Create the user under which Kea will access the database (and give it a password), then grant it access to the
database tables:

mysql> CREATE USER 'user-name'@'localhost' IDENTIFIED BY 'password';
mysql> GRANT ALL ON database-name.* TO 'user-name'@'localhost';

)

(user-name and password are the user ID and password used to allow Kea access to the MySQL instance. All
apostrophes in the command lines above are required.)

4. Create the database.
Exit the MySQL client

mysql> quit
Bye

Then use the kea-admin tool to create the database.

$ kea-admin db-init mysql -u database-user -p database-password -n database- ’
—.name

While it is possible to create the database from within the MySQL client, we recommend using the
kea-admin tool as it performs some necessary validations to ensure Kea can access the database at
runtime. Among those checks is verification that the schema does not contain any pre-existing tables;
any pre-existing tables must be removed manually. An additional check examines the user's ability to
create functions and triggers. The following error indicates that the user does not have the necessary
permissions to create functions or triggers:

ERROR 1419 (HYOO00) at line 1: You do not have the SUPER privilege and.
—binary logging is

enabled (you *might* want to use the less safe log_bin_trust_function_
—.creators variable)

ERROR/kea-admin: mysql_can_create cannot trigger, check user permissions,.
—mysql status = 1

mysql: [Warning] Using a password on the command line interface can be.
—,insecure.

ERROR/kea-admin: Create failed, the user, keatest, has insufficient.,
—privileges.

The simplest way around this is to set the global MySQL variable,
log_bin_trust_function_creators, to 1 via the MySQL client. Note this must be done
as a user with SUPER privileges:

mysql> set @@global.log_bin_trust_function_creators = 1;
Query OK, 0 rows affected (0.00 sec)

To create the database with MySQL directly, follow these steps:

mysql> CONNECT database-name;
mysql> SOURCE path-to-kea/share/kea/scripts/mysql/dhcpdb_create.mysql

(where path-to-kea is the location where Kea is installed.)

The database may also be dropped manually as follows:

mysqgl> CONNECT database-name;
mysql> SOURCE path-to-kea/share/kea/scripts/mysql/dhcpdb_drop.mysql

28 Chapter 4. Kea Database Administration

Kea Administrator Reference Manual Documentation, Release 2.7.5

(where path-to-kea is the location where Kea is installed.)

Warning: Dropping the database results in the unrecoverable loss of any data it contains.

5. Exit MySQL:

mysql> quit
Bye

If the tables were not created in Step 4, run the kea-admin tool to create them now:

[$ kea-admin db-init mysql -u database-user -p database-password -n database-name]

Do not do this if the tables were created in Step 4. kea-admin implements rudimentary checks; it will refuse to
initialize a database that contains any existing tables. To start from scratch, all data must be removed manually. (This
process is a manual operation on purpose, to avoid accidentally irretrievable mistakes by kea-admin.)

4.3.2.3 Upgrading a MySQL Database From an Earlier Version of Kea

Sometimes a new Kea version uses a newer database schema, so the existing database needs to be upgraded. This can
be done using the kea-admin db-upgrade command.

To check the current version of the database, use the following command:

[$ kea-admin db-version mysql -u database-user -p database-password -n database-name]

(See Databases and Schema Versions for a discussion about versioning.) If the version does not match the minimum
required for the new version of Kea (as described in the release notes), the database needs to be upgraded.

Before upgrading, please make sure that the database is backed up. The upgrade process does not discard any data, but
depending on the nature of the changes, it may be impossible to subsequently downgrade to an earlier version.

To perform an upgrade, issue the following command:

[$ kea-admin db-upgrade mysql -u database-user -p database-password -n database-name]

Note: To search host reservations by hostname, it is critical that the collation of the hostname column in the host table
be case-insensitive. Fortunately, that is the default in MySQL, but it can be verified via this command:

mysql> SELECT COLLATION('');

According to mysql's naming convention, when the name ends in _ci, the collation is case-insensitive.

4.3. Supported Backends 29

Kea Administrator Reference Manual Documentation, Release 2.7.5

4.3.2.4 Improved Performance With MySQL

Changing the MySQL internal value innodb_flush_log_at_trx_commit from the default value of 1 to 2 can result
in a huge gain in Kea performance. In some deployments, the gain was over 1000% (10 times faster when set to 2,
compared to the default value of 1). It can be set per-session for testing:

mysql> SET GLOBAL innodb_flush_log_at_trx_commit=2;
mysqgl> SHOW SESSION VARIABLES LIKE 'innodb_flush_log%';

or permanently in /etc/mysql/my.cnf:

[mysqld]
innodb_flush_log_at_trx_commit=2

Be aware that changing this value can cause problems during data recovery after a crash, so we recommend check-
ing the MySQL documentation. With the default value of 1, MySQL writes changes to disk after every IN-
SERT or UPDATE query (in Kea terms, every time a client gets a new lease or renews an existing lease). When
innodb_flush_log_at_trx_commit is set to 2, MySQL writes the changes at intervals no longer than 1 second.
Batching writes gives a substantial performance boost. The trade-off, however, is that in the worst-case scenario, all
changes in the last second before crash could be lost. Given the fact that Kea is stable software and crashes very rarely,
most deployments find it a beneficial trade-off.

4.3.3 PostgreSQL

PostgreSQL can store leases, host reservations, and options defined on a per-host basis.

4.3.3.1 First-Time Creation of the PostgreSQL Database

Before preparing any Kea-specific database and tables, the PostgreSQL database must be configured to use the system
timezone. It is recommended to use UTC as the timezone for both the system and the PostgreSQL database.

To check the system timezone:

[date +%Z }

To check the PostgreSQL timezone:

postgres=# show timezone;
postgres=# SELECT * FROM pg_timezone_names WHERE name = current_setting(
< "TIMEZONE") ;

To configure the PostgreSQL timezone for a specific server, please refer to the installed version documentation.

Usually the setting is configured in the postgresql.conf with the varying version path /etc/postgresql/
<version>/main/postgresql.conf, but on some systems the files may be located in /var/1lib/pgsql/data.

[timezone = 'UTC' }

The first task is to create both the database and the user under which the servers will access it. A number of steps are
required:

1. Log into PostgreSQL as "postgres":

30 Chapter 4. Kea Database Administration

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit

Kea Administrator Reference Manual Documentation, Release 2.7.5

$ sudo -u postgres psql postgres
Enter password:
postgres=#

2. Create the database:

postgres=# CREATE DATABASE database-name;
CREATE DATABASE
postgres=#

(database-name is the name chosen for the database.)

3. Create the user under which Kea will access the database (and give it a password), then grant it access to the
database:

postgres=# CREATE USER user-name WITH PASSWORD 'password';

CREATE ROLE

postgres=# GRANT ALL PRIVILEGES ON DATABASE database-name TO user-name;
GRANT

postgres=# \c database-name

You are now connected to database "database-name" as user "postgres".
postgres=# GRANT ALL PRIVILEGES ON SCHEMA public TO user-name;

GRANT

postgres=#

4. Exit PostgreSQL:

postgres=# \q
Bye
$

5. At this point, create the database tables either using the kea-admin tool, as explained in the next section (rec-
ommended), or manually. To create the tables manually, enter the following command. PostgreSQL will prompt
the administrator to enter the new user's password that was specified in Step 3. When the command completes,
Kea will return to the shell prompt. The output should be similar to the following:

($ psql -d database-name -U user-name -f path-to-kea/share/kea/scripts/pgsql/dhcpdb_
—.create.pgsql

Password for user user-name:
CREATE TABLE

CREATE INDEX

CREATE INDEX

CREATE TABLE

CREATE INDEX

CREATE TABLE

START TRANSACTION

INSERT 0 1

INSERT 0 1

INSERT 0 1

COMMIT

CREATE TABLE

START TRANSACTION

INSERT 0 1

(continues on next page)

4.3. Supported Backends 31

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

COMMIT
$

(path-to-kea is the location where Kea is installed.)

If instead an error is encountered, such as:

psgl: FATAL: no pg_hba.conf entry for host "[local]", user "user-name", database
—"database-name", SSL off

——

. the PostgreSQL configuration will need to be altered. Kea uses password authentication when connecting
to the database and must have the appropriate entries added to PostgreSQL's pg_hba.conf file. This file is nor-
mally located in the primary data directory for the PostgreSQL server. The precise path may vary depending
on the operating system and version, but the default location for PostgreSQL is /etc/postgresql/*/main/
postgresql.conf. However, on some systems, the file may reside in /var/l1ib/pgsql/data.

Assuming Kea is running on the same host as PostgreSQL, adding lines similar to the following should be
sufficient to provide password-authenticated access to Kea's database:

local database-name user-name password
host database-name user-name 127.0.0.1/32 password
host database-name user-name 1:1/128 password

These edits are primarily intended as a starting point, and are not a definitive reference on PostgreSQL admin-
istration or database security. Please consult the PostgreSQL user manual before making these changes, as they
may expose other databases that are running. It may be necessary to restart PostgreSQL for the changes to take
effect.

4.3.3.2 Initialize the PostgreSQL Database Using kea-admin

If the tables were not created manually, do so now by running the kea-admin tool:

[$ kea-admin db-init pgsql -u database-user -p database-password -n database-name J

Do not do this if the tables were already created manually. kea-admin implements rudimentary checks; it will refuse
to initialize a database that contains any existing tables. To start from scratch, all data must be removed manually. (This
process is a manual operation on purpose, to avoid accidentally irretrievable mistakes by kea-admin.)

4.3.3.3 Upgrading a PostgreSQL Engine From an Earlier Version

If you upgraded your PostgreSQL from a version prior to 15.0, you need to grant additional privileges to the user:

First, log into PostgreSQL as "postgres":

$ sudo -u postgres psql -d database-name -U postgres
Enter password:
postgres=#

Next, grant the access to the public schema.

postgres=# GRANT ALL PRIVILEGES ON SCHEMA public TO user-name;
GRANT
postgres=#

32 Chapter 4. Kea Database Administration

Kea Administrator Reference Manual Documentation, Release 2.7.5

Now, quit the PostgreSQL client:

postgres=# \q
Bye
$

4.3.3.4 Upgrading a PostgreSQL Database From an Earlier Version of Kea

The PostgreSQL database schema can be upgraded using the same tool and commands as described in Upgrading a
MySQOL Database From an Earlier Version of Kea, with the exception that the "pgsql" database backend type must be
used in the commands.

Use the following command to check the current schema version:

[$ kea-admin db-version pgsql -u database-user -p database-password -n database-name }

Use the following command to perform an upgrade:

[$ kea-admin db-upgrade pgsql -u database-user -p database-password -n database-name J

4.3.3.5 PostgreSQL without OpenSSL support

Usually the PostgreSQL database client library is built with the OpenSSL support but Kea can be configured to handle
the case where it is not supported:

[$./configure [other-options] --disable-pgsql-ssl]

4.3.3.6 Improved Performance With PostgreSQL

Changing the PostgreSQL internal value synchronous_commit from the default value of ON to OFF can result in
significant gains in Kea performance; on slow systems, the gain can be over 1000%. It can be set per-session for testing:

[postgres=# SET synchronous_commit = OFF;]

or permanently via command (preferred method):

[postgres=# ALTER SYSTEM SET synchronous_commit=0FF;

or permanently in /etc/postgresql/[version] /main/postgresql.conf:

[synchronous_commit = off

)

Changing this value can cause problems during data recovery after a crash, so we recommend a careful read of
the PostgreSQL documentation. With the default value of ON, PostgreSQL writes changes to disk after every IN-
SERT or UPDATE query (in Kea terms, every time a client gets a new lease or renews an existing lease). When
synchronous_commit is set to OFF, PostgreSQL adds some delay before writing the changes. Batching writes gives
a substantial performance boost, but in the worst-case scenario, all changes in the last moment before a crash could be
lost. Since Kea is stable software and crashes very rarely, most deployments find the performance benefits outweigh
the potential risks.

4.3. Supported Backends 33

https://www.postgresql.org/docs/current/wal-async-commit.html

Kea Administrator Reference Manual Documentation, Release 2.7.5

4.3.4 Using Read-Only Databases With Host Reservations

If aread-only database is used for storing host reservations, Kea must be explicitly configured to operate on the database
in read-only mode. Sections Using Read-Only Databases for Host Reservations With DHCPv4 and Using Read-Only
Databases for Host Reservations with DHCPv6 describe when such a configuration may be required, and how to
configure Kea to operate in this way for both DHCPv4 and DHCPv6.

4.3.5 Limitations Related to the Use of SQL Databases
4.3.5.1 Year 2038 Issue

The lease expiration time in Kea is stored in the SQL database for each lease as a timestamp value. Kea developers have
observed that the MySQL database does not accept timestamps beyond 2147483647 seconds (the maximum signed 32-
bit number) from the beginning of the UNIX epoch (00:00:00 on 1 January 1970). Some versions of PostgreSQL
do accept greater values, but the value is altered when it is read back. For this reason, the lease database backends
put a restriction on the maximum timestamp to be stored in the database, which is equal to the maximum signed 32-
bit number. This effectively means that the current Kea version cannot store leases whose expiration time is later than
2147483647 seconds since the beginning of the epoch (around the year 2038). This will be fixed when database support
for longer timestamps is available.

34 Chapter 4. Kea Database Administration

CHAPTER
FIVE

KEA CONFIGURATION

Kea uses JSON structures to represent server configurations. The following sections describe how the configuration
structures are organized.

5.1 JSON Configuration

JSON is the notation used throughout the Kea project. The most obvious usage is for the configuration file, but JSON
is also used for sending commands over the Management API (see Management API') and for communicating between
DHCP servers and the DDNS update daemon.

Typical usage assumes that the servers are started from the command line, either directly or using a script, e.g. keactrl.
The configuration file is specified upon startup using the -c parameter.

5.1.1 JSON Syntax

Configuration files for the DHCPv4, DHCPv6, DDNS, Control Agent, and NETCONF modules are defined in an
extended JSON format. Basic JSON is defined in RFC 7159 and ECMA 404. In particular, the only boolean values
allowed are true or false (all lowercase). The capitalized versions (True or False) are not accepted.

Even though the JSON standard (ECMA 404) does not require JSON objects (i.e. name/value maps) to have unique
entries, Kea implements them using a C++ STL map with unique entries. Therefore, if there are multiple values for
the same name in an object/map, the last value overwrites previous values. Since Kea 1.9.0, configuration file parsers
raise a syntax error in such cases.

Kea components use extended JSON with additional features allowed:
* Shell comments: any text after the hash (#) character is ignored.
* C comments: any text after the double slashes (//) character is ignored.
* Multiline comments: any text between /* and */ is ignored. This comment can span multiple lines.
* File inclusion: JSON files can include other JSON files by using a statement of the form <?include "file.json"?>.

» Extra commas: to remove the inconvenience of errors caused by leftover commas after making changes to con-
figuration. While parsing, a warning is printed with the location of the comma to give the user the ability to
correct a potential mistake.

Warning: These features are meant to be used in a JSON configuration file. Their usage in any other way may
result in errors.

35

https://tools.ietf.org/html/rfc7159
https://www.ecma-international.org/publications/standards/Ecma-404.htm

Kea Administrator Reference Manual Documentation, Release 2.7.5

The configuration file consists of a single object (often colloquially called a map) started with a curly bracket. It
comprises only one of the "Dhcp4", "Dhcp6", "DhcpDdns", "Control-agent", or "Netconf" objects. It is possible to
define additional elements but they will be ignored.

A very simple configuration for DHCPv4 could look like this:

The whole configuration starts here.
{
DHCPv4 specific configuration starts here.
"Dhcp4": {
"interfaces-config": {
"interfaces": ["eth®"],
"dhcp-socket-type": "raw"
e
"valid-lifetime": 4000,
"renew-timer": 1000,
"rebind-timer": 2000,
"subnet4": [{
"pools": [{ "pool": "192.0.2.1-192.0.2.200" }],
"subnet": "192.0.2.0/24",
"id": 1
1,

Now loggers are inside the DHCPv4 object.
"loggers": [{

"name": "*",

"severity'": "DEBUG"
H

}

The whole configuration structure ends here.

}

More examples are available in the installed share/doc/kea/examples directory.

To avoid repetition of mostly similar structures, examples in the rest of this guide will showcase only the subset of
parameters appropriate for a given context. For example, when discussing the IPv6 subnets configuration in DHCPv6,
only subnet6 parameters will be mentioned. It is implied that the remaining elements (the global map that holds Dhcp6)
are present, but they are omitted for clarity. Usually, locations where extra parameters may appear are denoted by an
ellipsis (...).

5.1.2 Comments and User Context

Shell, C, or C++ style comments are all permitted in the JSON configuration file if the file is used locally. This is
convenient and works in simple cases where the configuration is kept statically using a local file. However, since
comments are not part of JSON syntax, most JSON tools detect them as errors. Another problem with them is that
once Kea loads its configuration, the shell, C, and C++ style comments are ignored. If commands such as config-get
or config-write are used, those comments are lost. An example of such comments was presented in the previous
section.

Historically, to address the problem, Kea code allowed the use of comment strings as valid JSON entities. This had the
benefit of being retained through various operations (such as config-get), or allowing processing by JSON tools. An
example JSON comment looks like this:

36 Chapter 5. Kea Configuration

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcpd": {
"subnet4": [{
"id": 1,

"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" }],
"comment": "second floor"

3]

However, the facts that the comment could only be a single line, and that it was not possible to add any other information
in a more structured form, were frustrating. One specific example was a request to add floor levels and building numbers
to subnets. This was one of the reasons why the concept of user context was introduced. It allows adding an arbitrary
JSON structure to most Kea configuration structures.

This has a number of benefits compared to earlier approaches. First, it is fully compatible with JSON tools and Kea
commands. Second, it allows storing simple comment strings, but it can also store much more complex data, such as
multiple lines (as a string array), extra typed data (such as floor numbers being actual numbers), and more. Third, the
data is exposed to hooks, so it is possible to develop third-party hooks that take advantage of that extra information.
An example user context looks like this:

"Dhcp4d": {
"subnet4": [{
"id": 1,

"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" }1,
"user-context": {

"comment": "second floor",

"floor": 2

}]

User contexts can store an arbitrary data file as long as it has valid JSON syntax and its top-level element is a map
(i.e. the data must be enclosed in curly brackets). However, some hook libraries may expect specific formatting; please
consult the specific hook library documentation for details.

The user-context mechanism has superseded the JSON comment capabilities; ISC encourages administrators to use user
context instead of the older mechanisms. To promote this way of storing comments, Kea converts JSON comments to
user context on the fly.

However, if the configuration uses the old JSON comment method, the config-get command returns a slightly mod-
ified configuration. It is not uncommon for a call for config-set followed by config-get to receive a slightly
different structure. The best way to avoid this problem is simply to abandon JSON comments and use user context.

Kea supports user contexts at the following levels: global scope, interfaces configuration, shared networks, subnets,
client classes, option data and definitions, host reservations, control socket, DHCP-DDNS, loggers, leases, and server
ID. These are supported in both DHCPv4 and DHCPvG6, with the exception of server ID, which is DHCPv6 only.

User context can be added and edited in structures supported by commands.
We encourage Kea users to utilize these functions to store information used by other systems and custom hooks.

For example, the subnet4-update command can be used to add user context data to an existing subnet.

{
"subnet4": [{
(continues on next page)

5.1. JSON Configuration 37

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)
"id": 1,
"subnet": "10.20.30.0/24",
"user-context": {
"building": "Main",
"floor": 1
}
11
3

The same can be done with many other commands, like Iease6-add, etc.

Kea also uses user context to store non-standard data. Currently, only Storing Extended Lease Information uses this
feature.

When enabled, it adds the ISC key in user-context to differentiate automatically added content.

Example of relay information stored in a lease:

{
"arguments": {
"client-id": "42:42:42:42:42:42:42:42",
"cltt": 12345678,
"fqdn-fwd": false,
"fqdn-rev": true,
"hostname": "myhost.example.com.",
"hw-address": "08:08:08:08:08:08",
"ip-address": "192.0.2.1",
"state": O,
"subnet-id": 44,
"valid-1ft": 3600,
"user-context": {
"ISC": {
"relays": [
{
"hop": 2,
"link": "2001:db8::1",
"peer": "2001:db8::2"

L
{
"hop": 1,
"link": "2001:db8::3",
"options": "0x00C300080102030405060708",
"peer": "2001:db8::4"
1
}
}
3
}

User context can store configuration for multiple hooks and comments at once.

For a discussion about user context used in hooks, see User Contexts in Hooks.

38 Chapter 5. Kea Configuration

Kea Administrator Reference Manual Documentation, Release 2.7.5

5.1.3 Simplified Notation

It is sometimes convenient to refer to a specific element in the configuration hierarchy. Each hierarchy level is separated
by a slash. If there is an array, a specific instance within that array is referenced by a number in square brackets
(with numbering starting at zero). For example, in the above configuration the valid-lifetime in the Dhcp4 component
can be referred to as Dhcp4/valid-lifetime, and the pool in the first subnet defined in the DHCPv4 configuration as
Dhcp4/subnet4[0]/pool.

5.2 Kea Configuration Backend

5.2.1 Applicability

Kea Configuration Backend (CB or config backend) gives Kea servers the ability to manage and fetch their configuration
from one or more databases. In this documentation, the term "Configuration Backend" may also refer to the particular
Kea module providing support to manage and fetch the configuration information from the particular database type.
For example, the MySQL Configuration Backend is the logic implemented within 1ibdhcp_mysql.so, which pro-
vides a complete set of functions to manage and fetch the configuration information from the MySQL database. The
PostgreSQL Configuration Backend is the logic implemented within 1ibdhcp_pgsql . so, which provides a complete
set of functions to manage and fetch the configuration information from the PostgreSQL database. From here on, the
term "database" is used to refer to either a MySQL or PostgreSQL database.

In small deployments, e.g. those comprising a single DHCP server instance with limited and infrequently changing
number of subnets, it may be impractical to use the CB as a configuration repository because it requires additional third-
party software to be installed and configured - in particular the database server, client, and libraries. Once the number
of DHCP servers and/or the number of managed subnets in the network grows, the usefulness of the CB becomes
obvious.

One use case for the CB is a pair of Kea DHCP servers that are configured to support High Availability as described
in libdhcp_ha.so: High Availability Outage Resilience for Kea Servers. The configurations of both servers (including
the value of the server-tag parameter) are almost exactly the same: they may differ by the server identifier and
designation of the server as a primary or standby (or secondary), and/or by their interfaces' configuration. Typically,
the subnets, shared networks, option definitions, and global parameters are the same for both servers and can be sourced
from a single database instance to both Kea servers.

Using the database as a single source of configuration for subnets and/or other configuration information supported by
the CB has the advantage that any modifications to the configuration in the database are automatically applied to both
servers.

Another case when the centralized configuration repository is useful is in deployments including a large number of
DHCEP servers, possibly using a common lease database to provide redundancy. New servers can be added to the
pool frequently to fulfill growing scalability requirements. Adding a new server does not require replicating the entire
configuration to the new server when a common database is used.

Using the database as a configuration repository for Kea servers also brings other benefits, such as:
* the ability to use database-specific tools to access the configuration information;
* the ability to create customized statistics based on the information stored in the database; and

* the ability to backup the configuration information using the database's built-in replication mechanisms.

5.2. Kea Configuration Backend 39

Kea Administrator Reference Manual Documentation, Release 2.7.5

5.2.2 CB Capabilities and Limitations

Currently, the Kea CB has the following limitations:
* It is only supported for MySQL and PostgreSQL databases.

e It is only supported for the DHCPv4 and DHCPv6 daemons; the Control Agent, D2 daemon, and the NETCONF
daemon cannot be configured from the database,

* Only certain DHCP configuration parameters can be set in the database: global parameters, option definitions,
global options, client classes, shared networks, and subnets. Other configuration parameters must be sourced
from a JSON configuration file.

Kea CB stores data in a schema that is public. It is possible to insert configuration data into the tables manually or
automatically using SQL scripts, but this requires SQL and schema knowledge. The supported method for managing
the data is through Iibdhcp_cb_cmds. so, which provides management commands for config backends. It simplifies
many typical operations, such as listing, adding, retrieving, and deleting global parameters, shared networks, subnets,
pools, options, option definitions, and client classes. In addition, it provides essential business logic that ensures the
logical integrity of the data. See commands starting with remote- in Appendix A of this manual for a complete list.

Note: I1ibdhcp_cb_cmds. so is available only to ISC customers with a paid support contract. For more information
on subscription options, please complete the form at https://www.isc.org/contact.

The schema creation scripts can be found at dhcpdb_create.mysql and dhcpdb_create.pgsql. Other related design doc-
uments are stored in our GitLab: CB Design and Client Classes in CB Design.

We strongly recommend against duplication of configuration information in both the file and the database. For ex-
ample, when specifying subnets for the DHCP server, please store them in either the configuration backend or in the
configuration file, not both. Storing some subnets in the database and others in the file may put users at risk of potential
configuration conflicts. Note that the configuration instructions from the database take precedence over instructions
from the file, so parts of the configuration specified in the file may be overridden if contradicted by information in the
database.

Although it is not recommended, it is possible to specify certain parameter types both in a configuration file and the
database. For example, a subnet can be specified in the configuration file and another subnet in the database; in this
case, the server will use both subnets. DHCP client classes, however, must not be specified in both the configuration
file and the database, even if they do not overlap. If any client classes are specified in the database for a particular
DHCEP server, this server will use these classes and ignore all classes present in its configuration file. This behavior
was introduced to ensure that the server receives a consistent set of client classes specified in an expected order with
all inter-class dependencies fulfilled. It is impossible to guarantee consistency when client classes are specified in two
independent configuration sources.

Note: It is recommended that 1ibdhcp_subnet_cmds. so not be used to manage subnets when the configuration
backend is used as a source of information about the subnets. 1ibdhcp_subnet_cmds.so modifies the local sub-
nets configuration in the server's memory, not in the database. Use 1ibdhcp_cb_cmds. so to manage the subnets
information in the database instead.

Note: Using custom option formats requires creating definitions for these options. Suppose a user wishes to set
option data in the configuration backend. In that case, we recommend specifying the definition for that option in the
configuration backend as well. It is essential when multiple servers are managed via the configuration backend, and
may differ in their configurations. The option data parser can search for an option definition appropriate for the server
for which the option data is specified.

In a single-server deployment, or when all servers share the same configuration file information, it is possible to specify

40 Chapter 5. Kea Configuration

https://www.isc.org/contact
https://gitlab.isc.org/isc-projects/kea/blob/master/src/share/database/scripts/mysql/dhcpdb_create.mysql
https://gitlab.isc.org/isc-projects/kea/blob/master/src/share/database/scripts/pgsql/dhcpdb_create.pgsql
https://gitlab.isc.org/isc-projects/kea/wikis/designs/configuration-in-db-design
https://gitlab.isc.org/isc-projects/kea/wikis/designs/client-classes-in-cb

Kea Administrator Reference Manual Documentation, Release 2.7.5

option definitions in the configuration files and option data in the configuration backend. The server receiving a com-
mand to set option data must have a valid definition in its configuration file, even when it sets option data for another
server.

It is not supported to specify option definitions in the configuration backend and the corresponding option data in the
server configuration files.

5.2.3 CB Components

To use a MySQL configuration backend, 1ibdhcp_mysql.so must be compiled and the DHCP servers must be con-
figured to load it. It is compiled when the --with-mysql configuration switch is used during the Kea build. The
MySQL C client libraries must be installed, as explained in DHCP Database Installation and Configuration.

To use a PostgreSQL configuration backend, 1ibdhcp_pgsql.so must be compiled and the DHCP servers must be
configured to load it. It is compiled when the --with-pgsql configuration switch is used during the Kea build. The
PostgreSQL C client libraries must be installed, as explained in DHCP Database Installation and Configuration.

Note: An existing database schema must be upgraded to the latest schema required by the particular Kea version using
the kea-admin tool, as described in The kea-admin Tool.

libdhcp_cb_cmds. so provides a complete set of commands to manage the servers' configuration information within
the database. This library can be attached to both DHCPv4 and DHCPvV6 server instances. While it is possible to man-
age the configuration information without 1ibdhcp_ch_cmds. so using commonly available tools, such as MySQL
Workbench or the command-line MySQL client, or by directly working with the database, these avenues are neither
recommended nor supported.

The DHCPv4 and DHCPv6 server-specific configurations of the CB, as well as the list of supported configuration
parameters, can be found in Configuration Backend in DHCPv4 and Configuration Backend in DHCPv6, respectively.

5.2.4 Configuration Sharing and Server Tags

The configuration database is designed to store configuration information for multiple Kea servers. Depending on the
use case, the entire configuration may be shared by all servers; parts of the configuration may be shared by multiple
servers and the rest of the configuration may be different for these servers; or each server may have its own non-shared
configuration.

The configuration elements in the database are associated with the servers by "server tags." The server tag is an arbitrary
string holding the name of the Kea server instance. The tags of the DHCPv4 and DHCPv6 servers are independent
in the database, i.e. the same server tag can be created for both the DHCPv4 and the DHCPv6 server. The value is
configured using the server-tag parameter in the Dhcp4 or Dhcp6 scope. The current server tag can be checked with
the server-tag-get command.

The server definition, which consists of the server tag and the server description, must be stored in the configuration
database prior to creating the dedicated configuration for that server. In cases when all servers use the same configu-
ration, e.g. a pair of servers running as High Availability peers, there is no need to configure the server tags for these
servers in the database.

Commands which contain the logical server all are applied to all servers connecting to the database. The all server
cannot be deleted or modified, and it is not returned among other servers as a result of the remote-server4-get-all
and remote-server6-get-all commands.

In most cases, there are no server tags defined in the configuration database; all connecting servers get the same con-
figuration regardless of the server tag they use. The server tag that a particular Kea instance presents to the database to

5.2. Kea Configuration Backend 41

Kea Administrator Reference Manual Documentation, Release 2.7.5

fetch its configuration is specified in the Kea configuration file, using the config-control map (please refer to the En-
abling the Configuration Backend and Enabling the Configuration Backend for details). All Kea instances presenting
the same server tag to the configuration database are given the same configuration.

It is the administrator's choice whether multiple Kea instances use the same server tag or each Kea instance uses a
different server tag. There is no requirement that the instances running on the same physical or virtual machine use
the same server tag. It is even possible to configure the Kea server without assigning it a server tag. In such a case the
server will be given the configuration specified for all servers.

To differentiate between different Kea server configurations, a list of the server tags used by the servers must be
stored in the database. For the DHCPv4 and DHCPvV6 servers, this can be done using the remote-server4-set
and remote-server6-set commands. The server tags can then be used to associate the configuration information
with the servers. However, it is important to note that some DHCP configuration elements may be associated with
multiple server tags (known as "shareable" elements), while other configuration elements may be associated with only
one server tag ("non-shareable" elements). The Configuration Backend in DHCPv4 and Configuration Backend in
DHCPv6 sections list the DHCP-specific shareable and non-shareable configuration elements; however, in this section
we briefly explain the differences between them.

A shareable configuration element is one which has some unique property identifying it, and which may appear only
once in the database. An example of a shareable DHCP element is a subnet instance: the subnet is a part of the network
topology and we assume that any particular subnet may have only one definition within this network. Each subnet has
two unique identifiers: the subnet identifier and the subnet prefix. The subnet identifier is used in Kea to uniquely
identify the subnet within the network and to connect it with other configuration elements, e.g. in host reservations.
Some commands provided by 1ibdhcp_cb_cmds. so allow the subnet information to be accessed by either subnet
identifier or prefix, and explicitly prohibit using the server tag to access the subnet. This is because, in general, the
subnet definition is associated with multiple servers rather than a single server. In fact, it may even be associated with
no servers (unassigned). Still, the unassigned subnet has an identifier and prefix which can be used to access the subnet.

A shareable configuration element may be associated with multiple servers, one server, or no servers. Deletion of the
server which is associated with the shareable element does not cause the deletion of the shareable element. It merely
deletes the association of the deleted server with the element.

Unlike a shareable element, a non-shareable element must not be explicitly associated with more than one server and
must not exist after the server is deleted (must not remain unassigned). A non-shareable element only exists within the
context of the server. An example of a non-shareable element in DHCP is a global parameter, e.g. renew-timer. The
renew timer is the value to be used by a particular server and only this server. Other servers may have their respective
renew timers set to the same or different values. The renew timer parameter has no unique identifier by which it could
be accessed, modified, or otherwise used. Global parameters like the renew timer can be accessed by the parameter
name and the tag of the server for which they are configured. For example, the remote-global-parameter4-get and
remote-global-parameter6-get commands allow the value of the global parameter to be fetched by the parameter
name and the server name. Getting the global parameter only by its name (without specifying the server tag) is not
possible, because there may be many global parameters with a given name in the database.

When the server associated with a non-shareable configuration element is deleted, the configuration element is auto-
matically deleted from the database along with the server because the non-shareable element must be always assigned
to a server (or the logical server all).

The terms "shareable" and "non-shareable" only apply to associations with user-defined servers; all configuration ele-
ments associated with the logical server all are by definition shareable. For example: the renew-timer associated with
all servers is used by all servers connecting to the database which do not have their specific renew timers defined. In a
special case, when none of the configuration elements are associated with user-defined servers, the entire configuration
in the database is shareable because all its pieces belong to all servers.

Note: Be very careful when associating configuration elements with different server tags. The configuration backend
does not protect against some possible misconfigurations that may arise from the wrong server tags' assignments. For
example: if a shared network is assigned to one server and the subnets belonging to this shared network to another
server, the servers will fail upon trying to fetch and use this configuration. The server fetching the subnets will be

42 Chapter 5. Kea Configuration

Kea Administrator Reference Manual Documentation, Release 2.7.5

aware that the subnets are associated with the shared network, but the shared network will not be found by this server
since it doesn't belong to it. In such a case, both the shared network and the subnets should be assigned to the same set
of servers.

5.2.5 Configuration Files Inclusion

The parser provides the ability to include files. The syntax was chosen to look similar to how Apache includes PHP
scripts in HTML code. This particular syntax was chosen to emphasize that the include directive is an additional feature
and not a part of JSON syntax.

The inclusion is implemented as a stack of files. You can use the include directive in nested includes. Up to ten nesting
levels are supported. This arbitrarily chosen limit is protection against recursive inclusions.

The include directive has the form:

[<?inc1ude " [PATH]"?> J

The [PATH] pattern should be replaced with an absolute path or a path relative to the current working directory at the
time the Kea process was launched.

To include one file from another, use the following syntax:

{
"Dhcp6": {
"interfaces-config": {
"interfaces": ["*" 13},
"preferred-lifetime": 3000,
"rebind-timer": 2000,
"renew-timer": 1000,
<?include "subnets.json"?>
"valid-lifetime": 4000

where the content of "subnets.json" may be:

{
"subnet4": [
{
"id": 123,
"subnet": "192.0.2.0/24"
e
{
"id": 234,
"subnet": "192.0.3.0/24"
e
{
"id": 345,
"subnet": "10.0.0.0/8"
}
1,
}

5.2. Kea Configuration Backend 43

Kea Administrator Reference Manual Documentation, Release 2.7.5

44

Chapter 5. Kea Configuration

CHAPTER
SIX

MANAGING KEA WITH KEACTRL

6.1 Overview

keactrl is a shell script which controls the startup, shutdown, and reconfiguration of the Kea servers (kea-dhcp4,
kea-dhcp6, kea-dhcp-ddns, kea-ctrl-agent, and kea-netconf). It also provides the means for checking the
current status of the servers and determining the configuration files in use.

keactrl is available only when Kea is built from sources. When installing Kea using native packages, the native
systemd scripts are provided. See Native Packages and systemd Section for details.

6.2 Command Line Options

keactrl is run as follows:

[# keactrl <command> [-c keactrl-config-file] [-s server[,server,...]]

<command> is one of the commands described in Commands.

The optional -c keactrl-config-file switch allows specification of an alternate keactrl configuration file.
(--ctrl-config is a synonym for -c.) In the absence of -c, keactrl uses the default configuration file
[kea-install-dir]/etc/kea/keactrl.conf.

The optional -s server[,server,...] switch selects the servers to which the command is issued. (--server is a
synonym for -s.) If absent, the command is sent to all servers enabled in the keactrl configuration file. If multiple
servers are specified, they should be separated by commas with no intervening spaces.

6.3 The keactrl Configuration File

Depending on the administrator's requirements, it may not be necessary to run all of the available servers. The
keactrl configuration file sets which servers are enabled and which are disabled. The default configuration file is
[kea-install-dir]/etc/kea/keactrl.conf, but this can be overridden on a per-command basis using the -c
switch.

The contents of keactrl.conf are:

This is a configuration file for keactrl script which controls
the startup, shutdown, reconfiguration and gathering the status
of the Kea processes.

(continues on next page)

45

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

prefix holds the location where the Kea is installed.
prefix=@prefix@

Location of Kea configuration file.
kea_dhcp4_config_file=@sysconfdir@/@PACKAGE@/kea-dhcp4.conf
kea_dhcp6_config_file=@sysconfdir@/@PACKAGE@/kea-dhcp6.conf
kea_dhcp_ddns_config_file=@sysconfdir@/@PACKAGE@/kea-dhcp-ddns.conf
kea_ctrl_agent_config_file=@sysconfdir@/@PACKAGE@/kea-ctrl-agent.conf
kea_netconf_config_file=@sysconfdir@/@PACKAGE@/kea-netconf.conf

Location of Kea binaries.
exec_prefix=@exec_prefix@
dhcp4_srv=@sbindir@/kea-dhcp4
dhcp6_srv=@sbindir@/kea-dhcp6
dhcp_ddns_srv=@sbindir@/kea-dhcp-ddns
ctrl_agent_srv=@sbindir@/kea-ctrl-agent
netconf_srv=@sbindir@/kea-netconf

Start DHCPv4 server?
dhcpd=yes

Start DHCPv6 server?
dhcpb6=yes

Start DHCP DDNS server?
dhcp_ddns=no

Start Control Agent?
ctrl_agent=yes

Start Netconf?
netconf=no

Be verbose?
kea_verbose=no

Note: In the example above, strings of the form @something@ are replaced by the appropriate values when Kea is
installed.

Setting the dhcp4, dhcp6, dhcp_ddns, ctrl_agent, and netconf parameters set to "yes" configures keactrl
to manage (start, reconfigure) all servers, i.e. kea-dhcp4, kea-dhcp6, kea-dhcp-ddns, kea-ctrl-agent, and
kea-netconf. When any of these parameters is set to "no", keactrl ignores the corresponding server when starting
or reconfiguring Kea. Some daemons (dhcp_ddns and netconf) are disabled by default.

By default, Kea servers managed by keactrl are located in [kea-install-dir]/sbin. This should work for
most installations. If the default location needs to be altered, the paths specified with the dhcp4_srv, dhcp6_srv,
dhcp_ddns_srv, ctrl_agent_srv, and netconf_srv parameters should be modified.

The kea_verbose parameter specifies the verbosity of the servers being started. When kea_verbose is set to yes, the
logging level of the server is set to DEBUG. Modification of the logging severity in a configuration file, as described
in Logging, will have no effect as long as kea_verbose is set to "yes." Setting it to "no" causes the server to use the
logging levels specified in the Kea configuration file. If no logging configuration is specified, the default settings are

46 Chapter 6. Managing Kea with keactrl

Kea Administrator Reference Manual Documentation, Release 2.7.5

used.

Note: The verbosity for the server is set when it is started. Once started, the verbosity can only be changed by stopping
the server and starting it again with the new value of the kea_verbose parameter.

6.4 Commands

The following commands are supported by keactrl:
* start - starts the selected servers.
e stop - stops all running servers.
* reload - triggers reconfiguration of the selected servers by sending the SIGHUP signal to them.
* status - returns the status of the servers (active or inactive) and the names of the configuration files in use.
e version - prints out the version of the keactrl tool itself, together with the versions of the Kea daemons.

Typical output from keactrl when starting the servers looks similar to the following:

$ keactrl start

INFO/keactrl: Starting kea-dhcp4 -c /usr/local/etc/kea/kea-dhcp4.conf -d
INFO/keactrl: Starting kea-dhcp6 -c /usr/local/etc/kea/kea-dhcp6.conf -d
INFO/keactrl: Starting kea-dhcp-ddns -c /usr/local/etc/kea/kea-dhcp-ddns.conf -d
INFO/keactrl: Starting kea-ctrl-agent -c /usr/local/etc/kea/kea-ctrl-agent.conf -d
INFO/keactrl: Starting kea-netconf -c /usr/local/etc/kea/kea-netconf.conf -d

Kea's servers create PID files upon startup. These files are used by keactrl to determine whether a given server is
running. If one or more servers are running when the start command is issued, the output looks similar to the following:

$ keactrl start

INFO/keactrl: kea-dhcp4 appears to be running, see: PID 10918, PID file: /usr/local/var/
—run/kea/kea.kea-dhcp4.pid.

INFO/keactrl: kea-dhcp6 appears to be running, see: PID 10924, PID file: /usr/local/var/
—run/kea/kea.kea-dhcp6.pid.

INFO/keactrl: kea-dhcp-ddns appears to be running, see: PID 10930, PID file: /usr/local/
—var/run/kea/kea.kea-dhcp-ddns.pid.

INFO/keactrl: kea-ctrl-agent appears to be running, see: PID 10931, PID file: /usr/local/
—var/run/kea/kea.kea-ctrl-agent.pid.

INFO/keactrl: kea-netconf appears to be running, see: PID 10123, PID file: /usr/local/
—var/run/kea/kea.kea-netconf.pid.

During normal shutdowns, these PID files are deleted; they may, however, be left over as remnants following a system
crash. It is possible, though highly unlikely, that upon system restart the PIDs they contain may actually refer to
processes unrelated to Kea. This condition will cause keactrl to decide that the servers are running, when in fact they
are not. In such a case the PID files listed in the keactrl output must be manually deleted.

The following command stops all servers:

$ keactrl stop

INFO/keactrl: Stopping kea-dhcp4...
INFO/keactrl: Stopping kea-dhcp6...
INFO/keactrl: Stopping kea-dhcp-ddns...

(continues on next page)

6.4. Commands 47

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

INFO/keactrl: Stopping kea-ctrl-agent...
INFO/keactrl: Stopping kea-netconf...

Note that the stop command attempts to stop all servers regardless of whether they are "enabled" in keactrl. conf.
If any of the servers are not running, an informational message is displayed as in the stop command output below.

$ keactrl stop

INFO/keactrl: kea-dhcp4 isn't running.
INFO/keactrl: kea-dhcp6 isn't running.
INFO/keactrl: kea-dhcp-ddns isn't running.
INFO/keactrl: kea-ctrl-agent isn't running.
INFO/keactrl: kea-netconf isn't running.

As already mentioned, the reconfiguration of each Kea server is triggered by the SIGHUP signal. The reload command
sends the SIGHUP signal to any servers that are enabled in the keactrl configuration file and that are currently running.
When a server receives the SIGHUP signal it rereads its configuration file and, if the new configuration is valid, uses the
new configuration. If the new configuration proves to be invalid, the server retains its current configuration; however,
in some cases a fatal error message is logged indicating that the server is no longer providing any service: a working
configuration must be loaded as soon as possible.

A reload is executed as follows:

$ keactrl reload

INFO/keactrl: Reloading kea-dhcp4...
INFO/keactrl: Reloading kea-dhcp6...
INFO/keactrl: Reloading kea-dhcp-ddns...
INFO/keactrl: Reloading kea-ctrl-agent...

If any of the servers are not running, an informational message is displayed as in the reload command output below.
kea-netconf does not support the SIGHUP signal. If its configuration has changed, please stop and restart it for the
change to take effect.

$ keactrl stop

INFO/keactrl: kea-dhcp4 isn't running.
INFO/keactrl: kea-dhcp6 isn't running.
INFO/keactrl: kea-dhcp-ddns isn't running.
INFO/keactrl: kea-ctrl-agent isn't running.
INFO/keactrl: kea-netconf isn't running.

Note: NETCONEF is an optional feature that is disabled by default and can be enabled during compilation. If Kea
was compiled without NETCONF support, keactrl does not provide information about it. The NETCONF entries
are still present in the keactrl. conf file, but NETCONF status is not shown and other commands ignore it.

Note: Currently keactrl does not report configuration failures when the server is started or reconfigured. To check
if the server's configuration succeeded, the Kea log must be examined for errors. By default, the log is written to the
syslog file.

Sometimes it is useful to check which servers are running. The status command reports this, with typical output that
looks like:

48 Chapter 6. Managing Kea with keactrl

Kea Administrator Reference Manual Documentation, Release 2.7.5

Kea
Kea
Kea
Kea
Kea
Kea

$ keactrl status

DHCPv4 server: active
DHCPv6 server: inactive
DHCP DDNS: active
Control Agent: active
Netconf agent: inactive

configuration file: /usr/local/etc/kea/kea.conf

DHCPv4 configuration file: /usr/local/etc/kea/kea-dhcp4.conf

DHCPv6 configuration file: /usr/local/etc/kea/kea-dhcp6.conf

DHCP DDNS configuration file: /usr/local/etc/kea/kea-dhcp-ddns.conf
Control Agent configuration file: /usr/local/etc/kea/kea-ctrl-agent.conf
Netconf configuration file: /usr/local/etc/kea/kea-netconf.conf

keactrl configuration file: /usr/local/etc/kea/keactrl.conf

keactrl status offers basic reporting capabilities. For more extensive insight into Kea's health and status, consider
deploying Stork. For details, see Monitoring Kea With Stork.

6.5 Overriding the Server Selection

The optional -s switch allows the selection of the server(s) to which the keactrl command is issued. For example,
the following instructs keactrl to stop the kea-dhcp4 and kea-dhcp6 servers and leave the kea-dhcp-ddns and
kea-ctrl-agent running:

[$ keactrl stop -s dhcp4,dhcp6

J

Similarly, the following starts only the kea-dhcp4 and kea-dhcp-ddns servers, but not kea-dhcp6 or
kea-ctrl-agent.

[$ keactrl start -s dhcp4,dhcp_ddns

}

Note that the behavior of the -s switch with the start and reload commands is different from its behavior with the
stop command. On start and reload, keactrl checks whether the servers given as parameters to the -s switch
are enabled in the keactrl configuration file; if not, the server is ignored. For stop, however, this check is not made;

the command is applied to all listed servers, regardless of whether they have been enabled in the file.

The following keywords can be used with the -s command-line option:

dhcp4 for kea-dhcp4.

dhcp6 for kea-dhcpé.

dhcp_ddns for kea-dhcp-ddns.
ctrl_agent for kea-ctrl-agent.
netconf for kea-netconf.

all for all servers (default).

6.5. Overriding the Server Selection

49

Kea Administrator Reference Manual Documentation, Release 2.7.5

6.6 Native Packages and systemd

keactrl is a script that was developed to assist in managing Kea processes. However, all modern operating systems
have their own process-management scripts, such as systemd. In general, these native scripts should be used, as they
have several advantages. systemd scripts handle processes in a uniform way, so Kea is handled in a similar fashion to
HTTP or a mail server. Second and more importantly, systemd allows dependencies to be defined between services.
For example, it is easy to specify that the Kea server should not start until the network interfaces are operational. Using
native scripts also has other benefits, such as the ability to enable or disable services using commands, and the ability
to temporarily start a disabled service.

Thus, it is recommended to use systemctl commands if they are available. Native Kea packages do not provide
keactrl; systemctl service definitions are provided instead. Consult the system documentation for details.

Briefly, here are example commands to check status, start, stop, and restart various Kea daemons:

systemctl status kea-ctrl-agent
systemctl start kea-dhcp4
systemctl stop kea-dhcp6
systemctl restart kea-dhcp-ddns

H o W W

Note that the service names may be slightly different between Linux distributions; in general, we have followed the
naming conventions in third-party packages. In particular, some systems may not have the isc- prefix.

50 Chapter 6. Managing Kea with keactrl

CHAPTER
SEVEN

THE KEA CONTROL AGENT

7.1 Overview of the Kea Control Agent

The Kea Control Agent (CA) is a daemon which exposes a RESTful control interface for managing Kea servers. The
daemon can receive control commands over HTTP and either forward these commands to the respective Kea servers
or handle these commands on its own. The determination whether the command should be handled by the CA or
forwarded is made by checking the value of the service parameter, which may be included in the command from the
controlling client. The details of the supported commands, as well as their structures, are provided in Management
API.

The CA can use hook libraries to provide support for additional commands or to program custom behavior of existing
commands. Such hook libraries must implement callouts for the control_command_receive hook point. Details
about creating new hook libraries and supported hook points can be found in the Kea Developer's Guide.

The CA processes received commands according to the following algorithm:

* Pass command into any installed hooks (regardless of service value(s)). If the command is handled by a hook,
return the response.

« If the service specifies one or more services, forward the command to the specified services and return the
accumulated responses.

* If the service is not specified or is an empty list, handle the command if the CA supports it.

Note: The CA will be deprecated by a future Kea release: its function has been moved to Kea servers since release
2.7.2, see the section about migration from CA (Migration from the Control Agent).

7.2 Configuration

The following example demonstrates the basic CA configuration.

{
"Control-agent": {
"http-host": "10.20.30.40",
"http-port": 8000,
"http-headers": [
{

name": "Strict-Transport-Security",
"value": "max-age=31536000"

(continues on next page)

51

https://reports.kea.isc.org/dev_guide/

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

Ay
"trust-anchor": "/path/to/the/ca-cert.pem",
"cert-file": "/path/to/the/agent-cert.pem",
"key-file": "/path/to/the/agent-key.pem",
"cert-required": true,
"authentication": {

"type": "basic",

"realm": "kea-control-agent",
"clients": [
{
"user": "admin",
"password": "1234"
1]
e
"control-sockets": {
"dhcp4": {
"comment": "main server",
"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket-v4"
e
"dhcp6": {
"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket-v6",
"user-context": { "version": 3 }
i
"d2": {
"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket-d2"
}
g
"hooks-libraries": [
{
"library": "/opt/local/custom_hooks_example.so",
"parameters": {
"paraml": "foo"
}
1,
"loggers": [{
"name": "kea-ctrl-agent",
"severity": "INFO"
1]

}

The http-host and http-port parameters specify an IP address and port to which HTTP service will be bound. In
the example configuration provided above, the RESTful service will be available at the URL https://10.20.30.
40:8000/. If these parameters are not specified, the default URL is http://127.0.0.1:8000/.

When using Kea's HA hook library with multi-threading, the address:port combination used for CA must be different
from the HA peer URLs, which are strictly for internal HA traffic between the peers. User commands should still be

52 Chapter 7. The Kea Control Agent

Kea Administrator Reference Manual Documentation, Release 2.7.5

sent via the CA.
Since Kea 2.7.5 the http-headers parameter specifies a list of extra HTTP headers to add to HTTP responses.

The trust-anchor, cert-file, key-file, and cert-required parameters specify the TLS setup for HTTP,
i.e. HTTPS. If these parameters are not specified, HTTP is used. The TLS/HTTPS support in Kea is described in
TLS/HTTPS Support.

As mentioned in Overview of the Kea Control Agent, the CA can forward received commands to the Kea servers for
processing. For example, config-get is sent to retrieve the configuration of one of the Kea services. When the CA
receives this command, including a service parameter indicating that the client wishes to retrieve the configuration
of the DHCPv4 server, the CA forwards the command to that server and passes the received response back to the client.
More about the service parameter and the general structure of commands can be found in Management API.

The CA uses UNIX domain sockets to forward control commands and receive responses from other Kea services.
The dhcp4, dhcp6, and d2 maps specify the files to which UNIX domain sockets are bound. In the configuration
above, the CA connects to the DHCPv4 server via /path/to/the/unix/socket-v4 to forward the commands to it.
Obviously, the DHCPv4 server must be configured to listen to connections via this same socket. In other words, the
command-socket configuration for the DHCPv4 server and the CA (for that server) must match. Consult UNIX Control
Socket, UNIX Control Socket, and UNIX Control Socket to learn how the UNIX socket configuration is specified for
the DHCPv4, DHCPv6, and D2 services.

User contexts can store arbitrary data as long as they are in valid JSON syntax and their top-level element is a map (i.e.
the data must be enclosed in curly brackets). Some hook libraries may expect specific formatting; please consult the
relevant hook library documentation for details.

User contexts can be specified on either global scope, control socket, basic authentication, or loggers. One other useful
feature is the ability to store comments or descriptions; the parser translates a "comment" entry into a user context with
the entry, which allows a comment to be attached within the configuration itself.

Basic HTTP authentication protects against unauthorized uses of the control agent by local users. For protection against
remote attackers, HTTPS and reverse proxy of Secure Connections provide stronger security.

The authentication is described in the authentication block with the mandatory type parameter, which selects the
authentication. Currently only the basic HTTP authentication (type basic) is supported.

The realm authentication parameter is used for error messages when the basic HTTP authentication is required but the
client is not authorized.

When the clients authentication list is configured and not empty, basic HTTP authentication is required. Each element
of the list specifies a user ID and a password. The user ID is mandatory, must not be empty, and must not contain the
colon (:) character. The password is optional; when it is not specified an empty password is used.

Note: The basic HTTP authentication user ID and password are encoded in UTF-8, but the current Kea JSON syntax
only supports the Latin-1 (i.e. 0x00..0xff) Unicode subset.

To avoid exposing the user ID and/or the associated password, these values can be read from files. The syntax is
extended by:

* The directory authentication parameter, which handles the common part of file paths. The default value is the
empty string.

* The password-file client parameter, which, alongside the directory parameter, specifies the path of a file
that can contain the password, or when no user ID is given, the whole basic HTTP authentication secret.

* The user-file client parameter, which, with the directory parameter, specifies the path of a file where the
user ID can be read.

When files are used, they are read when the configuration is loaded, to detect configuration errors as soon as possible.

7.2. Configuration 53

Kea Administrator Reference Manual Documentation, Release 2.7.5

Hook libraries can be loaded by kea-ctrl-agent in the same way as they are loaded by kea-dhcp4 and kea-dhcp6.
The CA currently supports one hook point - control_command_receive - which makes it possible to delegate the
processing of some commands to the hook library. The hooks-1libraries list contains the list of hook libraries that
should be loaded by kea-ctrl-agent, along with their configuration information specified with parameters.

Please consult Logging for the details on how to configure logging. The CA's root logger's name is kea-ctrl-agent,
as given in the example above.

7.3 Secure Connections

The Kea Control Agent natively supports secure HTTP connections using TLS. This allows protection against users
from the node where the agent runs, something that a reverse proxy cannot provide. More about TLS/HTTPS support
in Kea can be found in TLS/HTTPS Support.

TLS is configured using three string parameters with file names, and a boolean parameter:
* The trust-anchor specifies the Certification Authority file name or directory path.
* The cert-file specifies the server certificate file name.
* The key-file specifies the private key file name. The file must not be encrypted.

* The cert-required specifies whether client certificates are required or optional. The default is to require them
and to perform mutual authentication.

The file format is PEM. Either all the string parameters are specified and HTTP over TLS (HTTPS) is used, or none is
specified and plain HTTP is used. Configuring only one or two string parameters results in an error.

Note: When client certificates are not required, only the server side is authenticated, i.e. the communication is
encrypted with an unknown client. This protects only against passive attacks; active attacks, such as "man-in-the-
middle," are still possible.

Note: No standard HTTP authentication scheme cryptographically binds its end entity with TLS. This means that
the TLS client and server can be mutually authenticated, but there is no proof they are the same as for the HTTP
authentication.

The kea-shell tool also supports TLS.

7.4 Starting and Stopping the Control Agent

kea-ctrl-agent accepts the following command-line switches:
» -c file - specifies the configuration file.

» -d- specifies whether the agent logging should be switched to debug/verbose mode. In verbose mode, the logging
severity and debuglevel specified in the configuration file are ignored and "debug" severity and the maximum
debuglevel (99) are assumed. The flag is convenient for temporarily switching the server into maximum verbosity,
e.g. when debugging.

* -t file - specifies the configuration file to be tested. kea-netconf attempts to load it and conducts sanity
checks; certain checks are possible only while running the actual server. The actual status is reported with exit
code (0 = configuration appears valid, 1 = error encountered). Kea prints out log messages to standard output
and error to standard error when testing the configuration.

54 Chapter 7. The Kea Control Agent

Kea Administrator Reference Manual Documentation, Release 2.7.5

» -v - displays the version of kea-ctrl-agent and exits.

e -V - displays the extended version information for kea-ctrl-agent and exits. The listing includes the versions
of the libraries dynamically linked to Kea.

e -W - displays the Kea configuration report and exits. The report is a copy of the config.report file produced
by ./configure; it is embedded in the executable binary.

The contents of the config.report file may also be accessed by examining certain libraries in the installation
tree or in the source tree.

-

#
$

-

L

from installation using libkea-process.so
strings prefix}/lib/libkea-process.so | sed -n 's/;;;; //p'

from sources using libkea-process.so
strings src/lib/process/.libs/libkea-process.so | sed -n 's/;;;; //p'

from sources using libkea-process.a
strings src/lib/process/.libs/libkea-process.a | sed -n 's/;;;; //p'

from sources using libcfgrpt.a
strings src/lib/process/cfgrpt/.libs/libcfgrpt.a | sed -n 's/;;;; //p'

The CA is started by running its binary and specifying the configuration file it should use. For example:

[$./kea-ctrl-agent -c /usr/local/etc/kea/kea-ctrl-agent.conf

It can be started by keactrl as well (see Managing Kea with keactrl).

7.5 Connecting to the Control Agent

For an example of a tool that can take advantage of the RESTful API, see The Kea Shell.

7.5. Connecting to the Control Agent

55

Kea Administrator Reference Manual Documentation, Release 2.7.5

56 Chapter 7. The Kea Control Agent

CHAPTER
EIGHT

8.1

THE DHCPV4 SERVER

Starting and Stopping the DHCPv4 Server

It is recommended that the Kea DHCPv4 server be started and stopped using keactrl (described in Managing Kea
with keactrl); however, it is also possible to run the server directly via the kea-dhcp4 command, which accepts the
following command-line switches:

-c file - specifies the configuration file. This is the only mandatory switch.

-d - specifies whether the server logging should be switched to debug/verbose mode. In verbose mode, the
logging severity and debuglevel specified in the configuration file are ignored; "debug" severity and the maximum
debuglevel (99) are assumed. The flag is convenient for temporarily switching the server into maximum verbosity,
e.g. when debugging.

-p server-port - specifies the local UDP port on which the server listens. This is only useful during testing, as
a DHCPv4 server listening on ports other than the standard ones is not able to handle regular DHCPv4 queries.

-P client-port - specifies the remote UDP port to which the server sends all responses. This is only useful
during testing, as a DHCPv4 server sending responses to ports other than the standard ones is not able to handle
regular DHCPv4 queries.

-t file - specifies a configuration file to be tested. kea-dhcp4 loads it, checks it, and exits. During the test, log
messages are printed to standard output and error messages to standard error. The result of the test is reported
through the exit code (0 = configuration looks OK, 1 = error encountered). The check is not comprehensive;
certain checks are possible only when running the server.

-T file - specifies a configuration file to be tested. kea-dhcp4 loads it, checks it, and exits. It performs extra
checks beyond what -t offers, such as establishing database connections (for the lease backend, host reservations
backend, configuration backend, and forensic logging backend), loading hook libraries, parsing hook-library
configurations, etc. It does not open UNIX or TCP/UDP sockets, nor does it open or rotate files, as any of these
actions could interfere with a running process on the same machine.

-v - displays the Kea version and exits.

-V - displays the Kea extended version with additional parameters and exits. The listing includes the versions of
the libraries dynamically linked to Kea.

-W - displays the Kea configuration report and exits. The report is a copy of the config.report file produced
by ./configure; it is embedded in the executable binary.

The contents of the config.report file may also be accessed by examining certain libraries in the installation
tree or in the source tree.

from installation using libkea-process.so
$ strings prefix}/1lib/libkea-process.so | sed -n 's/;;;; //p'
(continues on next page)

57

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

from sources using libkea-process.so
$ strings src/lib/process/.libs/libkea-process.so | sed -n 's/;;;; //p'

from sources using libkea-process.a
$ strings src/lib/process/.libs/libkea-process.a | sed -n 's/;;;; //p'

from sources using libcfgrpt.a
$ strings src/lib/process/cfgrpt/.libs/libcfgrpt.a | sed -n 's/;;;; //p'

.

On startup, the server detects available network interfaces and attempts to open UDP sockets on all interfaces listed in
the configuration file. Since the DHCPv4 server opens privileged ports, it requires root access; this daemon must be
run as root.

During startup, the server attempts to create a PID file of the form: [runstatedir]/kea/[conf name].kea-dhcp4.
pid, where:

* runstatedir: The value as passed into the build configure script; it defaults to /usr/local/var/run. Note
that this value may be overridden at runtime by setting the environment variable KEA_PIDFILE_DIR, although
this is intended primarily for testing purposes.

* conf name: The configuration file name used to start the server, minus all preceding paths and the file extension.
For example, given a pathname of /usr/local/etc/kea/myconf. txt, the portion used would be myconf.

If the file already exists and contains the PID of a live process, the server issues a DHCP4_ALREADY_RUNNING log
message and exits. It is possible, though unlikely, that the file is a remnant of a system crash and the process to which
the PID belongs is unrelated to Kea. In such a case, it would be necessary to manually delete the PID file.

The server can be stopped using the kill command. When running in a console, the server can also be shut down by
pressing Ctrl-c. Kea detects the key combination and shuts down gracefully.

The reconfiguration of each Kea server is triggered by the SIGHUP signal. When a server receives the SIGHUP signal it
rereads its configuration file and, if the new configuration is valid, uses the new configuration. If the new configuration
proves to be invalid, the server retains its current configuration; however, in some cases a fatal error message is logged
indicating that the server is no longer providing any service: a working configuration must be loaded as soon as possible.

8.2 DHCPv4 Server Configuration

8.2.1 Introduction

This section explains how to configure the Kea DHCPv4 server using a configuration file.

Before DHCPV4 is started, its configuration file must be created. The basic configuration is as follows:

{

DHCPv4 configuration starts on the next line
"Dhcp4": {

First we set up global values
"valid-lifetime": 4000,
"renew-timer": 1000,
"rebind-timer": 2000,

Next we set up the interfaces to be used by the server.
(continues on next page)

58 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"interfaces-config": {
"interfaces": ["eth®"]

},

And we specify the type of lease database
"lease-database": {
"type": "memfile",
"persist": true,
"name": "/var/lib/kea/dhcp4.leases"”
1

Finally, we list the subnets from which we will be leasing addresses.
"subnet4": [

{
"id": 1,
"subnet": "192.0.2.0/24",
"pools": [
{
"pool": "192.0.2.1 - 192.0.2.200"
}
]
}
]
DHCPv4 configuration ends with the next line
}
3

The following paragraphs provide a brief overview of the parameters in the above example, along with their format.
Subsequent sections of this chapter go into much greater detail for these and other parameters.

The lines starting with a hash (#) are comments and are ignored by the server; they do not impact its operation in any
way.

The configuration starts in the first line with the initial opening curly bracket (or brace). Each configuration must
contain an object specifying the configuration of the Kea module using it. In the example above, this object is called
Dhcp4.

The Dhcp4 configuration starts with the "Dhcp4": { line and ends with the corresponding closing brace (in the
above example, the brace after the last comment). Everything defined between those lines is considered to be the
Dhcp4 configuration.

In general, the order in which those parameters appear does not matter, but there are two caveats. The first one is that
the configuration file must be well-formed JSON, meaning that the parameters for any given scope must be separated
by a comma, and there must not be a comma after the last parameter. When reordering a configuration file, moving
a parameter to or from the last position in a given scope may also require moving the comma. The second caveat is
that it is uncommon — although legal JSON — to repeat the same parameter multiple times. If that happens, the last
occurrence of a given parameter in a given scope is used, while all previous instances are ignored. This is unlikely to
cause any confusion as there are no real-life reasons to keep multiple copies of the same parameter in the configuration
file.

The first few DHCPv4 configuration elements define some global parameters. valid-1ifetime defines how long the
addresses (leases) given out by the server are valid; the default is for a client to be allowed to use a given address for
4000 seconds. (Note that integer numbers are specified as is, without any quotes around them.) renew-timer and
rebind-timer are values (also in seconds) that define the T1 and T2 timers that govern when the client begins the

8.2. DHCPv4 Server Configuration 59

Kea Administrator Reference Manual Documentation, Release 2.7.5

renewal and rebind processes.

Note: The lease valid lifetime is expressed as a triplet with minimum, default, and maximum values using configuration
entriesmin-valid-lifetime, valid-lifetime, and max-valid-lifetime. Since Kea 1.9.5, these values may be
specified in client classes. The procedure the server uses to select which lifetime value to use is as follows:

If the client query is a BOOTP query, the server always uses the infinite lease time (e.g. Oxffffffff). Otherwise, the
server must determine which configured triplet to use by first searching all classes assigned to the query, and then the
subnet selected for the query.

Classes are searched in the order they were assigned to the query; the server uses the triplet from the first class that
specifies it. If no classes specify the triplet, the server uses the triplet specified by the subnet selected for the client. If
the subnet does not explicitly specify it, the server next looks at the subnet's shared-network (if one exists), then for a
global specification, and finally the global default.

If the client requested a lifetime value via DHCP option 51, then the lifetime value used is the requested value bounded
by the configured triplet. In other words, if the requested lifetime is less than the configured minimum, the configured
minimum is used; if it is more than the configured maximum, the configured maximum is used. If the client did not
provide a requested value, the lifetime value used is the triplet default value.

Note: Both renew-timer and rebind-timer are optional. The server only sends rebind-timer to the client, via
DHCPv4 option code 59, if it is less than valid-1ifetime; and it only sends renew-timer, via DHCPv4 option
code 58, if it is less than rebind-timer (or valid-1lifetime if rebind-timer was not specified). In their absence,
the client should select values for T1 and T2 timers according to RFC 2131. See section Sending T1 (Option 58) and
T2 (Option 59) for more details on generating T1 and T2.

The interfaces-config map specifies the network interfaces on which the server should listen to DHCP messages.
The interfaces parameter specifies a list of network interfaces on which the server should listen. Lists are opened and
closed with square brackets, with elements separated by commas. To listen on two interfaces, the interfaces-config
element should look like this:

{
"interfaces-config": {
"interfaces": ["eth®", "ethl"]

1,
}

The next lines define the lease database, the place where the server stores its lease information. This particular example
tells the server to use memfile, which is the simplest and fastest database backend. It uses an in-memory database and
stores leases on disk in a CSV (comma-separated values) file. This is a very simple configuration example; usually the
lease database configuration is more extensive and contains additional parameters. Note that lease-database is an
object and opens up a new scope, using an opening brace. Its parameters (just one in this example: type) follow. If
there were more than one, they would be separated by commas. This scope is closed with a closing brace. As more
parameters for the Dhcp4 definition follow, a trailing comma is present.

Finally, we need to define a list of IPv4 subnets. This is the most important DHCPv4 configuration structure, as the
server uses that information to process clients' requests. It defines all subnets from which the server is expected to
receive DHCP requests. The subnets are specified with the subnet4 parameter. It is a list, so it starts and ends with
square brackets. Each subnet definition in the list has several attributes associated with it, so it is a structure and is
opened and closed with braces. At a minimum, a subnet definition must have at least two parameters: subnet, which
defines the whole subnet; and pools, which is a list of dynamically allocated pools that are governed by the DHCP
Server.

60 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 2.7.5

The example contains a single subnet. If more than one were defined, additional elements in the subnet4 parameter
would be specified and separated by commas. For example, to define three subnets, the following syntax would be
used:

{
"subnet4": [
{
"id": 1,
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1],
"subnet": "192.0.2.0/24"
1
{
"id": 2,
"pools": [{ "pool": "192.0.3.100 - 192.0.3.200" } 1],
"subnet": "192.0.3.0/24"
3
{
"id": 3,
"pools": [{ "pool": "192.0.4.1 - 192.0.4.254" } 1,
"subnet": "192.0.4.0/24"
}
1,
}

Note that indentation is optional and is used for aesthetic purposes only. In some cases it may be preferable to use more
compact notation.

After all the parameters have been specified, there are two contexts open: global and Dhcp4; thus, two closing curly
brackets must be used to close them.

8.2.2 Lease Storage

All leases issued by the server are stored in the lease database. There are three database backends available: memfile
(the default), MySQL, PostgreSQL.

8.2.2.1 Memfile - Basic Storage for Leases

The server is able to store lease data in different repositories. Larger deployments may elect to store leases in a database;
Lease Database Configuration describes this option. In typical smaller deployments, though, the server stores lease
information in a CSV file rather than a database. As well as requiring less administration, an advantage of using a file
for storage is that it eliminates a dependency on third-party database software.

The configuration of the memfile backend is controlled through the Dhcp4/lease-database parameters. The type
parameter is mandatory and specifies which storage for leases the server should use, through the "memfile" value.
The following list gives additional optional parameters that can be used to configure the memfile backend.

* persist: controls whether the new leases and updates to existing leases are written to the file. It is strongly
recommended that the value of this parameter be set to true at all times during the server's normal operation.
Not writing leases to disk means that if a server is restarted (e.g. after a power failure), it will not know which
addresses have been assigned. As a result, it may assign new clients addresses that are already in use. The value
of false is mostly useful for performance-testing purposes. The default value of the persist parameter is
true, which enables writing lease updates to the lease file.

8.2. DHCPv4 Server Configuration 61

Kea Administrator Reference Manual Documentation, Release 2.7.5

* name: specifies an absolute location of the lease file in which new leases and lease updates are recorded. The
default value for this parameter is " [kea-install-dir]/var/lib/kea/kea-leases4.csv".

* 1fc-interval: specifies the interval, in seconds, at which the server will perform a lease file cleanup (LFC).
This removes redundant (historical) information from the lease file and effectively reduces the lease file size.
The cleanup process is described in more detail later in this section. The default value of the 1fc-interval is
3600. A value of 0 disables the LFC.

* max-row-errors: specifies the number of row errors before the server stops attempting to load a lease file.
When the server loads a lease file, it is processed row by row, each row containing a single lease. If a row
is flawed and cannot be processed correctly the server logs it, discards the row, and goes on to the next row.
This parameter can be used to set a limit on the number of such discards that can occur, after which the server
abandons the effort and exits. The default value of ® disables the limit and allows the server to process the entire
file, regardless of how many rows are discarded.

An example configuration of the memfile backend is presented below:

"Dhcp4d": {
"lease-database": {
"type": "memfile",
"persist": true,
"name": "/tmp/kea-leases4.csv",
"lfc-interval": 1800,
"max-row-errors": 100

This configuration selects /tmp/kea-leases4.csv as the storage for lease information and enables persistence (writ-
ing lease updates to this file). It also configures the backend to perform a periodic cleanup of the lease file every 1800
seconds (30 minutes) and sets the maximum number of row errors to 100.

8.2.2.2 Why Is Lease File Cleanup Necessary?

It is important to know how the lease file contents are organized to understand why the periodic lease file cleanup is
needed. Every time the server updates a lease or creates a new lease for a client, the new lease information must be
recorded in the lease file. For performance reasons, the server does not update the existing client's lease in the file, as
this would potentially require rewriting the entire file. Instead, it simply appends the new lease information to the end
of the file; the previous lease entries for the client are not removed. When the server loads leases from the lease file,
e.g. at server startup, it assumes that the latest lease entry for the client is the valid one. Previous entries are discarded,
meaning that the server can reconstruct accurate information about the leases even though there may be many lease
entries for each client. However, storing many entries for each client results in a bloated lease file and impairs the
performance of the server's startup and reconfiguration, as it needs to process a larger number of lease entries.

Lease file cleanup (LFC) removes all previous entries for each client and leaves only the latest ones. The interval at
which the cleanup is performed is configurable, and it should be selected according to the frequency of lease renewals
initiated by the clients. The more frequent the renewals, the smaller the value of 1fc-interval should be. Note,
however, that the LFC takes time and thus it is possible (although unlikely) that, if the 1fc-interval is too short, a
new cleanup may be started while the previous one is still running. The server would recover from this by skipping
the new cleanup when it detected that the previous cleanup was still in progress, but it implies that the actual cleanups
will be triggered more rarely than the configured interval. Moreover, triggering a new cleanup adds overhead to the
server, which is not able to respond to new requests for a short period of time when the new cleanup process is spawned.
Therefore, it is recommended that the 1fc-interval value be selected in a way that allows the LFC to complete the
cleanup before a new cleanup is triggered.

Lease file cleanup is performed by a separate process (in the background) to avoid a performance impact on the server
process. To avoid conflicts between two processes using the same lease files, the LFC process starts with Kea opening

62 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

a new lease file; the actual LFC process operates on the lease file that is no longer used by the server. There are also
other files created as a side effect of the lease file cleanup. The detailed description of the LFC process is located later
in this Kea Administrator's Reference Manual: The LFC Process.

8.2.2.3 Lease Database Configuration

Note: Lease database access information must be configured for the DHCPv4 server, even if it has already been
configured for the DHCPvVG6 server. The servers store their information independently, so each server can use a separate
database or both servers can use the same database.

Note: Kea requires the database timezone to match the system timezone. For more details, see First-Time Creation of
the MySQL Database and First-Time Creation of the PostgreSQL Database.

Lease database configuration is controlled through the Dhcp4/lease-database parameters. The database type must
be set to memfile, mysql or postgresql, e.g.:

["Dhcp4": { "lease-database": { "type": "mysql", ... }, ... }]

Next, the name of the database to hold the leases must be set; this is the name used when the database was created (see
First-Time Creation of the MySQL Database or First-Time Creation of the PostgreSQL Database).

For MySQL or PostgreSQL.:

["Dhcp4": { "lease-database": { "name": "database-name" , ... }, ... }]

If the database is located on a different system from the DHCPv4 server, the database host name must also be specified:

["Dhcp4": { "lease-database": { "host": "remote-host-name", ... }, ... }]

Normally, the database is on the same machine as the DHCPv4 server. In this case, set the value to the empty string:

["Dhcp4": { "lease-database": { "host" : "", ... }, ... }]

Should the database use a port other than the default, it may be specified as well:

["Dhcp4": { "lease-database": { "port" : 12345, ... }, ... } J

Should the database be located on a different system, the administrator may need to specify a longer interval for the
connection timeout:

["Dhcp4": { "lease-database": { "connect-timeout" : timeout-in-seconds, ... }, ... }]

The default value of five seconds should be more than adequate for local connections. If a timeout is given, though, it
should be an integer greater than zero.

The maximum number of times the server automatically attempts to reconnect to the lease database after connectivity
has been lost may be specified:

["Dhcp4": { "lease-database": { "max-reconnect-tries" : number-of-tries, ... }, ... } J

If the server is unable to reconnect to the database after making the maximum number of attempts, the server will exit.
A value of 0 (the default) disables automatic recovery and the server will exit immediately upon detecting a loss of
connectivity (MySQL and PostgreSQL only).

8.2. DHCPv4 Server Configuration 63

Kea Administrator Reference Manual Documentation, Release 2.7.5

The number of milliseconds the server waits between attempts to reconnect to the lease database after connectivity has
been lost may also be specified:

-}

"'Dhcp4": { "lease-database": { "reconnect-wait-time" : number-of-milliseconds, ... }, ... ’

The default value for MySQL and PostgreSQL is 0, which disables automatic recovery and causes the server to exit
immediately upon detecting the loss of connectivity.

["Dhcp4": { "lease-database": { "on-fail" : "stop-retry-exit", ... }, ... }]

The possible values are:

* stop-retry-exit - disables the DHCP service while trying to automatically recover lost connections, and
shuts down the server on failure after exhausting max-reconnect-tries. This is the default value for the lease
backend, the host backend, and the configuration backend.

* serve-retry-exit - continues the DHCP service while trying to automatically recover lost connections, and
shuts down the server on failure after exhausting max-reconnect-tries.

e serve-retry-continue - continues the DHCP service and does not shut down the server even if the recovery
fails. This is the default value for forensic logging.

Note: Automatic reconnection to database backends is configured individually per backend; this allows users to tailor
the recovery parameters to each backend they use. We suggest that users enable it either for all backends or none, so
behavior is consistent.

Losing connectivity to a backend for which reconnection is disabled results (if configured) in the server shutting itself
down. This includes cases when the lease database backend and the hosts database backend are connected to the same
database instance.

It is highly recommended not to change the stop-retry-exit default setting for the lease manager, as it is critical
for the connection to be active while processing DHCP traffic. Change this only if the server is used exclusively as a
configuration tool.

[”Dhcp4": { "lease-database": { "retry-on-startup" : true, ... }, ... } J

During server startup, the inability to connect to any of the configured backends is considered fatal only if
retry-on-startup is set to false (the default). A fatal error is logged and the server exits, based on the idea
that the configuration should be valid at startup. Exiting to the operating system allows nanny scripts to detect the
problem. If retry-on-startup is set to true, the server starts reconnection attempts even at server startup or on
reconfigure events, and honors the action specified in the on-fail parameter.

The host parameter is used by the MySQL and PostgreSQL backends.

Finally, the credentials of the account under which the server will access the database should be set:

"Dhcp4": {
"lease-database": {
"user": "user-name",
"password": "password",

},

If there is no password to the account, set the password to the empty string "". (This is the default.)

64 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.2.2.4 Tuning Database Timeouts

In rare cases, reading or writing to the database may hang. This can be caused by a temporary network issue, or by mis-
configuration of the proxy server switching the connection between different database instances. These situations are
rare, but users have reported that Kea sometimes hangs while performing database IO operations. Setting appropriate
timeout values can mitigate such issues.

MySQL exposes two distinct connection options to configure the read and write timeouts. Kea's corresponding
read-timeout and write-timeout configuration parameters specify the timeouts in seconds. For example:

[”Dhcp4": { "lease-database": { "read-timeout" : 10, "write-timeout": 20, ... }, ... }]

Setting these parameters to 0 is equivalent to not specifying them, and causes the Kea server to establish a connection
to the database with the MySQL defaults. In this case, Kea waits indefinitely for the completion of the read and write
operations.

MySQL versions earlier than 5.6 do not support setting timeouts for read and write operations. Moreover, the
read-timeout and write-timeout parameters can only be specified for the MySQL backend; setting them for any
other backend database type causes a configuration error.

To set a timeout in seconds for PostgreSQL, use the tcp-user-timeout parameter. For example:

["Dhcp4": { "lease-database": { "tcp-user-timeout" : 10, ... }, ... }]

Specifying this parameter for other backend types causes a configuration error.

Note: The timeouts described here are only effective for TCP connections. Please note that the MySQL client library
used by the Kea servers typically connects to the database via a UNIX domain socket when the host parameter is
localhost, but establishes a TCP connection for 127.0.0. 1.

Since Kea.2.7.4, the libdhcp_mysql.so hook library must be loaded in order to store leases in the MySQL Lease
Database Backend. Specify the lease backend hook library location:

"Dhcp4": { "hooks-libraries": [

{
// the MySQL lease backend hook library required for lease storage.
"library": "/opt/lib/kea/hooks/libdhcp_mysqgl.so"

}, ... 1, ...}

Since Kea.2.7.4, the libdhcp_pgsql.so hook library must be loaded in order to store leases in the PostgreSQL Lease
Database Backend. Specify the lease backend hook library location.

"Dhcp4": { "hooks-libraries": [

{
// the PostgreSQL lease backend hook library required for lease storage.
"library": "/opt/lib/kea/hooks/libdhcp_pgsqgl.so"

}, .. 1, ...}

8.2. DHCPv4 Server Configuration 65

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.2.3 Hosts Storage

Kea is also able to store information about host reservations in the database. The hosts database configuration uses the
same syntax as the lease database. In fact, the Kea server opens independent connections for each purpose, be it lease
or hosts information, which gives the most flexibility. Kea can keep leases and host reservations separately, but can
also point to the same database. Currently the supported hosts database types are MySQL and PostgreSQL.

The following configuration can be used to configure a connection to MySQL.:

"Dhcp4": {
"hosts-database": {
lltypell: llmysqlll’

"name": "kea",

"user": "kea",
"password": "secretl123",
"host": "localhost",
"port": 3306

Depending on the database configuration, many of the parameters may be optional.

Please note that usage of hosts storage is optional. A user can define all host reservations in the configuration file, and
that is the recommended way if the number of reservations is small. However, when the number of reservations grows,
it is more convenient to use host storage. Please note that both storage methods (the configuration file and one of the
supported databases) can be used together. If hosts are defined in both places, the definitions from the configuration
file are checked first and external storage is checked later, if necessary.

Host information can be placed in multiple stores. Operations are performed on the stores in the order they are defined in
the configuration file, although this leads to a restriction in ordering in the case of a host reservation addition; read-only
stores must be configured after a (required) read-write store, or the addition will fail.

Note: Kea requires the database timezone to match the system timezone. For more details, see First-Time Creation of
the MySQL Database and First-Time Creation of the PostgreSQL Database.

8.2.3.1 DHCPv4 Hosts Database Configuration

Hosts database configuration is controlled through the Dhcp4/hosts-database parameters. If enabled, the type of
database must be set to mysqgl or postgresql.

["Dhcp4": { "hosts-database": { "type": "mysql", ... }, ... } J

Next, the name of the database to hold the reservations must be set; this is the name used when the lease database was
created (see Supported Backends for instructions on how to set up the desired database type):

[”Dhcp4": { "hosts-database": { "name": "database-name" , ... }, ... } }

If the database is located on a different system than the DHCPv4 server, the database host name must also be specified:

["Dhcp4": { "hosts-database": { "host": remote-host-name, ... }, ... }]

Normally, the database is on the same machine as the DHCPv4 server. In this case, set the value to the empty string:

66 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

[”Dhcp4": { "hosts-database": { "host" : "", ... }, ... } J

Should the database use a port different than the default, it may be specified as well:

["Dhcp4": { "hosts-database": { "port" : 12345, ... }, ... } J

The maximum number of times the server automatically attempts to reconnect to the host database after connectivity
has been lost may be specified:

["Dhcp4": { "hosts-database": { "max-reconnect-tries" : number-of-tries, ... }, ... }]

If the server is unable to reconnect to the database after making the maximum number of attempts, the server will exit.
A value of 0 (the default) disables automatic recovery and the server will exit immediately upon detecting a loss of
connectivity (MySQL and PostgreSQL only).

The number of milliseconds the server waits between attempts to reconnect to the host database after connectivity has
been lost may also be specified:

"Dhcp4": { "hosts-database": { "reconnect-wait-time" : number-of-milliseconds, ... }, ... ’

- }

The default value for MySQL and PostgreSQL is 0, which disables automatic recovery and causes the server to exit
immediately upon detecting the loss of connectivity.

["Dhcp4": { "hosts-database": { "on-fail" : "stop-retry-exit", ... }, ... }]

The possible values are:

e stop-retry-exit - disables the DHCP service while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries. This is the default value for MySQL and
PostgreSQL.

* serve-retry-exit - continues the DHCP service while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries.

* serve-retry-continue - continues the DHCP service and does not shut down the server even if the recovery
fails.

Note: Automatic reconnection to database backends is configured individually per backend. This allows users to tailor
the recovery parameters to each backend they use. We suggest that users enable it either for all backends or none, so
behavior is consistent.

Losing connectivity to a backend for which reconnection is disabled results (if configured) in the server shutting itself
down. This includes cases when the lease database backend and the hosts database backend are connected to the same
database instance.

[”Dhcp4": { "hosts-database": { "retry-on-startup" : true, ... }, ... } }

During server startup, the inability to connect to any of the configured backends is considered fatal only if
retry-on-startup is set to false (the default). A fatal error is logged and the server exits, based on the idea
that the configuration should be valid at startup. Exiting to the operating system allows nanny scripts to detect the
problem. If retry-on-startup is set to true, the server starts reconnection attempts even at server startup or on
reconfigure events, and honors the action specified in the on-fail parameter.

Finally, the credentials of the account under which the server will access the database should be set:

8.2. DHCPv4 Server Configuration 67

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcpd": {
"hosts-database": {
"user": "user-name",
"password": "password",
1
}

If there is no password to the account, set the password to the empty string "". (This is the default.)

The multiple-storage extension uses a similar syntax; a configuration is placed into a hosts-databases list instead
of into a hosts-database entry, as in:

["Dhcp4": { "hosts-databases": [{ "type": "mysql", ... }, ... 1, ...}]

If the same host is configured both in-file and in-database, Kea does not issue a warning, as it would if both were
specified in the same data source. Instead, the host configured in-file has priority over the one configured in-database.

8.2.3.2 Using Read-Only Databases for Host Reservations With DHCPv4

In some deployments, the user whose name is specified in the database backend configuration may not have write
privileges to the database. This is often required by the policy within a given network to secure the data from being
unintentionally modified. In many cases administrators have deployed inventory databases, which contain substantially
more information about the hosts than just the static reservations assigned to them. The inventory database can be used
to create a view of a Kea hosts database and such a view is often read-only.

Kea host-database backends operate with an implicit configuration to both read from and write to the database. If the
user does not have write access to the host database, the backend will fail to start and the server will refuse to start (or
reconfigure). However, if access to a read-only host database is required for retrieving reservations for clients and/or
assigning specific addresses and options, it is possible to explicitly configure Kea to start in "read-only" mode. This is
controlled by the readonly boolean parameter as follows:

{"Dhcp4": { "hosts-database": { "readonly": true, ... }, ... }]

Setting this parameter to false configures the database backend to operate in "read-write" mode, which is also the
default configuration if the parameter is not specified.

Note: The readonly parameter is only supported for MySQL and PostgreSQL databases.

Since Kea.2.7.4, the libdhcp_mysql.so hook library must be loaded in order to store host reservations in the MySQL
Host Database Backend. Specify the lease backend hook library location:

"Dhcp4": { "hooks-libraries": [

{
// the MySQL host backend hook library required for host storage.
"library": "/opt/lib/kea/hooks/libdhcp_mysqgl.so"

y, ...1, ...}

Since Kea.2.7.4, the libdhcp_pgsql.so hook library must be loaded in order to store host reservations in the PostgreSQL
Host Database Backend. Specify the lease backend hook library location.

68 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcp4": { "hooks-libraries": [

{
// the PostgreSQL host backend hook library required for host storage.
"library": "/opt/lib/kea/hooks/libdhcp_pgsqgl.so"

}, ... 1, ...}

8.2.3.3 Tuning Database Timeouts for Hosts Storage

See Tuning Database Timeouts.

8.2.4 Interface Configuration

The DHCPv4 server must be configured to listen on specific network interfaces. The simplest network interface con-
figuration tells the server to listen on all available interfaces:

"Dhcpa™: {
"interfaces-config": {
"interfaces": ["*"]
3
}

The asterisk plays the role of a wildcard and means "listen on all interfaces." However, it is usually a good idea to
explicitly specify interface names:

"Dhcp4": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"]
1,
}

It is possible to use an interface wildcard (*) concurrently with explicit interface names:

"Dhcp4": {
"interfaces-config": {
"interfaces": ["ethl", "eth3", "*"]
Lo
}

This format should only be used when it is desired to temporarily override a list of interface names and listen on all
interfaces.

Some deployments of DHCP servers require that the servers listen on interfaces with multiple IPv4 addresses config-
ured. In these situations, the address to use can be selected by appending an IPv4 address to the interface name in the
following manner:

"Dhcp4": {
"interfaces-config": {
"interfaces": ["eth1/10.0.0.1", "eth3/192.0.2.3"]
3

(continues on next page)

8.2. DHCPv4 Server Configuration 69

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

Should the server be required to listen on multiple IPv4 addresses assigned to the same interface, multiple addresses
can be specified for an interface as in the example below:

"Dhcpd": {
"interfaces-config": {
"interfaces": ["eth1/10.0.0.1", "ethl1/10.0.0.2"]
1

Alternatively, if the server should listen on all addresses for the particular interface, an interface name without any
address should be specified.

Kea supports responding to directly connected clients which do not have an address configured. This requires the
server to inject the hardware address of the destination into the data-link layer of the packet being sent to the client.
The DHCPv4 server uses raw sockets to achieve this, and builds the entire IP/UDP stack for the outgoing packets. The
downside of raw socket use, however, is that incoming and outgoing packets bypass the firewalls (e.g. iptables).

Handling traffic on multiple IPv4 addresses assigned to the same interface can be a challenge, as raw sockets are bound
to the interface. When the DHCP server is configured to use the raw socket on an interface to receive DHCP traffic,
advanced packet filtering techniques (e.g. the BPF) must be used to receive unicast traffic on the desired addresses
assigned to the interface. Whether clients use the raw socket or the UDP socket depends on whether they are directly
connected (raw socket) or relayed (either raw or UDP socket).

Therefore, in deployments where the server does not need to provision the directly connected clients and only receives
the unicast packets from the relay agents, the Kea server should be configured to use UDP sockets instead of raw sockets.
The following configuration demonstrates how this can be achieved:

"Dhcp4": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],

"dhcp-socket-type": "udp"
1,

The dhcp-socket-type parameter specifies that the IP/UDP sockets will be opened on all interfaces on which the
server listens, i.e. "ethl" and "eth3" in this example. If dhcp-socket-type is set to raw, it configures the server to
use raw sockets instead. If the dhcp-socket-type value is not specified, the default value raw is used.

Using UDP sockets automatically disables the reception of broadcast packets from directly connected clients. This
effectively means that UDP sockets can be used for relayed traffic only. When using raw sockets, both the traffic from
the directly connected clients and the relayed traffic are handled.

Caution should be taken when configuring the server to open multiple raw sockets on the interface with several IPv4
addresses assigned. If the directly connected client sends the message to the broadcast address, all sockets on this link
will receive this message and multiple responses will be sent to the client. Therefore, the configuration with multiple
IPv4 addresses assigned to the interface should not be used when the directly connected clients are operating on that
link. To use a single address on such an interface, the "interface-name/address" notation should be used.

Note: Specifying the value raw as the socket type does not guarantee that raw sockets will be used! The use of raw
sockets to handle traffic from the directly connected clients is currently supported on Linux and BSD systems only. If

70 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

raw sockets are not supported on the particular OS in use, the server issues a warning and fall back to using IP/UDP
sockets.

In a typical environment, the DHCP server is expected to send back a response on the same network interface on which
the query was received. This is the default behavior. However, in some deployments it is desired that the outbound
(response) packets be sent as regular traffic and the outbound interface be determined by the routing tables. This kind
of asymmetric traffic is uncommon, but valid. Kea supports a parameter called outbound-interface that controls
this behavior. It supports two values: the first one, same-as-inbound, tells Kea to send back the response on the same
interface where the query packet was received. This is the default behavior. The second parameter, use-routing,
tells Kea to send regular UDP packets and let the kernel's routing table determine the most appropriate interface. This
only works when dhcp-socket-type is set to udp. An example configuration looks as follows:

"Dhcp4d": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],
"dhcp-socket-type": "udp",
"outbound-interface": "use-routing"
3
}

Interfaces are re-detected at each reconfiguration. This behavior can be disabled by setting the re-detect value to
false, for instance:

"Dhcpd": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],

"re-detect": false

3,

Note that interfaces are not re-detected during config-test.

Usually loopback interfaces (e.g. the 1o or 100 interface) are not configured, but if a loopback interface is explicitly
configured and IP/UDP sockets are specified, the loopback interface is accepted.

For example, this setup can be used to run Kea in a FreeBSD jail having only a loopback interface, to service a relayed
DHCP request:

"Dhcp4": {

"interfaces-config": {
"interfaces": ["lo®"],
"dhcp-socket-type": "udp"

3

Kea binds the service sockets for each interface on startup. If another process is already using a port, then Kea logs the
message and suppresses an error. DHCP service runs, but it is unavailable on some interfaces.

The "service-sockets-require-all" option makes Kea require all sockets to be successfully bound. If any opening fails,
Kea interrupts the initialization and exits with a non-zero status. (Default is false).

8.2. DHCPv4 Server Configuration 71

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcpd": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],

"service-sockets-require-all": true

}1

Sometimes, immediate interruption isn't a good choice. The port can be unavailable only temporary. In
this case, retrying the opening may resolve the problem. Kea provides two options to specify the retrying:
service-sockets-max-retries and service-sockets-retry-wait-time.

The first defines a maximal number of retries that Kea makes to open a socket. The zero value (default) means that the
Kea doesn't retry the process.

The second defines a wait time (in milliseconds) between attempts. The default value is 5000 (5 seconds).

"Dhcp4": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],

"service-sockets-max-retries": 5,
"service-sockets-retry-wait-time": 5000

},

If "service-sockets-max-retries" is non-zero and "service-sockets-require-all" is false, then Kea retries the opening (if
needed) but does not fail if any socket is still not opened.

8.2.5 Issues With Unicast Responses to DHCPINFORM

The use of UDP sockets has certain benefits in deployments where the server receives only relayed traffic; these benefits
are mentioned in Interface Configuration. From the administrator's perspective it is often desirable to configure the
system's firewall to filter out unwanted traffic, and the use of UDP sockets facilitates this. However, the administrator
must also be aware of the implications related to filtering certain types of traffic, as it may impair the DHCP server's
operation.

In this section we focus on the case when the server receives the DHCPINFORM message from the client via a relay.
According to RFC 2131, the server should unicast the DHCPACK response to the address carried in the ciaddr field.
When the UDP socket is in use, the DHCP server relies on the low-level functions of an operating system to build the
data link, IP, and UDP layers of the outgoing message. Typically, the OS first uses ARP to obtain the client's link-layer
address to be inserted into the frame's header, if the address is not cached from a previous transaction that the client
had with the server. When the ARP exchange is successful, the DHCP message can be unicast to the client, using the
obtained address.

Some system administrators block ARP messages in their network, which causes issues for the server when it responds
to the DHCPINFORM messages because the server is unable to send the DHCPACK if the preceding ARP communi-
cation fails. Since the OS is entirely responsible for the ARP communication and then sending the DHCP packet over
the wire, the DHCP server has no means to determine that the ARP exchange failed and the DHCP response message
was dropped. Thus, the server does not log any error messages when the outgoing DHCP response is dropped. At the
same time, all hooks pertaining to the packet-sending operation will be called, even though the message never reaches
its destination.

Note that the issue described in this section is not observed when raw sockets are in use, because, in this case, the
DHCP server builds all the layers of the outgoing message on its own and does not use ARP. Instead, it inserts the value

72 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 2.7.5

carried in the chaddr field of the DHCPINFORM message into the link layer.

Server administrators willing to support DHCPINFORM messages via relays should not block ARP traffic in their
networks, or should use raw sockets instead of UDP sockets.

8.2.6 IPv4 Subnet Identifier

The subnet identifier (subnet ID) is a unique number associated with a particular subnet. In principle, it is used to as-
sociate clients' leases with their respective subnets. The server configuration must contain unique and stable identifiers
for all subnets.

Note: Subnet IDs must be greater than zero and less than 4294967295.

The following configuration assigns the specified subnet identifier to a newly configured subnet:

"Dhcp4": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"id": 1024,
}
]
}

8.2.7 IPv4 Subnet Prefix

The subnet prefix is the second way to identify a subnet. Kea can accept non-canonical subnet addresses; for instance,
this configuration is accepted:

"Dhcp4": {
"subnet4": [
{
"subnet": "192.0.2.1/24",
}
]
}

This works even if there is another subnet with the "192.0.2.0/24" prefix; only the textual form of subnets are compared
to avoid duplicates.

Note: Abuse of this feature can lead to incorrect subnet selection (see How the DHCPv4 Server Selects a Subnet for
the Client).

8.2. DHCPv4 Server Configuration 73

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.2.8 Configuration of IPv4 Address Pools

The main role of a DHCPv4 server is address assignment. For this, the server must be configured with at least one
subnet and one pool of dynamic addresses to be managed. For example, assume that the server is connected to a
network segment that uses the 192.0.2.0/24 prefix. The administrator of that network decides that addresses from the
range 192.0.2.10 to 192.0.2.20 are going to be managed by the DHCPv4 server. Such a configuration can be achieved
in the following way:

"Dhcp4": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [
{ "pool": "192.0.2.10 - 192.0.2.20" }
Ae
}
]
}

Note that subnet is defined as a simple string, but the pools parameter is actually a list of pools; for this reason, the
pool definition is enclosed in square brackets, even though only one range of addresses is specified.

Each pool is a structure that contains the parameters that describe a single pool. Currently there is only one parameter,
pool, which gives the range of addresses in the pool.

It is possible to define more than one pool in a subnet; continuing the previous example, further assume that
192.0.2.64/26 should also be managed by the server. It could be written as 192.0.2.64 to 192.0.2.127, or it can be
expressed more simply as 192.0.2.64/26. Both formats are supported by Dhcp4 and can be mixed in the pool list. For
example, the following pools could be defined:

"Dhcp4d": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [
{ "pool": "192.0.2.10-192.0.2.20" },
{ "pool": "192.0.2.64/26" }
i
}
1,
}

White space in pool definitions is ignored, so spaces before and after the hyphen are optional. They can be used to
improve readability.

The number of pools is not limited, but for performance reasons it is recommended to use as few as possible.

The server may be configured to serve more than one subnet. To add a second subnet, use a command similar to the
following:

"Dhcp4": {
"subnet4": [
{

(continues on next page)

74 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1],

Fo
{

"subnet": "192.0.3.0/24",

"pools": [{ "pool": "192.0.3.100 - 192.0.3.200" } 1,
i
{

"subnet": "192.0.4.0/24",

"pools": [{ "pool": "192.0.4.1 - 192.0.4.254" } 1,
}

}

When configuring a DHCPv4 server using prefix/length notation, please pay attention to the boundary values. When
specifying that the server can use a given pool, it is also able to allocate the first (typically a network address) and the
last (typically a broadcast address) address from that pool. In the aforementioned example of pool 192.0.3.0/24, both
the 192.0.3.0 and 192.0.3.255 addresses may be assigned as well. This may be invalid in some network configurations.
To avoid this, use the min-max notation.

In a subnet whose prefix length is less than 24, users may wish to exclude all addresses ending in .0 and .255 from
being dynamically allocated. For instance, in the subnet 10.0.0.0/8, an administrator may wish to exclude 10.x.y.0 and
10.x.y.255 for all values of x and y, even though only 10.0.0.0 and 10.255.255.255 must be excluded according to RFC
standards. The exclude-first-last-24 configuration compatibility flag (Kea DHCPv4 Compatibility Configura-
tion Parameters) does this automatically, rather than requiring explicit configuration of many pools or reservations for
fake hosts. When true, it applies only to subnets of prefix length 24 or smaller, i.e. larger address space; the default
is false.

In this case, "exclude" means to skip these addresses in the free address pickup routine of the allocation engine; if a
client explicitly requests or has a host reservation for an address in .0 or .255, it will get it.

Note: Here are some liberties and limits to the values that subnets and pools can take in unusual Kea configurations:

8.2. DHCPv4 Server Configuration 75

Kea Administrator Reference Manual Documentation, Release 2.7.5

Kea Al- Comment
config- lowe:

uration

case

Over- Yes Administrator should consider how clients are matched to these subnets.

lapping

subnets

Over- No Startup error: DHCP4_PARSER_FAIL

lapping

pools

in one

subnet

Over- Yes Specifying the same address pool in different subnets can be used as an equivalent of the global
lapping address pool. In that case, the server can assign addresses from the same range regardless of the
address client's subnet. If an address from such a pool is assigned to a client in one subnet, the same
pools in address will be renewed for this client if it moves to another subnet. Another client in a different
different subnet will not be assigned an address already assigned to the client in any of the subnets.
subnets

Pools not No Startup error: DHCP4_PARSER_FAIL

match-

ing the

subnet

prefix

8.2.9 Sending T1 (Option 58) and T2 (Option 59)

According to RFC 2131, servers should send values for T1 and T2 that are 50% and 87.5% of the lease lifetime,
respectively. By default, kea-dhcp4 does not send either value; it can be configured to send values that are either
specified explicitly or that are calculated as percentages of the lease time. The server's behavior is governed by a
combination of configuration parameters, two of which have already been mentioned. To send specific, fixed values
use the following two parameters:

e renew-timer - specifies the value of T1 in seconds.
e rebind-timer - specifies the value of T2 in seconds.

The server only sends T2 if it is less than the valid lease time. T1 is only sent if T2 is being sent and T1 is less than T2;
or T2 is not being sent and T1 is less than the valid lease time.

Calculating the values is controlled by the following three parameters.

* calculate-tee-times - when true, T1 and T2 are calculated as percentages of the valid lease time. It defaults
to false.

* tl-percent - the percentage of the valid lease time to use for T1. It is expressed as a real number between 0.0
and 1.0 and must be less than t2-percent. The default value is 0.50, per RFC 2131.

e t2-percent - the percentage of the valid lease time to use for T2. It is expressed as a real number between 0.0
and 1.0 and must be greater than t1-percent. The default value is .875, per RFC 2131.

Note: In the event that both explicit values are specified and calculate-tee-times is true, the server will use the
explicit values. Administrators with a setup where some subnets or shared-networks use explicit values and some use
calculated values must not define the explicit values at any level higher than where they will be used. Inheriting them

76 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 2.7.5

from too high a scope, such as global, will cause them to have explicit values at every level underneath (shared-networks
and subnets), effectively disabling calculated values.

8.2.10 Standard DHCPv4 Options

One of the major features of the DHCPv4 server is the ability to provide configuration options to clients. Most of
the options are sent by the server only if the client explicitly requests them using the Parameter Request List option.
Those that do not require inclusion in the Parameter Request List option are commonly used options, e.g. "Domain
Server", and options which require special behavior, e.g. "Client FQDN", which is returned to the client if the client
has included this option in its message to the server.

List of standard DHCPv4 options configurable by an administrator comprises the list of the standard DHCPv4 options
whose values can be configured using the configuration structures described in this section. This table excludes the
options which require special processing and thus cannot be configured with fixed values. The last column of the table
indicates which options can be sent by the server even when they are not requested in the Parameter Request List option,
and those which are sent only when explicitly requested.

The following example shows how to configure the addresses of DNS servers, which is one of the most frequently used
options. Options specified in this way are considered global and apply to all configured subnets.

"Dhcp4": {
"option-data": [
{
"name": "domain-name-servers",
"code": 6,
"space": "dhcp4",
"csv-format": true,
"data": "192.0.2.1, 192.0.2.2"
g
]
}

Note that either name or code is required; there is no need to specify both. space has a default value of dhcp4, so
this can be skipped as well if a regular (not encapsulated) DHCPv4 option is defined. Finally, csv-format defaults
to true, so it too can be skipped, unless the option value is specified as a hexadecimal string. Therefore, the above
example can be simplified to:

"Dhcp4": {
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2"
B
]
}

Defined options are added to the response when the client requests them, with a few exceptions which are always added.
To enforce the addition of a particular option, set the always-send flag to true as in:

"Dhcp4": {
"option-data": [
(continues on next page)

8.2. DHCPv4 Server Configuration 77

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

{
"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2",
"always-send": true

Fg

The effect is the same as if the client added the option code in the Parameter Request List option (or its equivalent for
vendor options):

"Dhcp4d": {
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2",
"always-send": true
e
1,
"subnet4": [
{
"subnet": "192.0.3.0/24",
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.3.1, 192.0.3.2"
3,
1
o
1,
}

In the example above, the domain-name-servers option respects the global always-send flag and is always added
to responses, but for subnet 192.0.3.0/24, the value is taken from the subnet-level option data specification.

Contrary to always-send, if the never-send flag is set to true for a particular option, the server does not add it to
the response. The effect is the same as if the client removed the option code in the Parameter Request List option (or
its equivalent for vendor options):

"Dhcp4": {
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2"
e
1,

(continues on next page)

78 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"subnet4": [

{
"subnet": "192.0.3.0/24",
"option-data": [
{
"name": "domain-name-servers",
"never-send": true
3,
1,
Fo

In the example above, the domain-name-servers option is never added to responses on subnet 192.0.3.0/24.
never-send has precedence over always-send, so if both are true the option is not added.

Note: The always-send and never-send flags are sticky, meaning they do not follow the usual configuration
inheritance rules. Instead, if they are enabled at least once along the configuration inheritance chain, they are applied
- even if they are disabled in other places which would normally receive a higher priority. For instance, if one of the
flags is enabled in the global scope, but disabled at the subnet level, it is enabled, disregarding the subnet-level setting.

Note: The never-send flag is less powerful than 1ibdhcp_flex_option.so; for instance, it has no effect on
options managed by the server itself. Both always-send and never-send have no effect on options which cannot be
requested, for instance from a custom space.

Note: Beginning with Kea 2.7.4, option inclusion can also be controlled through option class-tagging, see Option
Class-Tagging

The name parameter specifies the option name. For a list of currently supported names, see List of standard DHCPv4
options configurable by an administrator below. The code parameter specifies the option code, which must match
one of the values from that list. The next line specifies the option space, which must always be set to dhcp4 as these
are standard DHCPv4 options. For other option spaces, including custom option spaces, see Nested DHCPv4 Options
(Custom Option Spaces). The next line specifies the format in which the data will be entered; use of CSV (comma-
separated values) is recommended. The sixth line gives the actual value to be sent to clients. The data parameter is
specified as normal text, with values separated by commas if more than one value is allowed.

Options can also be configured as hexadecimal values. If csv-format is set to false, option data must be specified
as a hexadecimal string. The following commands configure the domain-name-servers option for all subnets with
the following addresses: 192.0.3.1 and 192.0.3.2. Note that csv-format is set to false.

"Dhcp4": {
"option-data": [
{
"name": "domain-name-servers",
"code": 6,

(continues on next page)

8.2. DHCPv4 Server Configuration 79

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)
"space": "dhcp4",
"csv-format": false,
"data": "CO 00 03 01 CO 00 03 02"
5

Kea supports the following formats when specifying hexadecimal data:

non nn

* Delimited octets - one or more octets separated by either colons or spaces (":" or " "). While each octet may
contain one or two digits, we strongly recommend always using two digits. Valid examples are "ab:cd:ef" and
"ab cd ef".

e String of digits - a continuous string of hexadecimal digits with or without a "0x" prefix. Valid examples
are "Oxabcdef" and "abcdef™.

Care should be taken to use proper encoding when using hexadecimal format; Kea's ability to validate data correctness
in hexadecimal is limited.

It is also possible to specify data for binary options as a single-quoted text string within double quotes as shown (note
that csv-format must be set to false):

"Dhcp4": {
"option-data": [
{
"name": "user-class",
"code": 77,
"space": "dhcp4",
"csv-format": false,
"data": "'convert this text to binary'"
B
1,
3

Most of the parameters in the option-data structure are optional and can be omitted in some circumstances, as
discussed in Unspecified Parameters for DHCPv4 Option Configuration.

It is possible to specify or override options on a per-subnet basis. If clients connected to most subnets are expected to
get the same values of a given option, administrators should use global options. On the other hand, if different values
are used in each subnet, it does not make sense to specify global option values; rather, only subnet-specific ones should
be set.

The following commands override the global DNS servers option for a particular subnet, setting a single DNS server
with address 192.0.2.3:

"Dhcp4d": {
"subnet4": [
{
"option-data": [
{
"name": "domain-name-servers",

(continues on next page)

80 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)
"code": 6,
"space": "dhcp4",
"csv-format": true,
"data": "192.0.2.3"

3,

In some cases it is useful to associate some options with an address pool from which a client is assigned a lease. Pool-
specific option values override subnet-specific and global option values; it is not possible to prioritize assignment of
pool-specific options via the order of pool declarations in the server configuration.

The following configuration snippet demonstrates how to specify the DNS servers option, which is assigned to a client
only if the client obtains an address from the given pool:

"Dhcp4": {
"subnet4": [
{
"pools": [
{
"pool": "192.0.2.1 - 192.0.2.200",
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.3"
e
1,
B
]1
b
1,
}

Options can also be specified in class or host-reservation scope. The current Kea options precedence order is (from
most important to least): host reservation, pool, subnet, shared network, class, global.

When a data field is a string and that string contains the comma (, ; U+002C) character, the comma must be escaped
with two backslashes (\\,; U+005C). This double escape is required because both the routine splitting of CSV data
into fields and JSON use the same escape character; a single escape (\,) would make the JSON invalid. For example,
the string "foo,bar" must be represented as:

8.2. DHCPv4 Server Configuration 81

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcpd": {
"subnet4": [
{
"pools": [
{
"option-data": [
{
"name": "boot-file-name",
"data": "foo\\,bar"
}
]
Lo
g
Fo
1,
}

Some options are designated as arrays, which means that more than one value is allowed. For example, the option
time-servers allows the specification of more than one IPv4 address, enabling clients to obtain the addresses of
multiple NTP servers.

Custom DHCPv4 Options describes the configuration syntax to create custom option definitions (formats). Creation
of custom definitions for standard options is generally not permitted, even if the definition being created matches the
actual option format defined in the RFCs. However, there is an exception to this rule for standard options for which Kea
currently does not provide a definition. To use such options, a server administrator must create a definition as described
in Custom DHCPv4 Options in the dhcp4 option space. This definition should match the option format described in
the relevant RFC, but the configuration mechanism allows any option format as there is currently no way to validate it.

The currently supported standard DHCPv4 options are listed in the table below. "Name" and "Code" are the values that
should be used as a name/code in the option-data structures. "Type" designates the format of the data; the meanings of
the various types are given in List of standard DHCP option types.

Table 1: List of standard DHCPv4 options configurable by an

administrator

Name Code Type Array? Returned if not reques
time-offset 2 int32 false false
routers 3 ipv4-address true true
time-servers 4 ipv4-address true false
name-servers 5 ipv4-address true false
domain-name-servers 6 ipv4-address true true
log-servers 7 ipv4-address true false
cookie-servers 8 ipv4-address true false
Ipr-servers 9 ipv4-address true false
impress-servers 10 ipv4-address true false
resource-location-servers 11 ipv4-address true false
boot-size 13 uint16 false false
merit-dump 14 string false false
domain-name 15 fqdn false true

continues on next

82 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 1 - continued from previous page

Name Code Type Array? Returned if not reques
swap-server 16 ipv4-address false false
root-path 17 string false false
extensions-path 18 string false false
ip-forwarding 19 boolean false false
non-local-source-routing 20 boolean false false
policy-filter 21 ipv4-address true false
max-dgram-reassembly 22 uint16 false false
default-ip-ttl 23 uint8 false false
path-mtu-aging-timeout 24 uint32 false false
path-mtu-plateau-table 25 uint16 true false
interface-mtu 26 uint16 false false
all-subnets-local 27 boolean false false
broadcast-address 28 ipv4-address false false
perform-mask-discovery 29 boolean false false
mask-supplier 30 boolean false false
router-discovery 31 boolean false false
router-solicitation-address 32 ipv4-address false false
static-routes 33 ipv4-address true false
trailer-encapsulation 34 boolean false false
arp-cache-timeout 35 uint32 false false
ieee802-3-encapsulation 36 boolean false false
default-tcp-ttl 37 uint8 false false
tcp-keepalive-interval 38 uint32 false false
tcp-keepalive-garbage 39 boolean false false
nis-domain 40 string false false
nis-servers 41 ipv4-address true false
ntp-servers 42 ipv4-address true false
vendor-encapsulated-options 43 empty false false
netbios-name-servers 44 ipv4-address true false
netbios-dd-server 45 ipv4-address true false
netbios-node-type 46 uint8 false false
netbios-scope 47 string false false
font-servers 48 ipv4-address true false
x-display-manager 49 ipv4-address true false
dhcp-option-overload 52 uint8 false false
dhcp-server-identifier 54 ipv4-address false true
dhcp-message 56 string false false
dhcp-max-message-size 57 uint16 false false
vendor-class-identifier 60 string false false
nwip-domain-name 62 string false false
nwip-suboptions 63 binary false false
nisplus-domain-name 64 string false false
nisplus-servers 65 ipv4-address true false
tftp-server-name 66 string false false
boot-file-name 67 string false false
mobile-ip-home-agent 68 ipv4-address true false
smtp-server 69 ipv4-address true false
pop-server 70 ipv4-address true false
nntp-server 71 ipv4-address true false
WWW-Server 72 ipv4-address true false

continues on next

8.2. DHCPv4 Server Configuration

83

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 1 - continued from previous page

Name Code Type Array? Returned if not reques
finger-server 73 ipv4-address true false
irc-server 74 ipv4-address true false
streettalk-server 75 ipv4-address true false
streettalk-directory-assistance-server 76 ipv4-address true false
user-class 77 binary false false
slp-directory-agent 78 record (boolean, ipv4-address) true false
slp-service-scope 79 record (boolean, string) false false
nds-server 85 ipv4-address true false
nds-tree-name 86 string false false
nds-context 87 string false false
bcems-controller-names 88 fqdn true false
bcems-controller-address 89 ipv4-address true false
client-system 93 uint16 true false
client-ndi 94 record (uint8, uint8, uint8) false false
uuid-guid 97 record (uint8, binary) false false
uap-servers 98 string false false
geoconf-civic 99 binary false false
pcode 100 string false false
tcode 101 string false false
v6-only-preferred 108 uint32 false false
netinfo-server-address 112 ipv4-address true false
netinfo-server-tag 113 string false false
v4-captive-portal 114 string false false
auto-config 116 uint8 false false
name-service-search 117 uintl6 true false
domain-search 119 fqdn true false
classless-static-route 121 internal false false
cablelabs-client-conf 122 empty false false
vivco-suboptions 124 record (uint32, binary) false false
vivso-suboptions 125 uint32 false false
pana-agent 136 ipv4-address true false
v4-lost 137 fqdn false false
capwap-ac-v4 138 ipv4-address true false
sip-ua-cs-domains 141 fqdn true false
v4-sztp-redirect 143 tuple true false
rdnss-selection 146 record (uint8, ipv4-address, ipv4-address, fqdn) true false
v4-portparams 159 record (uint8, psid) false false
v4-dnr 162 record (uint16, uint16, uint8, fqdn, binary) false false
option-6rd 212 record (uint8, uint8, ipv6-address, ipv4-address) true false
v4-access-domain 213 fqdn false false

Note: The default-url option was replaced with v4-captive-portal in Kea 2.1.2, as introduced by RFC 8910.
The new option has exactly the same format as the old one. The general perception is that default-url was seldom
used. Migrating users should replace default-url with v4-captive-portal in their configurations.

Kea also supports other options than those listed above; the following options are returned by the Kea engine itself and

in general should not be configured manually.

84

Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc8910

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 2: List of standard DHCPv4 options managed by Kea on its own
and not directly configurable by an administrator

Name Code Type Description
subnet-mask 1 ipv4-address calculated automatically, based on subnet definition.
host-name 12 string sent by client, generally governed by the DNS configuration.
dhcp- 50 ipv4-address may be sent by the client and the server should not set it.
requested-
address
dhcp-lease- 51 uint32 set automatically based on the valid-1lifetime parameter.
time
dhcp-message- 53 string sent by clients and servers. Set by the Kea engine depending on the
type situation and should never be configured explicitly.
dhcp- 55 uint8 array sent by clients and should never be sent by the server.
parameter-
request-list
dhcp-renewal- 58 uint32 governed by renew-timer parameter.
time
dhcp- 59 uint32 governed by rebind-timer parameter.
rebinding-time
dhcp-client- 61 binary sent by client, echoed back with the value sent by the client.
identifier
fqdn 81 record (uint8, part of the DDNS and D2 configuration.
uint8, uint8, fqdn)
dhcp-agent- 82 empty sent by the relay agent. This is an empty container option; see RAI
options option detail later in this section.
authenticate 90 binary sent by client, Kea does not yet validate it.
client-last- 91 uint32 sent by client, server does not set it.
transaction-
time
associated-ip 92 ipv4-address array sent by client, server responds with list of addresses.
subnet- 118 ipv4-address if present in client's messages, will be used in the subnet selection

selection

process.

The following table lists all option types used in the previous two tables with a description of what values are accepted

for them.

8.2. DHCPv4 Server Configuration

85

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 3: List of standard DHCP option types

Nam Meaning

bi- An arbitrary string of bytes, specified as a set of hexadecimal digits.

nary

boole A boolean value with allowed values true or false.

empt No value; data is carried in sub-options.

fqdn Fully qualified domain name (e.g. www.example.com).

ipv4- IPv4 address in the usual dotted-decimal notation (e.g. 192.0.2.1).

addre

ipv6- IPv6 address in the usual colon notation (e.g. 2001:db8::1).

addre

ipv6- IPv6 prefix and prefix length specified using CIDR notation, e.g. 2001:db8:1::/64. This data type is used to
prefi> represent an 8-bit field conveying a prefix length and the variable length prefix value.

psid PSID and PSID length separated by a slash, e.g. 3/4 specifies PSID=3 and PSID length=4. In the wire format

recor
string

tu-
ple

uint8
uint1
uint3
int8

intl6
int32

it is represented by an 8-bit field carrying PSID length (in this case equal to 4) and the 16-bits-long PSID
value field (in this case equal to "0011000000000000b" using binary notation). Allowed values for a PSID
length are O to 16. See RFC 7597 for details about the PSID wire representation.

Structured data that may be comprised of any types (except "record” and "empty"). The array flag applies to
the last field only.

Any text. Please note that Kea silently discards any terminating/trailing nulls from the end of "string" options
when unpacking received packets. This is in keeping with RFC 2132, Section 2.

A length field encoded as an 8-bit or 16-bit unsigned integer followed by a string of this length. Typically, for
DHCPv4, the length is 8-bit, and for DHCPV®6, it is 16-bit. However, there are exceptions to that rule. E.g. for
the DHCPv4 SZTP Redirect Option, bootstrap-server-list is encoded as a list of tuples where the URI-length
in each tuple is a 16-bit unsigned integer.

An 8-bit unsigned integer with allowed values 0 to 255.

A 16-bit unsigned integer with allowed values 0 to 65535.

A 32-bit unsigned integer with allowed values 0 to 4294967295.

An 8-bit signed integer with allowed values -128 to 127.

A 16-bit signed integer with allowed values -32768 to 32767.

A 32-bit signed integer with allowed values -2147483648 to 2147483647.

Kea also supports the Relay Agent Information (RAI, defined in RFC 3046) option, sometimes referred to as the relay
option, agent option, or simply option 82. The option itself is just a container and does not convey any information on
its own. The following table contains a list of RAI sub-options that Kea can understand. The RAI and its sub-options
are inserted by the relay agent and received by Kea; there is no need for Kea to be configured with those options. Kea's
classification and flexible ID features in host reservations can be used to process those and other options not listed in

the table below.
Table 4: List of RAI sub-options that Kea can understand
Name Code Comment
circuit-id 1 Used when host-reservation-identifiers is set to circuit-id.
remote-id 2 Can be used with flex-id to identify hosts.
link-selection 5 If present, used to select the appropriate subnet.
subscriber-id 6 Can be used with flex-id to identify hosts.
server-id-override 11 If sent by the relay, Kea accepts it as the server-id.
relay-id 12 Identifies the relay
relay-port 19 If sent by the relay, Kea sends back its responses to this port.

All other RAI sub-options (including those not listed here) can be used in client classification to classify incoming pack-

86

Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc7597
https://tools.ietf.org/html/rfc2132#section-2
https://tools.ietf.org/html/rfc3046

Kea Administrator Reference Manual Documentation, Release 2.7.5

ets to specific classes, and/or by 1ibdhcp_flex_id. so to construct a unique device identifier. For more information
about expressions used in client classification and flexible identifiers, see Client Classification. The RAI sub-options
can be referenced using relay4[option-code] . hex; for example, to classify packets based on the remote-id (sub-
option code 2), one would use relay4[2].hex. An example client class that includes all packets with a specific
remote-id value would look as follows:

"Dhcp4": {
"client-classes": [
{
"name": "remote-id-1020304",
"test": "relay4[2].hex == 0x01020304",
}
] bl
}

Classes may be used to segregate traffic into a relatively small number of groups, which then can be used to select
specific subnets, pools and extra options, and more. If per-host behavior is necessary, using host reservations with
flexible identifiers is strongly recommended.

8.2.11 CableLabs Client Conf Suboptions

CableLabs client conf option ("cablelabs-client-conf" code 122) is a container of suboptions in the "cablelabs-client-
conf" space listed in the table below.

Table 5: List of CableLabs Client Conf sub-options that Kea can under-

stand
Name Code Format
tsp-primary-server 1 IPv4 address
tsp-secondary-server 2 IPv4 address
tsp-as-parameters 4 record of 3 uint32's
tsp-ap-parameters 5 record of 3 uint32's
tsp-realm 6 Fully Qualified Domain Name
tsp-use-tgt 7 boolean
tsp-provisioning-timer 8 uint8
tsp-sct 9 uint16
kdc-server 10 array of IPv4 addresses

These suboptions are defined in RFC 3495 including its errata which clarifies the realm format, RFC 3594 and RFC
3634.

Note: The suboption 3 carries the TSP provisioning server address as an either IPv4 address or a FQDN. This can't
be defined in Kea so no standard suboption is defined for the code 3 leaving the choice to configure its content as a
binary value, or if it is used only as an IPv4 address or a FQDN to define it as a record of an uint8 (set to 0) and
ipv4-address, or a record of an uint8 (set to 1) and a fqdn, allowing the use of CSV formatted data.

8.2. DHCPv4 Server Configuration 87

https://tools.ietf.org/html/rfc3495
https://tools.ietf.org/html/rfc3594
https://tools.ietf.org/html/rfc3634
https://tools.ietf.org/html/rfc3634

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.2.12 Custom DHCPv4 Options

Kea supports custom (non-standard) DHCPv4 options. Let's say that we want to define a new DHCPv4 option called
foo, which will have code 222 and will convey a single, unsigned, 32-bit integer value. Such an option can be defined
by putting the following entry in the configuration file:

"Dhcp4": {
"option-def": [
{
"name": "foo",
"code": 222,
"type": "uint32",
"array": false,
"record-types": "",
"space": "dhcp4",
"encapsulate": ""
e
1,
}

The false value of the array parameter determines that the option does NOT comprise an array of uint32 values
but is, instead, a single value. Two other parameters have been left blank: record-types and encapsulate. The
former specifies the comma-separated list of option data fields, if the option comprises a record of data fields. The
record-types value should be non-empty if type is set to "record"; otherwise it must be left blank. The latter
parameter specifies the name of the option space being encapsulated by the particular option. If the particular option
does not encapsulate any option space, the parameter should be left blank. Note that the option-def configuration
statement only defines the format of an option and does not set its value(s).

The name, code, and type parameters are required; all others are optional. The array parameter's default value is
false. The record-types and encapsulate parameters' default values are blank (""). The default space is dhcp4.

Once the new option format is defined, its value is set in the same way as for a standard option. For example, the
following commands set a global value that applies to all subnets.

"Dhcp4": {
"option-data": [
{
"name": "foo",
"code": 222,
"space": "dhcp4",
"csv-format": true,
"data": "12345"
B
1,
}

New options can take more complex forms than the simple use of primitives (uint8, string, ipv4-address, etc.); it is
possible to define an option comprising a number of existing primitives.

For example, say we want to define a new option that will consist of an IPv4 address, followed by an unsigned 16-bit
integer, followed by a boolean value, followed by a text string. Such an option could be defined in the following way:

88 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcp4": {
"option-def": [
{
"name": "bar",
"code": 223,
"space": "dhcp4",
"type": "record",
"array": false,
"record-types": "ipv4-address, uintl6, boolean, string",
"encapsulate": ""
i
1,
}

The type parameter is set to "record" to indicate that the option contains multiple values of different types. These
types are given as a comma-separated list in the record-types field and should be ones from those listed in List of
standard DHCP option types.

The option's values are set in an option-data statement as follows:

"Dhcp4": {
"option-data": [
{
"name": "bar",
"space": "dhcp4",
"code": 223,
"csv-format": true,
"data": "192.0.2.100, 123, true, Hello World"
}
1,
}

The csv-format parameter is set to true to indicate that the data field comprises a comma-separated list of values.
The values in data must correspond to the types set in the record-types field of the option definition.

When array is set to true and type is set to "record", the last field is an array, i.e. it can contain more than one
value, as in:

"Dhcp4": {
"option-def": [
{
"name": "bar",
"code": 223,
"space": "dhcp4",
"type": "record",
"array": true,
"record-types": "ipv4-address, uintl6",
"encapsulate": ""
B
1,

(continues on next page)

8.2. DHCPv4 Server Configuration 89

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

¥

The new option content is one IPv4 address followed by one or more 16-bit unsigned integers.

Note: In general, boolean values are specified as true or false, without quotes. Some specific boolean parameters
may also accept "true", "false", 0, 1, "0", and "1".

Note: Numbers can be specified in decimal or hexadecimal format. The hexadecimal format can be either plain (e.g.
abcd) or prefixed with Ox (e.g. Oxabcd).

8.2.13 DHCPv4 Private Options

Options with a code between 224 and 254 are reserved for private use. They can be defined at the global scope or at
the client-class local scope; this allows option definitions to be used depending on context, and option data to be set
accordingly. For instance, to configure an old PXEClient vendor:

"Dhcp4": {
"client-classes": [
{
"name": "pxeclient",
"test": "option[vendor-class-identifier].text == 'PXEClient'",
"option-def": [
{
"name": "configfile",
"code": 209,
"type": "string"
}
ie
e
1,
}

As the Vendor-Specific Information (VSI) option (code 43) has a vendor-specific format, i.e. can carry either raw binary
value or sub-options, this mechanism is also available for this option.

In the following example taken from a real configuration, two vendor classes use option 43 for different and incompatible
purposes:

"Dhcpd": {
"option-def": [
{
"name": "cookie",
"code": 1,
"type": "string",

"space": "APC"
(continues on next page)

90 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

e
{
"name": "mtftp-ip",
"code": 1,
"type": "ipv4-address",
"space": "PXE"
B
1,
"client-classes": [
{
"name": "APC",
"test": "option[vendor-class-identifier].text == 'APC'",
"option-def": [
{
"name": "vendor-encapsulated-options",
"type": "empty",
"encapsulate": "APC"
}
1,
"option-data": [
{
"name": "cookie",
"space": "APC",
"data": "1APC"
e
{
"name": "vendor-encapsulated-options"
3,
1,
B
{
"name": "PXE",
"test": "option[vendor-class-identifier].text == 'PXE'",
"option-def": [
{
"name": "vendor-encapsulated-options",
"type": "empty",
"encapsulate": "PXE"
}
I[P
"option-data": [
{
"name": "mtftp-ip",
Ilspacell: llPxEll’
"data": "0.0.0.0"
B
{
"name": "vendor-encapsulated-options"
1,

(continues on next page)

8.2. DHCPv4 Server Configuration

91

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

The definition used to decode a VSI option is:
1. The local definition of a client class the incoming packet belongs to;
2. If none, the global definition;

3. If none, the last-resort definition described in the next section, DHCPv4 Vendor-Specific Options (backward-
compatible with previous Kea versions).

Note: This last-resort definition for the Vendor-Specific Information option (code 43) is not compatible with a raw
binary value. When there are known cases where a raw binary value will be used, a client class must be defined with
both a classification expression matching these cases and an option definition for the VSI option with a binary type and
no encapsulation.

Note: By default, in the Vendor-Specific Information option (code 43), sub-option code 0 and 255 mean PAD and
END respectively, according to RFC 2132. In other words, the sub-option code values of 0 and 255 are reserved. Kea
does, however, allow users to define sub-option codes from 0 to 255. If sub-options with codes 0 and/or 255 are defined,
bytes with that value are no longer treated as a PAD or an END, but as the sub-option code when parsing a VSI option
in an incoming query.

Option 43 input processing (also called unpacking) is deferred so that it happens after classification. This means clients
cannot be classified using option 43 sub-options. The definition used to unpack option 43 is determined as follows:

» If defined at the global scope, this definition is used.
« If defined at client class scope and the packet belongs to this class, the client class definition is used.

* If not defined at global scope nor in a client class to which the packet belongs, the built-in last resort definition
is used. This definition only says the sub-option space is "vendor-encapsulated-options-space".

The output definition selection is a bit simpler:
« If the packet belongs to a client class which defines the option 43, use this definition.
* If defined at the global scope, use this definition.
¢ Otherwise, use the built-in last-resort definition.

Since they use a specific/per vendor option space, sub-options are defined at the global scope.

Note: Option definitions in client classes are allowed only for this limited option set (codes 43 and from 224 to 254),
and only for DHCPv4.

92 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc2132

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.2.14 DHCPv4 Vendor-Specific Options

Currently there are two option spaces defined for kea-dhcp4: dhcp4 (for the top-level DHCPv4 options) and
"vendor-encapsulated-options-space", which is empty by default but in which options can be defined. Those
options are carried in the Vendor-Specific Information option (code 43). The following examples show how to define
an option foo with code 1 that comprises an IPv4 address, an unsigned 16-bit integer, and a string. The foo option is
conveyed in a Vendor-Specific Information option.

The first step is to define the format of the option:

"Dhcp4": {
"option-def": [
{
"name": "foo",
"code": 1,
"space": "vendor-encapsulated-options-space",
"type": "record",
"array": false,
"record-types": "ipv4-address, uintl6, string",
"encapsulate": ""
}
1,
}

Note that the option space is set to "vendor-encapsulated-options-space". Once the option format is defined,
the next step is to define actual values for that option:

"Dhcp4": {
"option-data": [
{
"name": "foo",
"space": "vendor-encapsulated-options-space",
"code": 1,
"csv-format": true,
"data": "192.0.2.3, 123, Hello World"
}
1,
3

In this example, we also include the Vendor-Specific Information option, which conveys our sub-option foo. This is
required; otherwise, the option will not be included in messages sent to the client.

"Dhcp4": {
"option-data": [
{
"name": "vendor-encapsulated-options"
}
1,
}

Alternatively, the option can be specified using its code.

8.2. DHCPv4 Server Configuration 93

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcp4": {
"option-data": [
{
"code": 43
}
1,
}

Another popular option that is often somewhat imprecisely called the "vendor option" is option 125. Its proper name
is the "vendor-independent vendor-specific information option" or "vivso". The idea behind vivso options is that each
vendor has its own unique set of options with their own custom formats. The vendor is identified by a 32-bit unsigned
integer called enterprise-number or vendor-id.

The standard spaces defined in Kea and their options are:

* vendor-4491: Cable Television Laboratories, Inc. for DOCSIS3 options:

option option option description

code name

1 oro ORO (or Option Request Option), used by clients to request a list of options they are
interested in.

2 tftp-servers a list of IPv4 addresses of TFTP servers to be used by the cable modem

In Kea, each vendor is represented by its own vendor space. Since there are hundreds of vendors and they sometimes
use different option definitions for different hardware, it is impossible for Kea to support them all natively. Fortunately,
it is easy to define support for new vendor options. As an example, the Genexis home gateway device requires the vivso
125 option to be sent with a sub-option 2 that contains a string with the TFTP server URL. To support such a device,
three steps are needed: first, establish option definitions that explain how the option is supposed to be formed; second,
define option values; and third, tell Kea when to send those specific options, via client classification.

An example snippet of a configuration could look similar to the following:

"Dhcp4d": {
// First, we need to define that the sub-option 2 in vivso option for
// vendor-id 25167 has a specific format (it's a plain string in this example).
// After this definition, we can specify values for option tftp.
"option-def": [

{
// We define a short name, so the option can be referenced by name.
// The option has code 2 and resides within vendor space 25167.
// Its data is a plain string.
"name": "tftp",
"code": 2,
"space": "vendor-25167",
"type": "string"
}

] ’

"client-classes": [
{
// We now need to tell Kea how to recognize when to use vendor space 25167.
// Usually we can use a simple expression, such as checking if the device
(continues on next page)

94 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

// sent a vivso option with specific vendor-id, e.g. "vendor[4491].exists".
// Unfortunately, Genexis is a bit unusual in this aspect, because it

// doesn't send vivso. In this case we need to look into the vendor class
// (option code 60) and see if there's a specific string that identifies
// the device. Alternatively, one can make use of the automated "VENDOR_

—CLASS_"
// client class and replace "name" and "test" with “~"name": "VENDOR_CLASS_
—HMC1000""
// and no test expression.
"name": "cpe_genexis",
"test": "substring(option[60].hex,0,7) == "HMC1000'",
// Once the device is recognized, we want to send two options:
// the vivso option with vendor-id set to 25167, and a sub-option 2.
"option-data": [
{
"name": "vivso-suboptions",
"data": "25167"
e
// The sub-option 2 value is defined as any other option. However,
// we want to send this sub-option 2, even when the client didn't
// explicitly request it (often there is no way to do that for
// vendor options). Therefore we use always-send to force Kea
// to always send this option when 25167 vendor space is involved.
{
"name": "tftp",
"space": "vendor-25167",
"data": "tftp://192.0.2.1/genexis/HMC1000.v1.3.0-R.img",
"always-send": true
}
1
}
]
}

By default, Kea sends back only those options that are requested by a client, unless there are protocol rules that tell the
DHCEP server to always send an option. This approach works nicely in most cases and avoids problems with clients
refusing responses with options they do not understand. However, the situation with vendor options is more complex,
as they are not requested the same way as other options, are not well-documented in official RFCs, or vary by vendor.

Some vendors (such as DOCSIS, identified by vendor option 4491) have a mechanism to request specific vendor options
and Kea is able to honor those (sub-option 1). Unfortunately, for many other vendors, such as Genexis (25167, discussed
above), Kea does not have such a mechanism, so it cannot send any sub-options on its own. To solve this issue, we
devised the concept of persistent options. Kea can be told to always send options, even if the client did not request
them. This can be achieved by adding "always-send": true to the option data entry. Note that in this particular
case an option is defined in vendor space 25167. With always-send enabled, the option is sent every time there is a
need to deal with vendor space 25167.

This is also how kea-dhcp4 can be configured to send multiple vendor options from different vendors, along with each
of their specific vendor IDs. If these options need to be sent by the server regardless of whether the client specified
any enterprise number, "always-send": true must be configured for the suboptions that will be included in the
vivso-suboptions option (code 125).

8.2. DHCPv4 Server Configuration 95

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcp4": {

"option-data": [
Typically DHCPv4 clients will send a Parameter Request List option (code 55).

- for

vivso-suboptions (code 125), and that is enough for Kea to understand that it.
—needs to

send the option. These options still need to be defined in the configuration,.,
-,one per

each vendor, but they don't need "always-send" enabled in that case. For.,
—.misbehaving

clients that do not explicitly request it, one may alternatively set "always-
—send"

to true for them as well. This is referring to the following two entries in.

—,option-data.

{
"name": "vivso-suboptions",
"space": "dhcp4",
"data": "2234"
be
{
"name": "vivso-suboptions",
"space": "dhcp4",
"data": "3561"
be
{
"always-send": true,
"data": "tagged",
"name": "tag",
"space": "vendor-2234"
be
{
"always-send": true,
"data": "https://example.com:1234/path",
"name": "url",
"space": "vendor-3561"
}
] ’
"option-def": [
{
"code": 22,
"name": "tag",
"space": "vendor-2234",
"type": "string"
b
{
"code": 11,
"name": "url",
"space": "vendor-3561",
"type": "string"
}
1
}
96 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

Another possibility is to redefine the option; see DHCPv4 Private Options.

Kea comes with several example configuration files. Some of them showcase how to configure options 60 and 43. See
doc/examples/kead/vendor-specific. json and doc/examples/kead/vivso. json in the Kea sources.

Note: kea-dhcp4 is able to recognize multiple Vendor Class Identifier options (code 60) with different vendor IDs
in the client requests, and to send multiple vivso options (code 125) in the responses, one for each vendor.

kea-dhcp4 honors DOCSIS sub-option 1 (ORO) and adds only requested options if this sub-option is present in the
client request.

Currently only one vendor is supported for the vivco-suboptions (code 124) option. Specifying multiple enterprise
numbers within a single option instance or multiple options with different enterprise numbers is not supported.

8.2.15 Nested DHCPv4 Options (Custom Option Spaces)

It is sometimes useful to define a completely new option space, such as when a user creates a new option in the standard
option space (dhcp4) and wants this option to convey sub-options. Since they are in a separate space, sub-option codes
have a separate numbering scheme and may overlap with the codes of standard options.

Note that the creation of a new option space is not required when defining sub-options for a standard option, because one
is created by default if the standard option is meant to convey any sub-options (see DHCPv4 Vendor-Specific Options).

If we want a DHCPv4 option called container with code 222, that conveys two sub-options with codes 1 and 2, we
first need to define the new sub-options:

"Dhcp4": {
"option-def": [

{
"name": "suboptl",
"code": 1,
"space": "isc",
"type": "ipv4-address",
"record-types": "",
"array": false,
"encapsulate": ""

i

{
"name": "subopt2",
"code": 2,
"space": "isc",
"type": "string",
"record-types": "",
"array": false,
"encapsulate": ""

}

1,
}

Note that we have defined the options to belong to a new option space (in this case, "isc").

The next step is to define a regular DHCPv4 option with the desired code and specify that it should include options
from the new option space:

8.2. DHCPv4 Server Configuration 97

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcpd": {
"option-def": [
{
"name": "container",
"code": 222,
"space": "dhcp4",
"type": "empty",
"array": false,
"record-types": "",
"encapsulate": "isc"
B
1,
}

The name of the option space in which the sub-options are defined is set in the encapsulate field. The type field is
setto "empty", to indicate that this option does not carry any data other than sub-options.

Finally, we can set values for the new options:

{
"Dhcp4d": {
"option-data": [

{
"name": "suboptl",
"code": 1,
"space": "isc",
"data": "192.0.2.3"

Bo

{
"name": "subopt2",
"code": 2,
"space": "isc",
"data": "Hello world"

Fg

{
"name": "container",
"code": 222,
"space": "dhcp4"

}

]
}
}

It is possible to create an option which carries some data in addition to the sub-options defined in the encapsulated
option space. For example, if the container option from the previous example were required to carry a uint16 value
as well as the sub-options, the type value would have to be set to "uint16" in the option definition. (Such an option
would then have the following data structure: DHCP header, uint16 value, sub-options.) The value specified with the
data parameter — which should be a valid integer enclosed in quotes, e.g. "123" — would then be assigned to the
uint16 field in the container option.

98 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.2.16 Unspecified Parameters for DHCPv4 Option Configuration

In many cases it is not required to specify all parameters for an option configuration, and the default values can be used.
However, it is important to understand the implications of not specifying some of them, as it may result in configuration
errors. The list below explains the behavior of the server when a particular parameter is not explicitly specified:

* name - the server requires either an option name or an option code to identify an option. If this parameter is
unspecified, the option code must be specified.

* code - the server requires either an option name or an option code to identify an option; this parameter may be
left unspecified if the name parameter is specified. However, this also requires that the particular option have a
definition (either as a standard option or an administrator-created definition for the option using an option-def
structure), as the option definition associates an option with a particular name. It is possible to configure an
option for which there is no definition (unspecified option format). Configuration of such options requires the
use of the option code.

* space - if the option space is unspecified it defaults to dhcp4, which is an option space holding standard DHCPv4
options.

* data - if the option data is unspecified it defaults to an empty value. The empty value is mostly used for the
options which have no payload (boolean options), but it is legal to specify empty values for some options which
carry variable-length data and for which the specification allows a length of 0. For such options, the data param-
eter may be omitted in the configuration.

» csv-format - if this value is not specified, the server assumes that the option data is specified as a list of comma-
separated values to be assigned to individual fields of the DHCP option.

8.2.17 Support for Long Options

The kea-dhcp4 server partially supports long options (RFC 3396). Since Kea 2.1.6, the server accepts configuring long
options and sub-options (longer than 255 bytes). The options and sub-options are stored internally in their unwrapped
form and they can be processed as usual using the parser language. On send, the server splits long options and sub-
options into multiple options and sub-options, using the respective option code.

{
"option-def": [
{
"array": false,
"code": 240,
"encapsulate": "",
"name": "my-option",
"space": "dhcp4",
"type": "string"
}
1,
"subnet4": [
{
"id": 1,

"subnet": "192.0.2.0/24",
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:ff",
"option-data": [
{
"always-send": false,

(continues on next page)

8.2. DHCPv4 Server Configuration 99

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"code": 240,
"name": "my-option",
"csv-format": true,
"data": "data \
-00010203040506070809-00010203040506070809-
- 00010203040506070809-00010203040506070809 \
-00010203040506070809-00010203040506070809-
—00010203040506070809-00010203040506070809 \
-00010203040506070809-00010203040506070809-
- 00010203040506070809-00010203040506070809 \
-data",
"space": "dhcp4"

Note: In the example above, the data has been wrapped into several lines for clarity, but Kea does not support wrapping
in the configuration file.

This example illustrates configuring a custom long option (exceeding 255 octets) in a reservation. When sending a
response, the server splits this option into two options, each with the code 240.

Note: Currently the server does not support storing long options in databases, either via host reservations or the
configuration backend.

The server is also able to receive packets with split options (options using the same option code) and to fuse the data
chunks into one option. This is also supported for sub-options if each sub-option data chunk also contains the sub-option
code and sub-option length.

8.2.18 Support for IPv6-Only Preferred Option

The v6-only-preferred (code 108) option is handled in a specific way described in RFC 8925 by kea-dhcp4 when
itis configured in a subnet or a shared network: when the client requests the option (i.e. puts the 108 code in the DHCP
parameter request list option) and the subnet or shared network is selected the 0.0.0.0 address is offered and the option
returned in the response.

100 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc8925

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.2.19 Stateless Configuration of DHCPv4 Clients

The DHCPv4 server supports stateless client configuration, whereby the client has an IP address configured (e.g. using
manual configuration) and only contacts the server to obtain other configuration parameters, such as addresses of DNS
servers. To obtain the stateless configuration parameters, the client sends the DHCPINFORM message to the server
with the ciaddr set to the address that the client is currently using. The server unicasts the DHCPACK message to the
client that includes the stateless configuration ("yiaddr" not set).

The server responds to the DHCPINFORM when the client is associated with a subnet defined in the server's configu-
ration. An example subnet configuration looks like this:

"Dhcp4": {
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/24",
"option-data": [
{
"name": "domain-name-servers",
"code": 6,
"data": "192.0.2.200,192.0.2.201",
"csv-format": true,
"space": "dhcp4"
}
1
}
]
}

This subnet specifies the single option which will be included in the DHCPACK message to the client in response
to DHCPINFORM. The subnet definition does not require the address pool configuration if it will be used solely for
stateless configuration.

This server will associate the subnet with the client if one of the following conditions is met:

The DHCPINFORM is relayed and the giaddr matches the configured subnet.

The DHCPINFORM is unicast from the client and the ciaddr matches the configured subnet.

The DHCPINFORM is unicast from the client and the ciaddr is not set, but the source address of the IP packet
matches the configured subnet.

The DHCPINFORM is not relayed and the IP address on the interface on which the message is received matches
the configured subnet.

8.2.20 Client Classification in DHCPv4

The DHCPv4 server includes support for client classification. For a deeper discussion of the classification process, see
Client Classification.

In certain cases it is useful to configure the server to differentiate between DHCP client types and treat them accord-
ingly. Client classification can be used to modify the behavior of almost any part of DHCP message processing. Kea
currently offers client classification via private options and option 43 deferred unpacking; subnet selection; pool selec-
tion; assignment of different options; and, for cable modems, specific options for use with the TFTP server address and
the boot file field.

8.2. DHCPv4 Server Configuration 101

Kea Administrator Reference Manual Documentation, Release 2.7.5

Kea can be instructed to limit access to given subnets based on class information. This is particularly useful for cases
where two types of devices share the same link and are expected to be served from two different subnets. The primary
use case for such a scenario is cable networks, where there are two classes of devices: the cable modem itself, which
should be handed a lease from subnet A; and all other devices behind the modem, which should get leases from subnet
B. That segregation is essential to prevent overly curious end-users from playing with their cable modems. For details
on how to set up class restrictions on subnets, see Configuring Subnets With Class Information.

When subnets belong to a shared network, the classification applies to subnet selection but not to pools; that is, a pool
in a subnet limited to a particular class can still be used by clients which do not belong to the class, if the pool they are
expected to use is exhausted. The limit on access based on class information is also available at the pool level within a
subnet: see Configuring Pools With Class Information. This is useful when segregating clients belonging to the same
subnet into different address ranges.

In a similar way, a pool can be constrained to serve only known clients, i.e. clients which have a reservation, using the
built-in KNOWN or UNKNOWN classes. Addresses can be assigned to registered clients without giving a different address
per reservation: for instance, when there are not enough available addresses. The determination whether there is a
reservation for a given client is made after a subnet is selected, so it is not possible to use KNOWN/UNKNOWN classes to
select a shared network or a subnet.

The process of classification is conducted in five steps. The first step is to assess an incoming packet and assign it
to zero or more classes. The second step is to choose a subnet, possibly based on the class information. When the
incoming packet is in the special class DROP, it is dropped and a debug message logged. The next step is to evaluate
class expressions depending on the built-in KNOWN/UNKNOWN classes after host reservation lookup, using them for pool
selection and assigning classes from host reservations. The list of required classes is then built and each class of the
list has its expression evaluated; when it returns true, the packet is added as a member of the class. The last step is to
assign options, again possibly based on the class information. More complete and detailed information is available in
Client Classification.

There are two main methods of classification. The first is automatic and relies on examining the values in the vendor
class options or the existence of a host reservation. Information from these options is extracted, and a class name is
constructed from it and added to the class list for the packet. The second method specifies an expression that is evaluated
for each packet. If the result is true, the packet is a member of the class.

Note: The new early-global-reservations-lookup global parameter flag enables a lookup for global reser-
vations before the subnet selection phase. This lookup is similar to the general lookup described above with two
differences:

* the lookup is limited to global host reservations

¢ the UNKNOWN class is never set

Note: Care should be taken with client classification, as it is easy for clients that do not meet class criteria to be denied
all service.

102 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.2.20.1 Setting Fixed Fields in Classification

It is possible to specify that clients belonging to a particular class should receive packets with specific values in certain
fixed fields. In particular, three fixed fields are supported: next-server (conveys an IPv4 address, which is set in the
siaddr field), server-hostname (conveys a server hostname, can be up to 64 bytes long, and is sent in the sname
field) and boot-file-name (conveys the configuration file, can be up to 128 bytes long, and is sent using the file
field).

Obviously, there are many ways to assign clients to specific classes, but for PXE clients the client architecture type
option (code 93) seems to be particularly suited to make the distinction. The following example checks whether the
client identifies itself as a PXE device with architecture EFI x86-64, and sets several fields if it does. See Section 2.1
of RFC 4578) or the client documentation for specific values.

"Dhcp4": {
"client-classes": [
{
"name": "ipxe_efi_x64",
"test": "option[93].hex == 0x0009",
"next-server": "192.0.2.254",
"server-hostname": "hal9000",
"boot-file-name": "/dev/null"
B
1,
}

If an incoming packet is matched to multiple classes, then the value used for each field will come from the first class
that specifies the field, in the order the classes are assigned to the packet.

Note: The classes are ordered as specified in the configuration.

8.2.20.2 Using Vendor Class Information in Classification

The server checks whether an incoming packet includes the vendor class identifier option (60). If it does, the content
of that option is prepended with VENDOR_CLASS_, and it is interpreted as a class. For example, modern cable modems
send this option with value docsis3.0, so the packet belongs to the class VENDOR_CLASS_docsis3.0.

Note: Certain special actions for clients in VENDOR_CLASS_docsis3.0 can be achieved by defining
VENDOR_CLASS_docsis3.0 and setting its next-server and boot-file-name values appropriately.

This example shows a configuration using an automatically generated VENDOR_CLASS_ class. The administrator of the
network has decided that addresses from the range 192.0.2.10 to 192.0.2.20 are going to be managed by the Dhcp4
server and only clients belonging to the DOCSIS 3.0 client class are allowed to use that pool.

"Dhcp4d": {
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" } 1,

(continues on next page)

8.2. DHCPv4 Server Configuration 103

https://tools.ietf.org/html/rfc4578#section-2.1
https://tools.ietf.org/html/rfc4578#section-2.1

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"client-classes": ["VENDOR_CLASS_docsis3.0"]

8.2.20.3 Defining and Using Custom Classes

The following example shows how to configure a class using an expression and a subnet using that class. This con-
figuration defines the class named Client_foo. It is comprised of all clients whose client IDs (option 61) start with
the string foo. Members of this class will be given addresses from 192.0.2.10 to 192.0.2.20 and the addresses of their
DNS servers set to 192.0.2.1 and 192.0.2.2.

"Dhcp4": {
"client-classes": [
{
"name": "Client_foo",
"test": "substring(option[61].hex,0,3) == 'foo'",
"option-data": [
{
"name": "domain-name-servers",
"code": 6,
"space": "dhcp4",
"csv-format": true,
"data": "192.0.2.1, 192.0.2.2"
}
1
b
1,
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" } 1],
"client-classes": ["Client_foo"]
e
1,
}

104 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.2.20.4 Additional Classification

In some cases it is useful to limit the scope of a class to a pool, subnet, or shared network. There are two parameters
which are used to limit the scope of the class by instructing the server to evaluate test expressions when required.

The evaluate-additional-classes, which takes a list of class names and is valid in pool, subnet, and shared
network scope. Classes in these lists are marked as additional and evaluated after selection of this specific
pool/subnet/shared network and before output-option processing.

The second one is the per-class only-in-additional-1ist flag, which is false by default. When it is set to true,
the test expression of the class is not evaluated at the reception of the incoming packet but later, and only if the class is
present in an evaluate-additional-classes list.

In this example, a class is assigned to the incoming packet when the specified subnet is used:

"Dhcp4": {
"client-classes": [
{
"name": "Client_foo",
"test": "member('ALL')",
"only-in-additional-list": true
e
1,
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" } 1],
"evaluate-additional-classes": ["Client_foo"],
B
1,

Additional evaluation can be used to express complex dependencies like subnet membership. It can also be used
to reverse the precedence; if option-data is set in a subnet, it takes precedence over option-data in a class. If
option-data is moved to a required class and required in the subnet, a class evaluated earlier may take precedence.

Additional evaluation is also available at shared network and pool levels. The order in which additional classes are con-
sidered is: pool, subnet, and shared network, i.e. in the same order from the way in which option-data is processed.

Since Kea version 2.7.4 additional classes configured without a test expression are unconditionally added, i.e. they are
considered to always be evaluated to true.

Note: Because additional evaluation occurs after lease assignment, parameters that would otherwise impact lease
life times (e.g. valid-lifetime, offer-lifetime) will have no effect when specified in a class that also sets
only-in-additional-list true.

Note: As of Kea version 2.7.4, only-if-required and require-client-classes have been renamed to
only-in-additional-list and evaluate-additional-classes respectivley. The original names will still be
accepted as input to allow users to migrate but will eventually be rejected.

8.2. DHCPv4 Server Configuration 105

Kea Administrator Reference Manual Documentation, Release 2.7.5

Note: Vendor-Identifying Vendor Options are a special case: for all other options an option is identified by its code
point, but vivco-suboptions (124) and vivso-suboptions (125) are identified by the pair of code point and vendor
identifier. This has no visible effect for vivso-suboptions, whose value is the vendor identifier, but it is different for
vivco-suboptions, where the value is a record with the vendor identifier and a binary value. For instance, in:

"Dhcp4": {
"option-data": [
{
"name": "vivco-suboptions",
"always-send": true,
"data": "1234, 03666f6f"
e
{
"name": "vivco-suboptions",
"always-send": true,
"data": "5678, 03626172"
e
1,
}

The first option-data entry does not hide the second one, because the vendor identifiers (1234 and 5678) are different:
the responses will carry two instances of the vivco-suboptions option, each for a different vendor.

8.2.21 DDNS for DHCPv4

As mentioned earlier, kea-dhcp4 can be configured to generate requests to the DHCP-DDNS server, kea-dhcp-ddns,
(referred to herein as "D2") to update DNS entries. These requests are known as NameChangeRequests or NCRs. Each
NCR contains the following information:

1. Whether it is a request to add (update) or remove DNS entries.
2. Whether the change requests forward DNS updates (A records), reverse DNS updates (PTR records), or both.

3. The Fully Qualified Domain Name (FQDN), lease address, and DHCID (information identifying the client as-
sociated with the FQDN).

DDNS-related parameters are split into two groups:
1. Connectivity Parameters

These are parameters which specify where and how kea-dhcp4 connects to and communicates with
D2. These parameters can only be specified within the top-level dhcp-ddns section in the kea-dhcp4
configuration. The connectivity parameters are listed below:

¢ enable-updates
e server-ip

e server-port

* sender-ip

¢ sender-port

* max-queue-size

106 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

* ncr-protocol
e ncr-format
2. Behavioral Parameters

These parameters influence behavior such as how client host names and FQDN options are han-
dled. They have been moved out of the dhcp-ddns section so that they may be specified at the
global, shared-network, and/or subnet levels. Furthermore, they are inherited downward from global
to shared-network to subnet. In other words, if a parameter is not specified at a given level, the value
for that level comes from the level above it. The behavioral parameters are as follows:

¢ ddns-send-updates

¢ ddns-override-no-update

¢ ddns-override-client-update

¢ ddns-replace-client-name

¢ ddns-generated-prefix

e ddns-qualifying-suffix

¢ ddns-update-on-renew

e ddns-conflict-resolution-mode
¢ ddns-ttl-percent

* hostname-char-set

* hostname-char-replacement

Note: Behavioral parameters that affect the FQDN are in effect even if both enable-updates and
ddns-send-updates are false, to support environments in which clients are responsible for their own DNS
updates. This applies to ddns-replace-client-name, ddns-generated-prefix, ddns-qualifying-suffix,

hostname-char-set, and hostname-char-replacement.

The default configuration and values would appear as follows:

"Dhcp4": {
"dhcp-ddns": {

// Connectivity parameters
"enable-updates": false,
"server-ip": "127.0.0.1",
"server-port":53001,
"sender-ip":"",
"sender-port":0,
"max-queue-size":1024,
"ncr-protocol":"UDP",
"ncr-format":"JSON"

},

// Behavioral parameters (global)
"ddns-send-updates": true,
"ddns-override-no-update": false,
"ddns-override-client-update": false,
"ddns-replace-client-name": '"never",

(continues on next page)

8.2. DHCPv4 Server Configuration

107

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"ddns-generated-prefix": "myhost",
"ddns-qualifying-suffix": ""

"ddns-update-on-renew": false,
"ddns-conflict-resolution-mode": "check-with-dhcid",
"hostname-char-set": ""

"hostname-char-replacement": "",

}

There are two parameters which determine whether kea-dhcp4 can generate DDNS requests to D2: the existing
dhcp-ddns:enable-updates parameter, which now only controls whether kea-dhcp4 connects to D2; and the new
behavioral parameter, ddns-send-updates, which determines whether DDNS updates are enabled at a given level
(i.e. global, shared-network, or subnet). The following table shows how the two parameters function together:

Table 6: Enabling and disabling DDNS updates

dhcp-ddns: enable- Global ddns-send- Outcome

updates updates

false (default) false no updates at any scope

false true (default) no updates at any scope

true false updates only at scopes with a local value of true for
ddns-enable-updates

true true updates at all scopes except those with a local value of false for

ddns-enable-updates

Kea 1.9.1 added two new parameters; the first is ddns-update-on-renew. Normally, when leases are renewed, the
server only updates DNS if the DNS information for the lease (e.g. FQDN, DNS update direction flags) has changed.
Setting ddns-update-on-renew to true instructs the server to always update the DNS information when a lease is
renewed, even if its DNS information has not changed. This allows Kea to "self-heal" if it was previously unable to add
DNS entries or they were somehow lost by the DNS server.

Note: Setting ddns-update-on-renew to true may impact performance, especially for servers with numerous
clients that renew often.

The second parameter added in Kea 1.9.1 is ddns-use-conflict-resolution. This boolean parameter was passed
through to D2 and enabled or disabled conflict resolution as described in RFC 4703. Beginning with Kea 2.5.0, it
is deprecated and replaced by ddns-conflict-resolution-mode, which offers four modes of conflict resolution-
related behavior:

¢ check-with-dhcid - This mode, the default, instructs D2 to carry out RFC 4703-compliant conflict resolution.
Existing DNS entries may only be overwritten if they have a DHCID record and it matches the client's DHCID.
This is equivalent to ddns-use-conflict-resolution: true;

* no-check-with-dhcid - Existing DNS entries may be overwritten by any client, whether those entries include
a DHCID record or not. The new entries will include a DHCID record for the client to whom they belong. This
is equivalent to ddns-use-conflict-resolution: false;

e check-exists-with-dhcid - Existing DNS entries may only be overwritten if they have a DHCID record.
The DHCID record need not match the client's DHCID. This mode provides a way to protect static DNS entries
(those that do not have a DHCID record) while allowing dynamic entries (those that do have a DHCID record)
to be overwritten by any client. This behavior was not supported prior to Kea 2.4.0.

108 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc4703

Kea Administrator Reference Manual Documentation, Release 2.7.5

* no-check-without-dhcid - Existing DNS entries may be overwritten by any client; new entries will not in-
clude DHCID records. This behavior was not supported prior to Kea 2.4.0.

Note: For backward compatibility, ddns-use-conflict-resolution is still accepted in JSON configura-
tion. The server replaces the value internally with ddns-conflict-resolution-mode and an appropriate value:
check-with-dhcid for true and no-check-with-dhcid for false.

Note: Setting ddns-conflict-resolution-mode to any value other than check-with-dhcid disables the over-
write safeguards that the rules of conflict resolution (from RFC 4703) are intended to prevent. This means that existing
entries for an FQDN or an IP address made for Client-A can be deleted or replaced by entries for Client-B. Furthermore,
there are two scenarios by which entries for multiple clients for the same key (e.g. FQDN or IP) can be created.

1. Client-B uses the same FQDN as Client-A but a different IP address. In this case, the forward DNS entries (A and
DHCID RRs) for Client-A will be deleted as they match the FQDN, and new entries for Client-B will be added. The
reverse DNS entries (PTR and DHCID RRs) for Client-A, however, will not be deleted as they belong to a different IP
address, while new entries for Client-B will still be added.

2. Client-B uses the same IP address as Client-A but a different FQDN. In this case, the reverse DNS entries (PTR and
DHCID RRs) for Client-A will be deleted as they match the IP address, and new entries for Client-B will be added.
The forward DNS entries (A and DHCID RRs) for Client-A, however, will not be deleted, as they belong to a different
FQDN, while new entries for Client-B will still be added.

Disabling conflict resolution should be done only after careful review of specific use cases. The best way to avoid
unwanted DNS entries is to always ensure that lease changes are processed through Kea, whether they are released,
expire, or are deleted via the Iease4-del command, prior to reassigning either FQDNs or IP addresses. Doing so
causes kea-dhcp4 to generate DNS removal requests to D2.

The DNS entries Kea creates contain a value for TTL (time to live). The kea-dhcp4 server calculates that value based
on RFC 4702, Section 5, which suggests that the TTL value be 1/3 of the lease's lifetime, with a minimum value of 10
minutes.

The parameter ddns-ttl-percent, when specified, causes the TTL to be calculated as a simple percentage of the
lease's lifetime, using the parameter's value as the percentage. It is specified as a decimal percent (e.g. .25, .75, 1.00)
and may be specified at the global, shared-network, and subnet levels. By default it is unspecified.

8.2.21.1 DHCP-DDNS Server Connectivity

For NCRs to reach the D2 server, kea-dhcp4 must be able to communicate with it. kea-dhcp4 uses the following
configuration parameters to control this communication:

enable-updates - Enables connectivity to kea-dhcp-ddns such that DDNS updates can be constructed and
sent. It must be true for NCRs to be generated and sent to D2. It defaults to false.

server-ip - This is the IP address on which D2 listens for requests. The default is the local loopback interface
at address 127.0.0.1. Either an IPv4 or IPv6 address may be specified.

server-port - This is the port on which D2 listens for requests. The default value is 53001.

sender-ip - This is the IP address which kea-dhcp4 uses to send requests to D2. The default value is blank,
which instructs kea-dhcp4 to select a suitable address.

sender-port - This is the port which kea-dhcp4 uses to send requests to D2. The default value of 0 instructs
kea-dhcp4 to select a suitable port.

max-queue-size - This is the maximum number of requests allowed to queue while waiting to be sent to D2.
This value guards against requests accumulating uncontrollably if they are being generated faster than they can

8.2. DHCPv4 Server Configuration 109

https://tools.ietf.org/html/rfc4703
https://tools.ietf.org/html/rfc4702#section-5

Kea Administrator Reference Manual Documentation, Release 2.7.5

be delivered. If the number of requests queued for transmission reaches this value, DDNS updating is turned off
until the queue backlog has been sufficiently reduced. The intent is to allow the kea-dhcp4 server to continue
lease operations without running the risk that its memory usage grows without limit. The default value is 1024.

e ncr-protocol - This specifies the socket protocol to use when sending requests to D2. Currently only UDP is
supported.

* ncr-format - This specifies the packet format to use when sending requests to D2. Currently only JSON format
is supported.

By default, kea-dhcp-ddns is assumed to be running on the same machine as kea-dhcp4, and all of the default values
mentioned above should be sufficient. If, however, D2 has been configured to listen on a different address or port, these
values must be altered accordingly. For example, if D2 has been configured to listen on 192.168.1.10 port 900, the
following configuration is required:

"Dhcp4d": {
"dhcp-ddns": {
"server-ip": "192.168.1.10",
"server-port": 900,

3,

8.2.21.2 When Does the kea-dhcp4 Server Generate a DDNS Request?

The kea-dhcp4 server follows the behavior prescribed for DHCP servers in RFC 4702. It is important to keep in mind
that kea-dhcp4 makes the initial decision of when and what to update and forwards that information to D2 in the
form of NCRs. Carrying out the actual DNS updates and dealing with such things as conflict resolution are within the
purview of D2 itself (see The DHCP-DDNS Server). This section describes when kea-dhcp4 generates NCRs and the
configuration parameters that can be used to influence this decision. It assumes that both the connectivity parameter
enable-updates and the behavioral parameter ddns-send-updates, are true.

In general, kea-dhcp4 generates DDNS update requests when:
1. A new lease is granted in response to a DHCPREQUEST;
2. An existing lease is renewed but the FQDN associated with it has changed; or
3. An existing lease is released in response to a DHCPRELEASE.

In the second case, lease renewal, two DDNS requests are issued: one request to remove entries for the previous FQDN,
and a second request to add entries for the new FQDN. In the third case, a lease release - a single DDNS request - to
remove its entries is made.

As for the first case, the decisions involved when granting a new lease are more complex. When a new lease is granted,
kea-dhcp4 generates a DDNS update request if the DHCPREQUEST contains either the FQDN option (code 81) or
the Host Name option (code 12). If both are present, the server uses the FQDN option. By default, kea-dhcp4 respects
the FQDN N and S flags specified by the client as shown in the following table:

110 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc4702

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 7: Default FQDN flag behavior

Client Client Intent Server Response Server
Flags:N-S Flags:N-S-O
0-0 Client wants to do forward updates, server Server generates reverse-only re- 1-0-0

should do reverse updates quest
0-1 Server should do both forward and reverse up- Server generates request to up- 0-1-0

dates date both directions
1-0 Client wants no updates done Server does not generate arequest 1-0-0

The first row in the table above represents "client delegation." Here the DHCP client states that it intends to
do the forward DNS updates and the server should do the reverse updates. By default, kea-dhcp4 honors the
client's wishes and generates a DDNS request to the D2 server to update only reverse DNS data. The parameter
ddns-override-client-update can be used to instruct the server to override client delegation requests. When
this parameter is true, kea-dhcp4 disregards requests for client delegation and generates a DDNS request to update
both forward and reverse DNS data. In this case, the N-S-O flags in the server's response to the client will be 0-1-1
respectively.

(Note that the flag combination N=1, S=1 is prohibited according to RFC 4702. If such a combination is received from
the client, the packet is dropped by kea-dhcp4.)

To override client delegation, set the following values in the configuration file:

"Dhcp4d": {
"ddns-override-client-update": true,

}

The third row in the table above describes the case in which the client requests that no DNS updates be done. The
parameter ddns-override-no-update can be used to instruct the server to disregard the client's wishes. When this
parameter is true, kea-dhcp4 generates DDNS update requests to kea-dhcp-ddns even if the client requests that no
updates be done. The N-S-O flags in the server's response to the client will be 0-1-1.

To override client delegation, issue the following commands:

"Dhcp4": {
"ddns-override-no-update": true,

}

The kea-dhcp4 server always generates DDNS update requests if the client request only contains the Host Name
option. In addition, it includes an FQDN option in the response to the client with the FQDN N-S-O flags set to 0-1-0,
respectively. The domain name portion of the FQDN option is the name submitted to D2 in the DDNS update request.

8.2.21.3 kea-dhcp4 Name Generation for DDNS Update Requests

Each NameChangeRequest must of course include the fully qualified domain name whose DNS entries are to be af-
fected. kea-dhcp4 can be configured to supply a portion or all of that name, based on what it receives from the client
in the DHCPREQUEST.

The default rules for constructing the FQDN that will be used for DNS entries are:

1. If the DHCPREQUEST contains the client FQDN option, take the candidate name from there; otherwise, take it
from the Host Name option.

8.2. DHCPv4 Server Configuration 111

https://tools.ietf.org/html/rfc4702

Kea Administrator Reference Manual Documentation, Release 2.7.5

2. If the candidate name is a partial (i.e. unqualified) name, then add a configurable suffix to the name and use the
result as the FQDN.

3. If the candidate name provided is empty, generate an FQDN using a configurable prefix and suffix.
4. If the client provides neither option, then take no DNS action.

These rules can be amended by setting the ddns-replace-client-name parameter, which provides the following
modes of behavior:

* never - use the name the client sent. If the client sent no name, do not generate one. This is the default mode.
* always - replace the name the client sent. If the client sent no name, generate one for the client.
* when-present - replace the name the client sent. If the client sent no name, do not generate one.

* when-not-present - use the name the client sent. If the client sent no name, generate one for the client.

Note: In early versions of Kea, this parameter was a boolean and permitted only values of true and false. Boolean
values have been deprecated and are no longer accepted. Administrators currently using booleans must replace them
with the desired mode name. A value of true maps to when-present, while false maps to never.

For example, to instruct kea-dhcp4 to always generate the FQDN for a client, set the parameter
ddns-replace-client-name to always as follows:

"Dhcp4": {
"ddns-replace-client-name": "always",

The prefix used in the generation of an FQDN is specified by the ddns-generated-prefix parameter. The default
value is "myhost". To alter its value, simply set it to the desired string:

"Dhcp4d": {
"ddns-generated-prefix": "another.host",

The suffix used when generating an FQDN, or when qualifying a partial name, is specified by the
ddns-qualifying-suffix parameter. It is strongly recommended that the user supply a value for the qualifying
suffix when DDNS updates are enabled. For obvious reasons, we cannot supply a meaningful default.

"Dhcpd": {
"ddns-qualifying-suffix": "foo.example.org",

When qualifying a partial name, kea-dhcp4 constructs the name in the format:
[candidate-name] . [ddns-qualifying-suffix].

where candidate-name is the partial name supplied in the DHCPREQUEST. For example, if the FQDN domain name
value is "some-computer”" and the ddns-qualifying-suffix is "example.com", the generated FQDN is:

some-computer.example.com.
When generating the entire name, kea-dhcp4 constructs the name in the format:

[ddns-generated-prefix]-[address-text] . [ddns-qualifying-suffix].

112 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

where address-text is simply the lease IP address converted to a hyphenated string. For example, if the lease address
is 172.16.1.10, the qualifying suffix is "example.com", and the default value is used for ddns-generated-prefix,
the generated FQDN is:

myhost-172-16-1-10.example.com.

Note: When the client sends the host name option, kea-dhcp4 never adds a dot to the host name in the returned
option. It will only end with a dot if the client sent it already qualified and ending with a dot. When the client sends
the FQDN option, the FQDN returned in the response will always end with a dot.

8.2.21.4 Sanitizing Client Host Name and FQDN Names

Some DHCP clients may provide values in the Host Name option (option code 12) or FQDN option (option code 81)
that contain undesirable characters. It is possible to configure kea-dhcp4 to sanitize these values. The most typical
use case is ensuring that only characters that are permitted by RFC 1035 be included: A-Z, a-z, 0-9, and "-". This may
be accomplished with the following two parameters:

* hostname-char-set - a regular expression describing the invalid character set. This can be any valid, regular
expression using POSIX extended expression syntax. Embedded nulls (0x00) are always considered an invalid
character to be replaced (or omitted). The defaultis " [*A-Za-z0-9.-]". This matches any character that is not
a letter, digit, dot, hyphen, or null.

* hostname-char-replacement - a string of zero or more characters with which to replace each invalid character
in the host name. An empty string causes invalid characters to be OMITTED rather than replaced. The default
is mnn

The following configuration replaces anything other than a letter, digit, dot, or hyphen with the letter "x":

"Dhcp4": {
"hostname-char-set": "[AA-Za-z0-9.-1",
"hostname-char-replacement": "x",

}

Thus, a client-supplied value of "myhost-$[123.0org" would become "myhost-xx123.org". Sanitizing is performed only
on the portion of the name supplied by the client, and it is performed before applying a qualifying suffix (if one is
defined and needed).

Note: Name sanitizing is meant to catch the more common cases of invalid characters through a relatively simple
character-replacement scheme. It is difficult to devise a scheme that works well in all cases, for both Host Name and
FQDN options. Administrators who find they have clients with odd corner cases of character combinations that cannot
be readily handled with this mechanism should consider writing a hook that can carry out sufficiently complex logic to
address their needs.

If clients include domain names in the Host Name option and the administrator wants these preserved, they need
to make sure that the dot, ".", is considered a valid character by the hostname-char-set expression, such as this:
"[*A-Za-z0-9.-]". This does not affect dots in FQDN Option values. When scrubbing FQDNs, dots are treated as

delimiters and used to separate the option value into individual domain labels that are scrubbed and then re-assembled.

If clients are sending values that differ only by characters considered as invalid by the hostname-char-set, be aware
that scrubbing them will yield identical values. In such cases, DDNS conflict rules will permit only one of them to
register the name.

Finally, given the latitude clients have in the values they send, it is virtually impossible to guarantee that a combination
of these two parameters will always yield a name that is valid for use in DNS. For example, using an empty value for

8.2. DHCPv4 Server Configuration 113

Kea Administrator Reference Manual Documentation, Release 2.7.5

hostname-char-replacement could yield an empty domain label within a name, if that label consists only of invalid
characters.

Note: It is possible to specify hostname-char-set and/or hostname-char-replacement at the global scope.

The Kea hook library 1ibdhcp_ddns_tuning. so provides the ability for both kea-dhcp4 and kea-dhcp6 to gener-
ate host names procedurally based on an expression, to skip DDNS updates on a per-client basis, or to fine-tune various
DNS update aspects. Please refer to the libdhcp_ddns_tuning.so: DDNS Tuning documentation for the configuration
options.

8.2.22 Next Server (siaddr)

In some cases, clients want to obtain configuration from a TFTP server. Although there is a dedicated option for it, some
devices may use the siaddr field in the DHCPv4 packet for that purpose. That specific field can be configured using
the next-server directive. It is possible to define it in the global scope or for a given subnet only. If both are defined,
the subnet value takes precedence. The value in the subnet can be set to "0.0.0.0", which means that next-server
should not be sent. It can also be set to an empty string, which is equivalent to it not being defined at all; that is, it uses
the global value.

The server-hostname (which conveys a server hostname, can be up to 64 bytes long, and is in the sname field) and
boot-file-name (which conveys the configuration file, can be up to 128 bytes long, and is sent using the file field)
directives are handled the same way as next-server.

"Dhcp4": {
"next-server": "192.0.2.123",
"boot-file-name": "/dev/null",
"subnet4": [

{
"next-server": "192.0.2.234",
"server-hostname": "some-name.example.org",
"boot-file-name": "bootfile.efi",

}

8.2.23 Echoing Client-ID (RFC 6842)

The original DHCPv4 specification (RFC 2131) states that the DHCPv4 server must not send back client-id options
when responding to clients. However, in some cases that results in confused clients that do not have a MAC address or
client-id; see RFC 6842 for details. That behavior changed with the publication of RFC 6842, which updated RFC 2131.
That update states that the server must send the client-id if the client sent it, and that is Kea's default behavior. However,
in some cases older devices that do not support RFC 6842 may refuse to accept responses that include the client-id
option. To enable backward compatibility, an optional configuration parameter has been introduced. To configure it,
use the following configuration statement:

"Dhcpd": {
"echo-client-id": false,
(continues on next page)

114 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc6842
https://tools.ietf.org/html/rfc6842
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc6842

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

8.2.24 Using Client Identifier and Hardware Address

The DHCP server must be able to identify the client from which it receives the message and distinguish it from other
clients. There are many reasons why this identification is required; the most important ones are:

* When the client contacts the server to allocate a new lease, the server must store the client identification infor-
mation in the lease database as a search key.

* When the client tries to renew or release the existing lease, the server must be able to find the existing lease entry
in the database for this client, using the client identification information as a search key.

* Some configurations use static reservations for the IP addresses and other configuration information. The server's
administrator uses client identification information to create these static assignments.

¢ In dual-stack networks there is often a need to correlate the lease information stored in DHCPv4 and DHCPv6
servers for a particular host. Using common identification information by the DHCPv4 and DHCPv6 clients
allows the network administrator to achieve this correlation and better administer the network. Beginning with
release 2.1.2, Kea supports DHCPv6 DUIDs embedded within DHCPv4 Client Identifier options as described
in RFC 4361.

DHCPv4 uses two distinct identifiers which are placed by the client in the queries sent to the server and copied by the
server to its responses to the client: chaddr and client-identifier. The former was introduced as a part of the
BOOTP specification and it is also used by DHCP to carry the hardware address of the interface used to send the query
to the server (MAC address for the Ethernet). The latter is carried in the client-identifier option, introduced in RFC
2132.

RFC 2131 indicates that the server may use both of these identifiers to identify the client but the client identifier, if
present, takes precedence over chaddr. One of the reasons for this is that the client identifier is independent from the
hardware used by the client to communicate with the server. For example, if the client obtained the lease using one
network card and then the network card is moved to another host, the server will wrongly identify this host as the one
which obtained the lease. Moreover, RFC 4361 gives the recommendation to use a DUID (see RFC 8415, the DHCPv6
specification) carried as a client identifier when dual-stack networks are in use to provide consistent identification
information for the client, regardless of the type of protocol it is using. Kea adheres to these specifications, and the
client identifier by default takes precedence over the value carried in the chaddr field when the server searches, creates,
updates, or removes the client's lease.

When the server receives a DHCPDISCOVER or DHCPREQUEST message from the client, it tries to find out if the
client already has a lease in the database; if it does, the server hands out that lease rather than allocates a new one.
Each lease in the lease database is associated with the client identifier and/or chaddr. The server first uses the client
identifier (if present) to search for the lease; if one is found, the server treats this lease as belonging to the client, even
if the current chaddr and the chaddr associated with the lease do not match. This facilitates the scenario when the
network card on the client system has been replaced and thus the new MAC address appears in the messages sent by
the DHCP client. If the server fails to find the lease using the client identifier, it performs another lookup using the
chaddr. If this lookup returns no result, the client is considered to not have a lease and a new lease is created.

A common problem reported by network operators is that poor client implementations do not use stable client identifiers,
instead generating a new client identifier each time the client connects to the network. Another well-known case is when
the client changes its client identifier during the multi-stage boot process (PXE). In such cases, the MAC address of the
client's interface remains stable, and using the chaddr field to identify the client guarantees that the particular system
is considered to be the same client, even though its client identifier changes.

To address this problem, Kea includes a configuration option which enables client identification using chaddr only.
This instructs the server to ignore the client identifier during lease lookups and allocations for a particular subnet.

8.2. DHCPv4 Server Configuration 115

https://tools.ietf.org/html/rfc4361
https://tools.ietf.org/html/rfc2132
https://tools.ietf.org/html/rfc2132
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc4361
https://tools.ietf.org/html/rfc8415

Kea Administrator Reference Manual Documentation, Release 2.7.5

Consider the following simplified server configuration:

{
"Dhcp4": {
"match-client-id": true,
"subnet4": [
{
"id": 1,
"subnet": "192.0.10.0/24",
"pools": [{ "pool": "192.0.2.23-192.0.2.87" } 1],
"match-client-id": false
Fo
{
"id": 1,
"subnet": "10.0.0.0/8",
"pools": [{ "pool": "10.0.0.23-10.0.2.99" } 1]
}
]
}
}

The match-client-id parameter is a boolean value which controls this behavior. The default value of true indicates
that the server will use the client identifier for lease lookups and chaddr if the first lookup returns no results. false
means that the server will only use the chaddr to search for the client's lease. Whether the DHCID for DNS updates
is generated from the client identifier or chaddr is controlled through the same parameter.

The match-client-id parameter may appear both in the global configuration scope and/or under any subnet dec-
laration. In the example shown above, the effective value of the match-client-id will be false for the subnet
192.0.10.0/24, because the subnet-specific setting of the parameter overrides the global value of the parameter. The
effective value of the match-client-id for the subnet 10.0.0.0/8 will be set to true, because the subnet declaration
lacks this parameter and the global setting is by default used for this subnet. In fact, the global entry for this parameter
could be omitted in this case, because true is the default value.

It is important to understand what happens when the client obtains its lease for one setting of the match-client-id
and then renews it when the setting has been changed. First, consider the case when the client obtains the lease and the
match-client-id is set to true. The server stores the lease information, including the client identifier (if supplied)
and chaddr, in the lease database. When the setting is changed and the client renews the lease, the server will determine
that it should use the chaddr to search for the existing lease. If the client has not changed its MAC address, the server
should successfully find the existing lease. The client identifier associated with the returned lease will be ignored and
the client will be allowed to use this lease. When the lease is renewed only the chaddr will be recorded for this lease,
according to the new server setting.

In the second case, the client has the lease with only a chaddr value recorded. When the match-client-id setting is
changed to true, the server will first try to use the client identifier to find the existing client's lease. This will return no
results because the client identifier was not recorded for this lease. The server will then use the chaddr and the lease
will be found. If the lease appears to have no client identifier recorded, the server will assume that this lease belongs
to the client and that it was created with the previous setting of the match-client-id. However, if the lease contains
a client identifier which is different from the client identifier used by the client, the lease will be assumed to belong to
another client and a new lease will be allocated.

For a more visual representation of how Kea recognizes the same client, please refer to How Kea Recognizes the Same
Client In Different DHCP Messages.

116 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.2.25 Authoritative DHCPv4 Server Behavior

The original DHCPv4 specification (RFC 2131) states that if a client requests an address in the INIT-REBOOT state of
which the server has no knowledge, the server must remain silent, except if the server knows that the client has requested
an IP address from the wrong network. By default, Kea follows the behavior of the ISC dhcpd daemon instead of the
specification and also remains silent if the client requests an IP address from the wrong network, because configuration
information about a given network segment is not known to be correct. Kea only rejects a client's DHCPREQUEST
with a DHCPNAK message if it already has a lease for the client with a different IP address. Administrators can override
this behavior through the boolean authoritative (false by default) setting.

In authoritative mode, authoritative set to true, Kea always rejects INIT-REBOOT requests from unknown clients
with DHCPNAK messages. The authoritative setting can be specified in global, shared-network, and subnet con-
figuration scope and is automatically inherited from the parent scope, if not specified. All subnets in a shared-network
must have the same authoritative setting.

8.2.26 DHCPv4-over-DHCPv6: DHCPv4 Side

The support of DHCPv4-over-DHCPvVG6 transport is described in RFC 7341 and is implemented using cooperating
DHCPv4 and DHCPv6 servers. This section is about the configuration of the DHCPv4 side (the DHCPv6 side is
described in DHCPv4-over-DHCPv6: DHCPv6 Side).

Note: DHCPv4-over-DHCPv6 support is experimental and the details of the inter-process communication may change;
for instance, the support of port relay (RFC 8357) introduced an incompatible change. Both the DHCPv4 and DHCPv6
sides should be running the same version of Kea.

The dhcp4o6-port global parameter specifies the first of the two consecutive ports of the UDP sockets used for the
communication between the DHCPv6 and DHCPv4 servers. The DHCPv4 server is bound to ::1 on port + 1 and
connected to ::1 on port.

With DHCPv4-over-DHCPv6, the DHCPv4 server does not have access to several of the identifiers it would normally
use to select a subnet. To address this issue, three new configuration entries are available; the presence of any of these
allows the subnet to be used with DHCPv4-over-DHCPv6. These entries are:

* 406-subnet: takes a prefix (i.e., an IPv6 address followed by a slash and a prefix length) which is matched
against the source address.

* 4o06-interface-id: takes a relay interface ID option value.
* 406-interface: takes an interface name which is matched against the incoming interface name.

ISC tested the following configuration:

{

DHCPv4 conf
"Dhcp4": {

"interfaces-config": {
"interfaces": ["eno33554984"]

o

"lease-database": {
"type": "memfile",
"name": "leases4"

(continues on next page)

8.2. DHCPv4 Server Configuration 117

https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc7341

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

},
"valid-lifetime": 4000,

"subnet4": [

{

"id": 1,

"subnet": "10.10.10.0/24",

"406-interface": "eno33554984",

"406-subnet": "2001:db8:1:1::/64",

"pools": [{ "pool": "10.10.10.100 - 10.10.10.199" }]
}
1,

"dhcp406-port": 6767,

"loggers": [
{
"name": "kea-dhcp4",
"output-options": [
{
"output": "/tmp/kea-dhcp4.log"
}
e
"severity'": "DEBUG",
"debuglevel™: 0
}
]
}
}

8.2.27 Sanity Checks in DHCPv4

An important aspect of a well-running DHCP system is an assurance that the data remains consistent; however, in some
cases it may be convenient to tolerate certain inconsistent data. For example, a network administrator who temporarily
removes a subnet from a configuration would not want all the leases associated with it to disappear from the lease
database. Kea has a mechanism to implement sanity checks for situations like this.

Kea supports a configuration scope called sanity-checks. A parameter, called lease-checks, governs the veri-
fication carried out when a new lease is loaded from a lease file. This mechanism permits Kea to attempt to correct
inconsistent data.

Every subnet has a subnet-id value; this is how Kea internally identifies subnets. Each lease has a subnet-id
parameter as well, which identifies the subnet it belongs to. However, if the configuration has changed, it is possible
that a lease could exist with a subnet-id but without any subnet that matches it. Also, it is possible that the subnet's
configuration has changed and the subnet-id now belongs to a subnet that does not match the lease.

Kea's corrective algorithm first checks to see if there is a subnet with the subnet-id specified by the lease. If there
is, it verifies whether the lease belongs to that subnet. If not, depending on the lease-checks setting, the lease is
discarded, a warning is displayed, or a new subnet is selected for the lease that matches it topologically.

There are five levels which are supported:

118 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

* none - do no special checks; accept the lease as is.
* warn - if problems are detected display a warning, but accept the lease data anyway. This is the default value.

e fix - if a data inconsistency is discovered, try to correct it. If the correction is not successful, insert the incorrect
data anyway.

e fix-del - if a data inconsistency is discovered, try to correct it. If the correction is not successful, reject the
lease. This setting ensures the data's correctness, but some incorrect data may be lost. Use with care.

 del - if any inconsistency is detected, reject the lease. This is the strictest mode; use with care.

This feature is currently implemented for the memfile backend. The sanity check applies to the lease database in
memory, not to the lease file, i.e. inconsistent leases stay in the lease file.

An example configuration that sets this parameter looks as follows:

"Dhcp4": {
"sanity-checks": {
"lease-checks": "fix-del"
1,
}

8.2.28 Storing Extended Lease Information

To support such features as DHCP Leasequery (RFC 4388) and stash agent options (Stash Agent Options), additional
information must be stored with each lease. Because the amount of information for each lease has ramifications in
terms of performance and system resource consumption, storage of this additional information is configurable through
the store-extended-info parameter. It defaults to false and may be set at the global, shared-network, and subnet
levels.

"Dhcp4": {
"store-extended-info": true,

When set to true, information relevant to the DHCPREQUEST asking for the lease is added into the lease's user
context as a map element labeled "ISC". When the DHCPREQUEST received contains the option (DHCP Option 82),
the map contains the relay-agent-info map with the content option (DHCP Option 82) in the sub-options entry
and, when present, the remote-id and relay-id options. Since DHCPREQUESTs sent as renewals are not likely to
contain this information, the values taken from the last DHCPREQUEST that did contain it are retained on the lease.
The lease's user context looks something like this:

[{ "ISC": { "relay-agent-info": { "sub-options": "0x0104AABBCCDD" } } }

Or with remote and relay sub-options:

{
"ISC": {
"relay-agent-info": {
"sub-options": "0x02030102030CO3AABBCC",
"remote-id": "03010203",
"relay-id": "AABBCC"

(continues on next page)

8.2. DHCPv4 Server Configuration 119

https://tools.ietf.org/html/rfc4388

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

Note: It is possible that other hook libraries are already using user-context. Enabling store-extended-info
should not interfere with any other user-context content, as long as it does not also use an element labeled "ISC".
In other words, user-context is intended to be a flexible container serving multiple purposes. As long as no other
purpose also writes an "ISC" element to user-context there should not be a conflict.

Extended lease information is also subject to configurable sanity checking. The parameter in the sanity-checks
scope is named extended-info-checks and supports these levels:

* none - do no check nor upgrade. This level should be used only when extended info is not used at all or when
no badly formatted extended info, including using the old format, is expected.

e fix - fix some common inconsistencies and upgrade extended info using the old format to the new one. It is the
default level and is convenient when the Leasequery hook library is not loaded.

e strict - fix all inconsistencies which have an impact on the (Bulk) Leasequery hook library.

* pedantic - enforce full conformance to the format produced by the Kea code; for instance, no extra entries are
allowed with the exception of comment.

Note: This feature is currently implemented only for the memfile backend. The sanity check applies to the lease
database in memory, not to the lease file, i.e. inconsistent leases stay in the lease file.

8.2.29 Stash Agent Options

This global parameter was added in version 2.5.8 to mirror a feature that was previously available in ISC DHCP. When
the stash-agent-options parameter is true, the server records the relay agent information options sent during the
client's initial DHCPREQUEST message (when the client was in the SELECTING state) and behaves as if those options
are included in all subsequent DHCPREQUEST messages sent in the RENEWING state. This works around a problem
with relay agent information options, which do not usually appear in DHCPREQUEST messages sent by the client in
the RENEWING state; such messages are unicast directly to the server and are not sent through a relay agent.

The default is false.

8.2.30 Multi-Threading Settings

The Kea server can be configured to process packets in parallel using multiple threads. These settings can be found
under the multi-threading structure and are represented by:

* enable-multi-threading - use multiple threads to process packets in parallel. The default is true.

e thread-pool-size - specify the number of threads to process packets in parallel. It may be set to ® (auto-
detect), or any positive number that explicitly sets the thread count. The default is 0.

* packet-queue-size - specify the size of the queue used by the thread pool to process packets. It may be set to
0 (unlimited), or any positive number that explicitly sets the queue size. The default is 64.

An example configuration that sets these parameters looks as follows:

120 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcp4": {

"multi-threading": {
"enable-multi-threading": true,
"thread-pool-size": 4,
"packet-queue-size": 16

3,

8.2.31 Multi-Threading Settings With Different Database Backends

The Kea DHCPv4 server is benchmarked by ISC to determine which settings give the best performance. Although
this section describes our results, they are merely recommendations and are very dependent on the particular hardware
used for benchmarking. We strongly advise that administrators run their own performance benchmarks.

A full report of performance results for the latest stable Kea version can be found here. This includes hardware and
benchmark scenario descriptions, as well as current results.

After enabling multi-threading, the number of threads is set by the thread-pool-size parameter. Results from our
experiments show that the best settings for kea-dhcp4 are:

e thread-pool-size: 4 when using memfile for storing leases.
* thread-pool-size: 12 or more when using mysql for storing leases.
* thread-pool-size: 8§ when using postgresql.

Another very important parameter is packet-queue-size; in our benchmarks we used it as a multiplier of
thread-pool-size. The actual setting strongly depends on thread-pool-size.

We saw the best results in our benchmarks with the following settings:

e packet-queue-size: 7 * thread-pool-size when using memfile for storing leases; in our case it was 7 *
4 = 28. This means that at any given time, up to 28 packets could be queued.

* packet-queue-size: 66 * thread-pool-size when using mysql for storing leases; in our case it was 66 *
12 =792. This means that up to 792 packets could be queued.

e packet-queue-size: 11 * thread-pool-size when using postgresql for storing leases; in our case it was
11 *8=288.

8.2.32 IPv6-Only Preferred Networks

RFC 8925, recently published by the IETF, specifies a DHCPv4 option to indicate that a host supports an IPv6-only
mode and is willing to forgo obtaining an IPv4 address if the network provides IPv6 connectivity. The general idea is
that a network administrator can enable this option to signal to compatible dual-stack devices that IPv6 connectivity is
available and they can shut down their IPv4 stack. The new option v6-only-preferred content is a 32-bit unsigned
integer and specifies for how long the device should disable its stack. The value is expressed in seconds.

The RFC mentions the V60NLY_WAIT timer. This is implemented in Kea by setting the value of the
v6-only-preferred option. This follows the usual practice of setting options; the option value can be specified
on the pool, subnet, shared network, or global levels, or even via host reservations.

There is no special processing involved; it follows the standard Kea option processing regime. The option is not sent
back unless the client explicitly requests it. For example, to enable the option for the whole subnet, the following
configuration can be used:

8.2. DHCPv4 Server Configuration 121

https://reports.kea.isc.org/
https://tools.ietf.org/html/rfc8925

Kea Administrator Reference Manual Documentation, Release 2.7.5

{
"subnet4": [
{
"id": 1,
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1],
"subnet": "192.0.2.0/24",
"option-data": [
{
// This will make the v6-only capable devices to disable their
// v4 stack for half an hour and then try again
"name": "v6-only-preferred",
"data": "1800"
}
]
}
1,
}

8.2.33 Lease Caching

Clients that attempt multiple renewals in a short period can cause the server to update and write to the database fre-
quently, resulting in a performance impact on the server. The cache parameters instruct the DHCP server to avoid
updating leases too frequently, thus avoiding this behavior. Instead, the server assigns the same lease (i.e. reuses it)
with no modifications except for CLTT (Client Last Transmission Time), which does not require disk operations.

The two parameters are the cache-threshold double and the cache-max-age integer; they have no default setting,
i.e. the lease caching feature must be explicitly enabled. These parameters can be configured at the global, shared-
network, and subnet levels. The subnet level has precedence over the shared-network level, while the global level is
used as a last resort. For example:

{
"subnet4": [
{
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1,
"subnet": "192.0.2.0/24",
"cache-threshold": .25,
"cache-max-age": 600,
"valid-lifetime": 2000,
}
1,
}

When an already-assigned lease can fulfill a client query:

* any important change, e.g. for DDNS parameter, hostname, or valid lifetime reduction, makes the lease not
reusable.

* lease age, i.e. the difference between the creation or last modification time and the current time, is computed
(elapsed duration).

122 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

* if cache-max-age is explicitly configured, it is compared with the lease age; leases that are too old are not
reusable. This means that the value O for cache-max-age disables the lease cache feature.

« if cache-threshold is explicitly configured and is between 0.0 and 1.0, it expresses the percentage of the lease
valid lifetime which is allowed for the lease age. Values below and including 0.0 and values greater than 1.0
disable the lease cache feature.

In our example, a lease with a valid lifetime of 2000 seconds can be reused if it was committed less than 500 seconds
ago. With a lifetime of 3000 seconds, a maximum age of 600 seconds applies.

In outbound client responses (e.g. DHCPACK messages), the dhcp-lease-time option is set to the reusable valid
lifetime, i.e. the expiration date does not change. Other options based on the valid lifetime e.g. dhcp-renewal-time
and dhcp-rebinding-time, also depend on the reusable lifetime.

8.2.34 Temporary Allocation on DHCPDISCOVER

By default, kea-dhcp4 does not allocate or store a lease when offering an address to a client in response to a DHCPDIS-
COVER. In general, kea-dhcp4 can fulfill client demands faster by deferring lease allocation and storage until it re-
ceives DHCPREQUESTSs for them. The offer-lifetime parameter in kea-dhcp4 (when not zero) instructs the
server to allocate and persist a lease when generating a DHCPOFFER. In addition:

» The persisted lease's lifetime is equal to offer-1ifetime (in seconds).

* The lifetime sent to the client in the DHCPOFFER via option 51 is still based on valid-1ifetime. This avoids
issues with clients that may reject offers whose lifetimes they perceive as too short.

* DDNS updates are not performed. As with the default behavior, those updates occur on DHCPREQUEST.
e Updates are not sent to HA peers.
» Assigned lease statistics are incremented.

» Expiration processing and reclamation behave just as they do for leases allocated during DHCPREQUEST pro-
cessing.

 Lease caching, if enabled, is honored.

* In sites running multiple instances of kea-dhcp4 against a single, shared lease store, races for given address
values are lost during DHCPDISCOVER processing rather than during DHCPREQUEST processing. Servers
that lose the race for the address simply do not respond to the client, rather than NAK them. The client in turn
simply retries its DHCPDISCOVER. This should reduce the amount of traffic such conflicts incur.

* Clients repeating DHCPDISCOVERS are offered the same address each time.

An example subnet configuration is shown below:

{
"subnet4": [
{
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1,
"subnet": "192.0.2.0/24",
"offer-lifetime": 60,
"valid-lifetime": 2000,
3
1,
1

8.2. DHCPv4 Server Configuration 123

Kea Administrator Reference Manual Documentation, Release 2.7.5

Here offer-1ifetime has been configured to be 60 seconds, with a valid-1ifetime of 2000 seconds. This instructs
kea-dhcp4 to persist leases for 60 seconds when sending them back in DHCPOFFERSs, and then extend them to 2000
seconds when clients DHCPREQUEST them.

The value, which defaults to O, is supported at the global, shared-network, subnet, and class levels. Choosing an
appropriate value for offer-lifetime is extremely site-dependent, but a value between 60 and 120 seconds is a
reasonable starting point.

8.2.35 DNR (Discovery of Network-designated Resolvers) Options for DHCPv4

The Discovery of Network-designated Resolvers, or DNR option, was introduced in RFC 9463 as a way to communicate
location of DNS resolvers available over means other than the classic DNS over UDP over port 53. As of spring 2024,
the supported technologies are DoT (DNS-over-TLS), DoH (DNS-over-HTTPS), and DoQ (DNS-over-QUIC), but the
option was designed to be extensible to accommodate other protocols in the future.

The DHCPv4 option and its corresponding DHCPv6 options are almost exactly the same, with the exception of car-
dinality: only one DHCPv4 option is allowed, while multiple options are allowed for DHCPv6. To be able to convey
multiple entries, the DHCPv4 DNR is an array that allows multiple DNS instances. Each instance is logically equal to
one DHCPv6 option; the only difference is that it uses IPv4 rather than IPv6 addresses. DNR DHCPv4 options allow
more than one DNR instance to be configured, and the DNR instances are separated with the "pipe" (8x7C) character.

For a detailed example of how to configure the DNR option, see DNR (Discovery of Network-designated Resolvers)
Options for DHCPV6.

For each DNR instance, comma-delimited fields must be provided in the following order:
* Service Priority (mandatory),
* ADN FQDN (mandatory),
[P address(es) (optional; if more than one, they must be separated by spaces)

* SvcParams as a set of key=value pairs (optional; if more than one - they must be separated by spaces) To provide
more than one alpn-id, separate them with double backslash-escaped commas as in the example below).

Example usage:

{
"name": "v4-dnr",
// 2 DNR Instances:
// - Service priority 2, ADN, resolver IPv4 address and Service Parameters
// - Service priority 3, ADN - this is ADN-only mode as per RFC 9463 3.1.6
"data": "2, resolver.example., 10.0.5.6, alpn=dot\\,doqg port=8530 | 3, fooexp.resolver.
—example."

}

Note: If "comma" or "pipe" characters are used as text rather than as field delimiters, they must be escaped with double
backslashes (\\, or \\|). Escaped commas must be used when configuring more than one ALPN protocol, to separate
them. The "pipe" (0x7C) character can be used in the dohpath service parameter, as it is allowed in a URI.

Examples for DNR DHCPv4 options are provided in the Kea sources, in all-options.json in the doc/examples/kea4
directory.

124 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc9463

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.3 Host Reservations in DHCPv4

There are many cases where it is useful to provide a configuration on a per-host basis. The most obvious one is to
reserve a specific, static address for exclusive use by a given client (host); the returning client receives the same address
from the server every time, and other clients generally do not receive that address. Host reservations are also convenient
when a host has specific requirements, e.g. a printer that needs additional DHCP options. Yet another possible use
case is to define unique names for hosts.

There may be cases when a new reservation has been made for a client for an address currently in use by another client.
We call this situation a "conflict." These conflicts get resolved automatically over time, as described in subsequent
sections. Once a conflict is resolved, the correct client will receive the reserved configuration when it renews.

Host reservations are defined as parameters for each subnet. Each host must have its own unique identifier, such as the
hardware/MAC address. There is an optional reservations array in the subnet4 structure; each element in that array
is a structure that holds information about reservations for a single host. In particular, the structure has an identifier
that uniquely identifies a host. In the DHCPv4 context, the identifier is usually a hardware or MAC address. In most
cases an IP address will be specified. It is also possible to specify a hostname, host-specific options, or fields carried
within the DHCPv4 message such as siaddr, sname, or file.

Note: The reserved address must be within the subnet.

The following example shows how to reserve addresses for specific hosts in a subnet:

{
"subnet4": [
{
"id": 1,
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1,
"subnet": "192.0.2.0/24",
"interface": "eth0®",
"reservations": [
{
"hw-address": "la:1lb:1c:1d:1le:1£f",
"ip-address": "192.0.2.202"
e
{
"duid": "0a:0b:0c:0d:0e:0f",
"ip-address": "192.0.2.100",
"hostname": "alice-laptop"
e
{
"circuit-id": "'charter950'",
"ip-address": "192.0.2.203"
e
{
"client-id": "®1:11:22:33:44:55:66",
"ip-address": "192.0.2.204"
}
]
}
1,
}

8.3. Host Reservations in DHCPv4 125

Kea Administrator Reference Manual Documentation, Release 2.7.5

The first entry reserves the 192.0.2.202 address for the client that uses a MAC address of 1a:1b:1c:1d:1e:1f. The second
entry reserves the address 192.0.2.100 and the hostname of "alice-laptop" for the client using a DUID 0a:0b:0c:0d:0e:0f.
(If DNS updates are planned, it is strongly recommended that the hostnames be unique.) The third example reserves
address 192.0.3.203 for a client whose request would be relayed by a relay agent that inserts a circuit-id option with
the value "charter950". The fourth entry reserves address 192.0.2.204 for a client that uses a client identifier with value
01:11:22:33:44:55:66.

The above example is used for illustrational purposes only; in actual deployments it is recommended to use as few types
as possible (preferably just one). See Fine-Tuning DHCPv4 Host Reservation for a detailed discussion of this point.

Making a reservation for a mobile host that may visit multiple subnets requires a separate host definition in each subnet
that host is expected to visit. It is not possible to define multiple host definitions with the same hardware address in a
single subnet. Multiple host definitions with the same hardware address are valid if each is in a different subnet.

Adding host reservations incurs a performance penalty. In principle, when a server that does not support host reservation
responds to a query, it needs to check whether there is a lease for a given address being considered for allocation or
renewal. The server that does support host reservation has to perform additional checks: not only whether the address
is currently used (i.e., if there is a lease for it), but also whether the address could be used by someone else (i.e., if there
is a reservation for it). That additional check incurs extra overhead.

8.3.1 Address Reservation Types

In a typical Kea scenario there is an IPv4 subnet defined, e.g. 192.0.2.0/24, with a certain part of it dedicated for
dynamic allocation by the DHCPv4 server. That dynamic part is referred to as a dynamic pool or simply a pool. In
principle, a host reservation can reserve any address that belongs to the subnet. The reservations that specify addresses
that belong to configured pools are called "in-pool reservations." In contrast, those that do not belong to dynamic pools
are called "out-of-pool reservations." There is no formal difference in the reservation syntax and both reservation types
are handled uniformly.

Kea supports global host reservations. These are reservations that are specified at the global level within the configu-
ration and that do not belong to any specific subnet. Kea still matches inbound client packets to a subnet as before, but
when the subnet's reservation mode is set to "global", Kea looks for host reservations only among the global reserva-
tions defined. Typically, such reservations would be used to reserve hostnames for clients which may move from one
subnet to another.

Note: Global reservations, while useful in certain circumstances, have aspects that must be given due consideration
when using them. Please see Conflicts in DHCPv4 Reservations for more details.

Note: Since Kea 1.9.1, reservation mode has been replaced by three boolean flags, reservations-global,
reservations-in-subnet, and reservations-out-of-pool, which allow the configuration of host reservations
both globally and in a subnet. In such cases a subnet host reservation has preference over a global reservation when
both exist for the same client.

126 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.3.2 Conflicts in DHCPv4 Reservations

As reservations and lease information are stored separately, conflicts may arise. Consider the following series of events:
the server has configured the dynamic pool of addresses from the range of 192.0.2.10 to 192.0.2.20. Host A requests
an address and gets 192.0.2.10. Now the system administrator decides to reserve address 192.0.2.10 for Host B. In
general, reserving an address that is currently assigned to someone else is not recommended, but there are valid use
cases where such an operation is warranted.

The server now has a conflict to resolve. If Host B boots up and requests an address, the server cannot immediately
assign the reserved address 192.0.2.10. A naive approach would to be immediately remove the existing lease for Host A
and create a new one for Host B. That would not solve the problem, though, because as soon as Host B gets the address,
it will detect that the address is already in use (by Host A) and will send a DHCPDECLINE message. Therefore, in
this situation, the server has to temporarily assign a different address from the dynamic pool (not matching what has
been reserved) to Host B.

When Host A renews its address, the server will discover that the address being renewed is now reserved for another
host - Host B. The server will inform Host A that it is no longer allowed to use it by sending a DHCPNAK message.
The server will not remove the lease, though, as there's a small chance that the DHCPNAK will not be delivered if the
network is lossy. If that happens, the client will not receive any responses, so it will retransmit its DHCPREQUEST
packet. Once the DHCPNAK is received by Host A, it will revert to server discovery and will eventually get a different
address. Besides allocating a new lease, the server will also remove the old one. As a result, address 192.0.2.10 will
become free.

When Host B tries to renew its temporarily assigned address, the server will detect that it has a valid lease, but will note
that there is a reservation for a different address. The server will send DHCPNAK to inform Host B that its address is
no longer usable, but will keep its lease (again, the DHCPNAK may be lost, so the server will keep it until the client
returns for a new address). Host B will revert to the server discovery phase and will eventually send a DHCPREQUEST
message. This time the server will find that there is a reservation for that host and that the reserved address 192.0.2.10 is
not used, so it will be granted. It will also remove the lease for the temporarily assigned address that Host B previously
obtained.

This recovery will succeed, even if other hosts attempt to get the reserved address. If Host C requests the address
192.0.2.10 after the reservation is made, the server will either offer a different address (when responding to DHCPDIS-
COVER) or send DHCPNAK (when responding to DHCPREQUEST).

This mechanism allows the server to fully recover from a case where reservations conflict with existing leases; however,
this procedure takes roughly as long as the value set for renew-timer. The best way to avoid such a recovery is not to
define new reservations that conflict with existing leases. Another recommendation is to use out-of-pool reservations;
if the reserved address does not belong to a pool, there is no way that other clients can get it.

Note: The conflict-resolution mechanism does not work for global reservations. Although the global address reserva-
tions feature may be useful in certain settings, it is generally recommended not to use global reservations for addresses.
Administrators who do choose to use global reservations must manually ensure that the reserved addresses are not in
dynamic pools.

8.3. Host Reservations in DHCPv4 127

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.3.3 Reserving a Hosthame

When the reservation for a client includes the hostname, the server returns this hostname to the client in the Client
FQDN or Hostname option. The server responds with the Client FQDN option only if the client has included the
Client FQDN option in its message to the server. The server responds with the Hostname option if the client included
the Hostname option in its message to the server, or if the client requested the Hostname option using the Parameter
Request List option. The server returns the Hostname option even if it is not configured to perform DNS updates. The
reserved hostname always takes precedence over the hostname supplied by the client or the autogenerated (from the
IPv4 address) hostname.

The server qualifies the reserved hostname with the value of the ddns-qualifying-suffix parameter. For example,
the following subnet configuration:

{
"subnet4": [
{
"id": 1,
"subnet": "10.0.0.0/24",
"pools": [{ "pool": "10.0.0.10-10.0.0.100" } 1],
"ddns-qualifying-suffix": "example.isc.org.",
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:ff",
"hostname": "alice-laptop"
}
]
}
1,
"dhcp-ddns": {
"enable-updates": true
1
}

will result in the "alice-laptop.example.isc.org." hostname being assigned to the client using the MAC address
"aa:bb:cc:dd:ee:ff". If the ddns-qualifying-suffix is not specified, the default (empty) value will be used, and
in this case the value specified as a hostname will be treated as a fully qualified name. Thus, by leaving the
ddns-qualifying-suffix empty itis possible to qualify hostnames for different clients with different domain names:

{
"subnet4": [
{
"id": 1,
"subnet": "10.0.0.0/24",
"pools": [{ "pool": "10.0.0.10-10.0.0.100" } 1],
"reservations": [

{
"hw-address": "aa:bb:cc:dd:ee:ff",
"hostname": "alice-laptop.isc.org."
Fe
{
"hw-address": "12:34:56:78:99:AA",
"hostname": "mark-desktop.example.org."
}

(continues on next page)

128 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

3

i

"dhcp-ddns": {
"enable-updates": true

}

}

The above example results in the assignment of the "alice-laptop.isc.org." hostname to the client using the MAC
address "aa:bb:cc:dd:ee:ff", and the hostname "mark-desktop.example.org." to the client using the MAC address
"12:34:56:78:99:AA".

8.3.4 Including Specific DHCPv4 Options in Reservations

Kea offers the ability to specify options on a per-host basis. These options follow the same rules as any other options.
These can be standard options (see Standard DHCPv4 Options), custom options (see Custom DHCPv4 Options), or
vendor-specific options (see DHCPv4 Vendor-Specific Options). The following example demonstrates how standard
options can be defined:

{
"subnet4": [
{
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:ff",
"ip-address": "192.0.2.1",
"option-data": [
{
"name": "cookie-servers",
"data": "10.1.1.202,10.1.1.203"
e
{
"name": "log-servers",
"data": "10.1.1.200,10.1.1.201"
}
1
}
Jg
}
1,
}

Vendor-specific options can be reserved in a similar manner:

{
"subnet4": [
{
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:ff",
"ip-address": "10.0.0.7",

(continues on next page)

8.3. Host Reservations in DHCPv4 129

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"option-data": [

{
"name": "vivso-suboptions",
"data": "4491"
e
{
"name": "tftp-servers",
"space": "vendor-4491",
"data": "10.1.1.202,10.1.1.203"
}
]
}
ie
}
1,

¥

Options defined at the host level have the highest priority. In other words, if there are options defined with the same
type on the global, subnet, class, and host levels, the host-specific values are used.

8.3.5 Reserving Next Server, Server Hosthame, and Boot File Name

BOOTP/DHCPv4 messages include "siaddr", "sname", and "file" fields. Even though DHCPv4 includes correspond-
ing options, such as option 66 and option 67, some clients may not support these options. For this reason, server
administrators often use the "siaddr", "sname", and "file" fields instead.

With Kea, it is possible to make static reservations for these DHCPv4 message fields:

{
"subnet4": [
{
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:ff",
"next-server": "10.1.1.2",
"server-hostname": "server-hostname.example.org",
"boot-file-name": "/tmp/bootfile.efi"
}
ie
}
1,
}

Note that those parameters can be specified in combination with other parameters for a reservation, such as a reserved
IPv4 address. These parameters are optional; a subset of them can be specified, or all of them can be omitted.

130 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.3.6 Reserving Client Classes in DHCPv4

Using Expressions in Classification explains how to configure the server to assign classes to a client, based on the
content of the options that this client sends to the server. Host reservation mechanisms also allow for the static as-
signment of classes to clients. The definitions of these classes are placed in the Kea configuration file or a database.
The following configuration snippet shows how to specify that a client belongs to the classes reserved-classl and
reserved-class2. Those classes are associated with specific options sent to the clients which belong to them.

{

"client-classes": [

{
"name": "reserved-classl",
"option-data": [
{
"name": "routers",
"data": "10.0.0.200"
}
1
3
{
"name": "reserved-class2",
"option-data": [
{
"name": "domain-name-servers",
"data": "10.0.0.201"
}
]
}
1,
"subnet4": [
{
"id": 1,
"subnet": "10.0.0.0/24",
"pools": [{ "pool": "10.0.0.10-10.0.0.100" }],
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:ff",
"client-classes": ["reserved-classl", "reserved-class2"]
}
]
}
]

In some cases the host reservations can be used in conjunction with client classes specified within the Kea configuration.
In particular, when a host reservation exists for a client within a given subnet, the "KNOWN" built-in class is assigned
to the client. Conversely, when there is no static assignment for the client, the "UNKNOWN" class is assigned to the
client. Class expressions within the Kea configuration file can refer to "KNOWN" or "UNKNOWN" classes using the
"member" operator. For example:

{

"client-classes": [
(continues on next page)

8.3. Host Reservations in DHCPv4 131

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

{
"name": "dependent-class",
"test": "member ('KNOWN')",
"only-in-additional-list": true
}

The only-in-additional-list parameter is needed here to force evaluation of the class after the lease has been
allocated, and thus the reserved class has been also assigned.

Note: The classes specified in non-global host reservations are assigned to the processed packet after all classes
with the only-in-additional-1list parameter set to false have been evaluated. This means that these classes
must not depend on the statically assigned classes from the host reservations. If such a dependency is needed, the
only-in-additional-list parameter must be set to true for the dependent classes. Such classes are evaluated
after the static classes have been assigned to the packet. This, however, imposes additional configuration overhead,
because all classes marked as only-in-additional-1ist must be listed in the evaluate-additional-classes
list for every subnet where they are used.

Note: Client classes specified within the Kea configuration file may depend on the classes specified within the global
host reservations. In such a case the only-in-additional-1ist parameter is not needed. Refer to Pool Selection
with Client Class Reservations and Subnet Selection with Client Class Reservations for specific use cases.

8.3.7 Storing Host Reservations in MySQL or PostgreSQL

Kea can store host reservations in MySQL or PostgreSQL. See Hosts Storage for information on how to configure Kea
to use reservations stored in MySQL or PostgreSQL. Kea provides a dedicated hook for managing reservations in a
database; section libdhcp_host_cmds.so: Host Commands provides detailed information. The Kea wiki provides some
examples of how to conduct common host reservation operations.

Note: In Kea, the maximum length of an option specified per-host-reservation is arbitrarily set to 4096 bytes.

8.3.8 Fine-Tuning DHCPv4 Host Reservation

The host reservation capability introduces additional restrictions for the allocation engine (the component of Kea that
selects an address for a client) during lease selection and renewal. In particular, three major checks are necessary. First,
when selecting a new lease, it is not sufficient for a candidate lease to simply not be in use by another DHCP client; it
also must not be reserved for another client. Similarly, when renewing a lease, an additional check must be performed
to see whether the address being renewed is reserved for another client. Finally, when a host renews an address, the
server must check whether there is a reservation for this host, which would mean the existing (dynamically allocated)
address should be revoked and the reserved one be used instead.

Some of those checks may be unnecessary in certain deployments, and not performing them may im-
prove performance. The Kea server provides the reservations-global, reservations-in-subnet and
reservations-out-of-pool configuration parameters to select the types of reservations allowed for a particular
subnet. Each reservation type has different constraints for the checks to be performed by the server when allocating or
renewing a lease for the client.

132 Chapter 8. The DHCPv4 Server

https://gitlab.isc.org/isc-projects/kea/wikis/designs/commands#23-host-reservations-hr-management

Kea Administrator Reference Manual Documentation, Release 2.7.5

Configuration flags are:

* reservations-in-subnet - when set to true, it enables in-pool host reservation types. This setting is the
default value, and is the safest and most flexible. However, as all checks are conducted, it is also the slowest. It
does not check against global reservations. This flag defaults to true.

e reservations-out-of-pool - when set to true, it allows only out-of-pool host reservations. In this case the
server assumes that all host reservations are for addresses that do not belong to the dynamic pool. Therefore, it
can skip the reservation checks when dealing with in-pool addresses, thus improving performance. Do not use
this mode if any reservations use in-pool addresses. Caution is advised when using this setting; Kea does not
sanity-check the reservations against reservations-out-of-pool and misconfiguration may cause problems.
This flag defaults to false.

* reservations-global - allows global host reservations. With this setting in place, the server searches for
reservations for a client among the defined global reservations. If an address is specified, the server skips the
reservation checks carried out in other modes, thus improving performance. Caution is advised when using this
setting; Kea does not sanity-check the reservations when reservations-global is set to true, and miscon-
figuration may cause problems. This flag defaults to false.

Note: setting all flags to false disables host reservation support.
As there are no reservations, the server skips all checks. Any reservations defined are completely ignored. As
checks are skipped, the server may operate faster in this mode.

Since Kea 1.9.1 the reservations-global, reservations-in-subnet and reservations-out-of-pool flags
are suported.

The reservations-global, reservations-in-subnet and reservations-out-of-pool parameters can be
specified at:

* global level: .Dhcp4["reservations-global™] (lowest priority: gets overridden by all others)
* subnet level: .Dhcp4.subnet4[]["reservations-in-subnet"] (low priority)
* shared-network level: .Dhcp4["shared-networks"][]["reservations-out-of-pool"] (high priority)

¢ shared-network subnet-level: .Dhcp4["shared-networks"][].subnet4[]["reservations-out-of-pool"]
(highest priority: overrides all others)

To decide which flags to use, the following decision diagram may be useful:

o e et e +
| Is per-host configuration needed, such as |
| reserving specific addresses, [
| assigning specific options or |
| assigning packets to specific classes on per-device basis? |
+

B P B T TR +
I I
no | yes|
| | et et +
| | | For all given hosts, |
+--> "disabled" +-=>+ can the reserved resources |
| be used in all configured subnets? |
o e +-+
| |
Foocomoscssssosossesssosossos + |no lyes
| Is | | I

(continues on next page)

8.3. Host Reservations in DHCPv4 133

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

| at least one reservation +<--+ "global" <--+

| used to reserve addresses? |
e +-+

no| yes| o

| [| Is high leases-per-second |

+--> "out-of-pool" +-->+ performance or efficient

A | resource usage

| (CPU ticks, RAM usage,
database roundtrips)
important to your setup?

+-->+ that the reserved |
| addresses |
| aren't part of the |
| pools configured |
| in the respective |
| subnet? |
+ -+

|

|

|

|

|

|

|

|

|

|

[| | Can it be guaranteed |
|

|

|

|

|

|

| e +
|
|
|

e + +--> "in-subnet"

An example configuration that disables reservations looks as follows:

{
"Dhcp4": {
"subnet4": [
{
"id": 1,
"pools": [
{
"pool": "192.0.2.10-192.0.2.100"
3
Ay
"reservations-global": false,
"reservations-in-subnet": false,
"subnet": "192.0.2.0/24"
}
]
}
}

An example configuration using global reservations is shown below:

134

Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

{
"Dhcp4": {
"reservations-global": true,
"reservations": [
{
"hostname": "host-one",
"hw-address": "01:bb:cc:dd:ee:ff"
B
{
"hostname": "host-two",
"hw-address": "02:bb:cc:dd:ee: ff"
}
1,
"subnet4": [
{
"id": 1,
"pools": [
{
"pool": "192.0.2.10-192.0.2.100"
}
i
"subnet": "192.0.2.0/24"
}
]
}
}

The meaning of the reservation flags are:
* reservations-global: fetch global reservations.

e reservations-in-subnet: fetch subnet reservations. For a shared network this includes all subnet members
of the shared network.

e reservations-out-of-pool: this makes sense only when the reservations-in-subnet flag is true
When reservations-out-of-pool is true, the server assumes that all host reservations are for addresses
that do not belong to the dynamic pool. Therefore, it can skip the reservation checks when dealing with in-pool
addresses, thus improving performance. The server will not assign reserved addresses that are inside the dy-
namic pools to the respective clients. This also means that the addresses matching the respective reservations
from inside the dynamic pools (if any) can be dynamically assigned to any client.

The disabled configuration corresponds to:

{
"Dhcp4": {
"reservations-global": false,
"reservations-in-subnet": false
}
}

The global” “configuration using " “reservations-global corresponds to:

{
"Dhcp4": {
"reservations-global": true,

(continues on next page)

8.3. Host Reservations in DHCPv4 135

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"reservations-in-subnet": false

The out-of-pool configuration using reservations-out-of-pool corresponds to:

{
"Dhcpd": {
"reservations-global": false,
"reservations-in-subnet": true,
"reservations-out-of-pool": true
}
}

And the in-subnet configuration using reservations-in-subnet corresponds to

{
"Dhcpd": {
"reservations-global": false,
"reservations-in-subnet": true,
"reservations-out-of-pool": false
}
}

To activate both global and in-subnet, the following combination can be used:

{
"Dhcpd": {
"reservations-global": true,
"reservations-in-subnet": true,
"reservations-out-of-pool": false
}
}

To activate both global and out-of-pool, the following combination can be used:

{
"Dhcpd": {
"reservations-global": true,
"reservations-in-subnet": true,
"reservations-out-of-pool": true
}
}

Enabling out-of-pool and disabling in-subnet at the same time is not recommended because out-of-pool applies
to host reservations in a subnet, which are fetched only when the in-subnet flag is true.

The parameter can be specified at the global, subnet, and shared-network levels.

An example configuration that disables reservations looks as follows:

{
"Dhcp4": {
"subnet4": [
(continues on next page)

136 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

{
"reservations-global": false,
"reservations-in-subnet": false,
"subnet": "192.0.2.0/24",
"id": 1

}

An example configuration using global reservations is shown below:

{
"Dhcp4d": {
"reservations": [
{
"hostname": "host-one",
"hw-address": "01:bb:cc:dd:ee:ff"
e
{
"hostname": "host-two",
"hw-address": "02:bb:cc:dd:ee: ff"
}
1,
"reservations-global": true,
"reservations-in-subnet": false,
"subnet4": [
{
"pools": [
{
"pool": "192.0.2.10-192.0.2.100"
}
Ay
"subnet": "192.0.2.0/24",
"id": 1
}
]
}
}

For more details regarding global reservations, see Global Reservations in DHCPv4.

Another aspect of host reservations is the different types of identifiers. Kea currently supports four types of identifiers:
hw-address, duid, client-id, and circuit-id. This is beneficial from a usability perspective; however, there is
one drawback. For each incoming packet, Kea has to extract each identifier type and then query the database to see if
there is a reservation by this particular identifier. If nothing is found, the next identifier is extracted and the next query
is issued. This process continues until either a reservation is found or all identifier types have been checked. Over time,
with an increasing number of supported identifier types, Kea would become slower and slower.

To address this problem, a parameter called host-reservation-identifiers is available. It takes a list of identifier
types as a parameter. Kea checks only those identifier types enumerated in host-reservation-identifiers. From
a performance perspective, the number of identifier types should be kept to a minimum, ideally one. If the deploy-
ment uses several reservation types, please enumerate them from most- to least-frequently used, as this increases the
chances of Kea finding the reservation using the fewest queries. An example of a host-reservation-identifiers

8.3. Host Reservations in DHCPv4 137

Kea Administrator Reference Manual Documentation, Release 2.7.5

configuration looks as follows:

{
"host-reservation-identifiers": ["circuit-id", "hw-address", "duid", "client-id"],
"subnet4": [

{

"subnet": "192.0.2.0/24",

1
1,
}

If not specified, the default value is:

["host—reservation—identifiers": ["hw-address", "duid", "circuit-id", "client-id"]

Note: As soon as a host reservation is found, the search is stopped; when a client has two host reservations using
different enabled identifier types, the first is always returned and the second ignored. In other words, this is usually a
configuration error. In those rare cases when having two reservations for the same host makes sense, the one to be used
can be specified by ordering the list of identifier types in host-reservation-identifiers.

8.3.9 Global Reservations in DHCPv4

In some deployments, such as mobile networks, clients can roam within the network and certain parameters must be
specified regardless of the client's current location. To meet such a need, Kea offers a global reservation mechanism.
The idea behind it is that regular host reservations are tied to specific subnets, by using a specific subnet ID. Kea can
specify a global reservation that can be used in every subnet that has global reservations enabled.

This feature can be used to assign certain parameters, such as hostname or other dedicated, host-specific options. It
can also be used to assign addresses.

An address assigned via global host reservation must be feasible for the subnet the server selects for the client. In
other words, the address must lie within the subnet; otherwise, it is ignored and the server will attempt to dynamically
allocate an address. If the selected subnet belongs to a shared network, the server checks for feasibility against the
subnet's siblings, selecting the first in-range subnet. If no such subnet exists, the server falls back to dynamically
allocating the address.

Note: Prior torelease 2.3.5, the server did not perform feasibility checks on globally reserved addresses, which allowed
the server to be configured to hand out nonsensical leases for arbitrary address values. Later versions of Kea perform
these checks.

To use global host reservations, a configuration similar to the following can be used:

"Dhcp4": {
This specifies global reservations.
They will apply to all subnets that
have global reservations enabled.

"reservations": [

{

(continues on next page)

138 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"hw-address": "aa:bb:cc:dd:ee:ff",

"hostname": "hw-host-dynamic"
1
{
"hw-address": "01:02:03:04:05:06",
"hostname": "hw-host-fixed",
Use of IP addresses in global reservations is risky.
If used outside of a matching subnet, such as 192.0.1.0/24,
it will result in a broken configuration being handed
to the client.
"ip-address": "192.0.1.77"
1
{
"duid": "01:02:03:04:05",
"hostname": "duid-host"
I
{
"circuit-id": "'charter950'",
"hostname": "circuit-id-host"
1
{
"client-id": "01:11:22:33:44:55:66",
"hostname": "client-id-host"
}
1,

"valid-lifetime": 600,
"subnet4": [

{
"id": 1,
"subnet": "10.0.0.0/24",
Specify if the server should look up global reservations.
"reservations-global": true,
Specify if the server should look up in-subnet reservations.
"reservations-in-subnet": false,
Specify if the server can assume that all reserved addresses
are out-of-pool. It can be ignored because '"reservations-in-subnet"
is false.
'reservations-out-of-pool": false,
"pools": [{ "pool": "10.0.0.10-10.0.0.100" }]

}

]

When using database backends, the global host reservations are distinguished from regular reservations by using a
subnet-id value of 0.

8.3. Host Reservations in DHCPv4 139

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.3.10 Pool Selection with Client Class Reservations

Client classes can be specified in the Kea configuration file and/or via host reservations. The classes specified in the Kea
configuration file are evaluated immediately after receiving the DHCP packet and therefore can be used to influence
subnet selection using the client-classes parameter specified in the subnet scope. The classes specified within the
host reservations are fetched and assigned to the packet after the server has already selected a subnet for the client.
This means that the client class specified within a host reservation cannot be used to influence subnet assignment for
this client, unless the subnet belongs to a shared network. If the subnet belongs to a shared network, the server may
dynamically change the subnet assignment while trying to allocate a lease. If the subnet does not belong to a shared
network, the subnet is not changed once selected.

If the subnet does not belong to a shared network, it is possible to use host reservation-based client classification to
select a pool within the subnet as follows:

{
"Dhcp4": {
"client-classes": [
{
"name": "reserved_class"
o
{
"name": "unreserved_class",
"test": "not member('reserved_class')"
}
Ay
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/24",
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:fe",
"client-classes": ["unreserved_class"]
}
1,
"pools": [
{
"pool": "192.0.2.10 - 192.0.2.20",
"client-classes": ["unreserved_class"]
1,
{
"pool": "192.0.2.30 - 192.0.2.40",
"client-classes": ["reserved_class"]
},
{
"pool": "192.0.2.50 - 192.0.2.60"
}
]
}
]
3
}

reserved_class is declared without the test parameter because it may only be assigned to a client via the host
reservation mechanism. The second class, unreserved_class, is assigned to clients which do not belong to

140 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

reserved_class.

The first pool in the subnet is used for clients not having such a reservation. The second pool is only used for clients
having a reservation for reserved_class. The third pool is an unrestricted pool for any clients, comprising of both
reserved_class clients and unreserved_class.

The configuration snippet includes one host reservation which causes the client with the MAC address
aa:bb:cc:dd:ee:fe to be assigned to reserved_class. Thus, this client will be given an IP address from the
second address pool.

Reservations defined on a subnet that belongs to a shared network are not visible to an otherwise matching client, so
they cannot be used to select pools, nor subnets for that matter.

8.3.11 Subnet Selection with Client Class Reservations

There is one specific use case when subnet selection may be influenced by client classes specified within host reserva-
tions: when the client belongs to a shared network. In such a case it is possible to use classification to select a subnet
within this shared network. Consider the following example:

{
"Dhcp4": {
"client-classes": [
{
"name": "reserved_class"
e
{
"name": "unreserved_class",
"test": "not member('reserved_class')"
}
Ay
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:fe",
"client-classes": ["reserved_class"]
}
ie

"reservations-global": true,
"reservations-in-subnet": false,
"shared-networks": [

{
"name": "net",
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/24",
"pools": [
{
"pool": "192.0.2.10-192.0.2.20",
"client-classes": ["unreserved_class"]
o
{
"pool": "192.0.2.30-192.0.2.40",
"client-classes": ["unreserved_class"]
}

(continues on next page)

8.3. Host Reservations in DHCPv4 141

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

]
3,
{
"id": 2,
"subnet": "192.0.3.0/24",
"pools": [
{
"pool": "192.0.3.10-192.0.3.20",
"client-classes": ["reserved_class"]
Fo
{
"pool": "192.0.3.30-192.0.3.40",
"client-classes": ['"reserved_class"]
}
]
3,
{
"id": 3,
"subnet": "192.0.4.0/24",
"pools": [
{
"pool": "192.0.4.10-192.0.4.20"
o
{
"pool": "192.0.4.30-192.0.4.40"
}
]
3

This is similar to the example described in Pool Selection with Client Class Reservations. This time, however, there
are three subnets, of which the first two have a pool associated with a different class each.

The clients that do not have a reservation for reserved_class are assigned an address from the first subnet and when
that is filled from the third subnet. Clients with a reservation for reserved_class are assigned an address from the
second subnet and when that is filled from the third subnet.

The subnets must belong to the same shared network.

For a subnet to be restricted to a certain class, or skipped, all of the pools inside that subnet must be guarded by
reserved_class or unreserved_class respectively.

In addition, the reservation for the client class must be specified at the global scope (global reservation) and
reservations-global must be set to true.

In the example above, the client-classes configuration parameter could also be specified at the subnet level rather
than the pool level, and would yield the same effect.

If the subnets were defined outside shared networks, and client-classes were specified at the subnet level, then
early-global-reservations-lookup would also need to be enabled in order for subnet selection to work.

142 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.3.12 Multiple Reservations for the Same IP

Host reservations were designed to preclude the creation of multiple reservations for the same IP address within a
particular subnet, to avoid having two different clients compete for the same address. When using the default settings,
the server returns a configuration error when it finds two or more reservations for the same IP address within a subnet in
the Kea configuration file. 1ibdhcp_host_cmds. so returns an error in response to the reservation-add command
when it detects that the reservation exists in the database for the IP address for which the new reservation is being
added.

In some deployments a single host can select one of several network interfaces to communicate with the DHCP server,
and the server must assign the same IP address to the host regardless of the interface used. Since each interface
is assigned a different MAC address, it implies that several host reservations must be created to associate all of the
MAC addresses present on this host with IP addresses. Using different IP addresses for each interface is impractical
and is considered a waste of the IPv4 address space, especially since the host typically uses only one interface for
communication with the server, hence only one IP address is in use.

This causes a need to create multiple host reservations for a single IP address within a subnet; this is supported since the
Kea 1.9.1 release as an optional mode of operation, enabled with the ip-reservations-unique global parameter.

ip-reservations-unique is a boolean parameter that defaults to true, which forbids the specification of more than
one reservation for the same IP address within a given subnet. Setting this parameter to false allows such reservations
to be created both in the Kea configuration file and in the host database backend, via 1ibdhcp_host_cmds. so.

Setting ip-reservations-unique to false when using memfile, MySQL, or PostgreSQL is supported. This setting
is not supported when using Host Cache (see /ibdhcp_host_cache.so: Host Cache Reservations for Improved Perfor-
mance) or the RADIUS backend (see libdhcp_radius.so: RADIUS Server Support). These reservation backends do not
support multiple reservations for the same IP; if either of these hooks is loaded and ip-reservations-unique is set
to false, then a configuration error is emitted and the server fails to start.

Note: When ip-reservations-unique is set to true (the default value), the server ensures that IP reservations are
unique for a subnet within a single host backend and/or Kea configuration file. It does not guarantee that the reservations
are unique across multiple backends. On server startup, only IP reservations defined in the Kea configuration file are
checked for uniqueness.

The following is an example configuration with two reservations for the same IP address but different MAC addresses:

"Dhcpd": {
"ip-reservations-unique": false,
"subnet4": [

{
"id": 1,
"subnet": "192.0.2.0/24",
"reservations": [
{
"hw-address": "la:1lb:1c:1d:le:1£f",
"ip-address": "192.0.2.11"
B
{
"hw-address": "2a:2b:2c:2d:2e:2f",
"ip-address": "192.0.2.11"
}
1
}

8.3. Host Reservations in DHCPv4 143

Kea Administrator Reference Manual Documentation, Release 2.7.5

It is possible to control the ip-reservations-unique parameter via the Configuration Backend in DHCPv4. If the
new setting of this parameter conflicts with the currently used backends (i.e. backends do not support the new setting),
the new setting is ignored and a warning log message is generated. The backends continue to use the default setting,
expecting that IP reservations are unique within each subnet. To allow the creation of non-unique IP reservations, the
administrator must remove the backends which lack support for them from the configuration file.

Administrators must be careful when they have been using multiple reservations for the same IP address and later decide
to return to the default mode in which this is no longer allowed. They must make sure that at most one reservation for
a given IP address exists within a subnet, prior to switching back to the default mode. If such duplicates are left in
the configuration file, the server reports a configuration error. Leaving such reservations in the host databases does not
cause configuration errors but may lead to lease allocation errors during the server's operation, when it unexpectedly
finds multiple reservations for the same IP address.

Note: Currently, the Kea server does not verify whether multiple reservations for the same IP address exist in MySQL
and/or PostgreSQL host databases when ip-reservations-unique is updated from false to true. This may cause
issues with lease allocations. The administrator must ensure that there is at most one reservation for each IP address
within each subnet, prior to the configuration update.

The reservations-lookup-first is a boolean parameter which controls whether host reservations lookup should
be performed before lease lookup. This parameter has effect only when multi-threading is disabled. When multi-
threading is enabled, host reservations lookup is always performed first to avoid lease-lookup resource locking. The
reservations-lookup-first parameter defaults to false when multi-threading is disabled.

8.3.13 Host Reservations as Basic Access Control

It is possible to define a host reservation that contains just an identifier, without any address, options, or values. In
some deployments this is useful, as the hosts that have a reservation belong to the KNOWN class while others do not.
This can be used as a basic access control mechanism.

The following example demonstrates this concept. It indicates a single IPv4 subnet and all clients will get an address
from it. However, only known clients (those that have reservations) will get their default router configured. Empty
reservations, i.e. reservations that only have the identification criterion, can be useful as a way of making the clients
known.

"Dhcp4": {
"client-classes": [
{
"name": "KNOWN",
"option-data": [
{
"name": "routers",
"data": "192.0.2.250"
}
1
}
1,

"reservations": [
// Clients on this list will be added to the KNOWN class.
{ "hw-address": "aa:bb:cc:dd:ee:fe" },
{ "hw-address": "11:22:33:44:55:66" }

1,

"reservations-in-subnet": true,

(continues on next page)

144 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/24",
"pools": [
{
"pool": "192.0.2.1-192.0.2.200"
}
]
}
]
}

This concept can be extended further. A good real-life scenario might be a situation where some customers of an ISP
have not paid their bills. A new class can be defined to use an alternative default router that, instead of relaying traffic,
redirects those customers to a captive portal urging them to bring their accounts up to date.

"Dhcp4": {
"client-classes": [
{
"name": "blocked",
"option-data": [
{
"name": "routers",
"data": "192.0.2.251"
}
1
}
1,

"reservations": [
// Clients on this list will be added to the KNOWN class. Some
// will also be added to the blocked class.
{ "hw-address": "aa:bb:cc:dd:ee:fe",
"client-classes": ["blocked"] },
{ "hw-address": "11:22:33:44:55:66" }

i
"reservations-in-subnet": true,
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/24",
"pools": [
{
"pool": "192.0.2.1-192.0.2.200"
}
i
"option-data": [
{

"name": "routers",
"data": "192.0.2.250"

(continues on next page)

8.3. Host Reservations in DHCPv4 145

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

8.4 Shared Networks in DHCPv4

DHCEP servers use subnet information in two ways. It is used to both determine the point of attachment, i.e. where the
client is connected to the network, and to group information pertaining to a specific location in the network. Sometimes
it is useful to have more than one logical IP subnet deployed on the same physical link. Understanding that two or more
subnets are used on the same link requires additional logic in the DHCP server. This capability is called "shared
networks" in Kea, and sometimes also "shared subnets"; in Microsoft's nomenclature it is called "multinet."

There are many cases where the shared networks feature is useful; here we explain just a handful of the most common
ones. The first and by far most common use case is an existing IPv4 network that has grown and is running out
of available address space. Rather than migrating all devices to a new, larger subnet, it is easier to simply configure
additional subnets on top of the existing one. Sometimes, due to address space fragmentation (e.g. only many disjointed
/24s are available), this is the only choice. Also, configuring additional subnets has the advantage of not disrupting the
operation of existing devices.

Another very frequent use case comes from cable networks. There are two types of devices in cable networks: cable
modems and the end-user devices behind them. It is a common practice to use different subnets for cable modems
to prevent users from tinkering with them. In this case, the distinction is based on the type of device, rather than on
address-space exhaustion.

A client connected to a shared network may be assigned an address from any of the pools defined within the subnets
belonging to the shared network. Internally, the server selects one of the subnets belonging to a shared network and tries
to allocate an address from this subnet. If the server is unable to allocate an address from the selected subnet (e.g., due
to address-pool exhaustion), it uses another subnet from the same shared network and tries to allocate an address from
this subnet. The server typically allocates all addresses available in a given subnet before it starts allocating addresses
from other subnets belonging to the same shared network. However, in certain situations the client can be allocated an
address from another subnet before the address pools in the first subnet get exhausted; this sometimes occurs when the
client provides a hint that belongs to another subnet, or the client has reservations in a subnet other than the default.

Note: Deployments should not assume that Kea waits until it has allocated all the addresses from the first subnet in a
shared network before allocating addresses from other subnets.

To define a shared network, an additional configuration scope is introduced:

{
"Dhcp4": {
"shared-networks": [
{
Name of the shared network. It may be an arbitrary string
and it must be unique among all shared networks.
"name": "my-secret-lair-level-1",

The subnet selector can be specified at the shared-network level.
Subnets from this shared network will be selected for directly

(continues on next page)

146 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

connected clients sending requests to the server's "eth0®" interface.
"interface": "eth®",

This starts a list of subnets in this shared network.
There are two subnets in this example.
"subnet4": [

{
"id": 1,
"subnet": "10.0.0.0/8",
"pools": [{ "pool": "10.0.0.1 - 10.0.0.99" }]
}!
{
"id": 2,
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.100 - 192.0.2.199" }]
}

}
1,

end of shared-networks

It is likely that in the network there will be a mix of regular,
"plain" subnets and shared networks. It is perfectly valid to mix
them in the same configuration file.

#

This is a regular subnet. It is not part of any shared network.
"subnet4": [

{
"id": 3,
"subnet": "192.0.3.0/24",
"pools": [{ "pool": "192.0.3.1 - 192.0.3.200" } 17,
"interface": "ethl"
}
]
}
}

As demonstrated in the example, it is possible to mix shared and regular ("plain") subnets. Each shared network must
have a unique name. This is similar to the ID for subnets, but gives administrators more flexibility. It is used for logging,
but also internally for identifying shared networks.

In principle it makes sense to define only shared networks that consist of two or more subnets. However, for testing
purposes, an empty subnet or a network with just a single subnet is allowed. This is not a recommended practice in
production networks, as the shared network logic requires additional processing and thus lowers the server's perfor-
mance. To avoid unnecessary performance degradation, shared subnets should only be defined when required by the
deployment.

Shared networks provide the ability to specify many parameters in the shared network scope that apply to all subnets
within it. If necessary, it is possible to specify a parameter in the shared-network scope and then override its value in
the subnet scope. For example:

{

"shared-networks": [

(continues on next page)

8.4. Shared Networks in DHCPv4 147

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"name": "lab-network3",
"interface": "eth0",

This applies to all subnets in this shared network, unless
values are overridden on subnet scope.
"valid-lifetime": 600,

This option is made available to all subnets in this shared
network.
"option-data": [
{
"name": "log-servers",
"data": "1.2.3.4"
}
P

"subnet4": [
{
"id": 1,
"subnet": "10.0.0.0/8",
"pools": [{ "pool": "10.0.0.1 - 10.0.0.99" } 1],

This particular subnet uses different values.
"valid-lifetime": 1200,
"option-data": [
{
"name": "log-servers",
"data": "10.0.0.254"
e
{

"name": "routers",
"data": "10.0.0.254"

3]

"id": 2,
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.100 - 192.0.2.199" } 1],

This subnet does not specify its own valid-lifetime value,
so it is inherited from shared network scope.
"option-data": [
{

"name": "routers",

"data": "192.0.2.1"
1

(continues on next page)

148 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

In this example, there is a Log-servers option defined that is available to clients in both subnets in this shared network.
Also, the valid lifetime is set to 10 minutes (600s). However, the first subnet overrides some of the values (the valid
lifetime is 20 minutes, there is a different IP address for 1og-servers), but also adds its own option (the router address).
Assuming a client asking for router and 1log-servers options is assigned a lease from this subnet, it will get a lease
for 20 minutes and a log-servers and routers value of 10.0.0.254. If the same client is assigned to the second subnet,
it will get a 10-minute lease, a 1og-servers value of 1.2.3.4, and routers set to 192.0.2.1.

8.4.1 Local and Relayed Traffic in Shared Networks

It is possible to specify an interface name at the shared-network level, to tell the server that this specific shared network
is reachable directly (not via relays) using the local network interface. As all subnets in a shared network are expected
to be used on the same physical link, it is a configuration error to attempt to define a shared network using subnets that
are reachable over different interfaces. In other words, all subnets within the shared network must have the same value
for the interface parameter. The following configuration is an example of what NOT to do:

{

"shared-networks": [

{
"name": "office-floor-2",
"subnet4": [
{
"id": 1,
"subnet": "10.0.0.0/8",
"pools": [{ "pool": "10.0.0.1 - 10.0.0.99" } 1],
"interface": "eth®"
e
{
"id": 2,
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.100 - 192.0.2.199" } 1,
Specifying the different interface name is a configuration
error. This value should rather be "eth®" or the interface
name in the other subnet should be "ethl".
"interface": "ethl"
}
]
}
1,
}

To minimize the chance of configuration errors, it is often more convenient to simply specify the interface name once,

at the shared-network level, as shown in the example below.

{
"shared-networks": [
{

"name": "office-floor-2",

(continues on next page)

8.4. Shared Networks in DHCPv4

149

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

This tells Kea that the whole shared network is reachable over a
local interface. This applies to all subnets in this network.
"interface": "eth0",

"subnet4": [

{
"id": 1,
"subnet": "10.0.0.0/8",
"pools": [{ "pool": "10.0.0.1 - 10.0.0.99" }]
}!
{
"id": 2,
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.100 - 192.0.2.199" }]
}
]
}
1,
}

With relayed traffic, subnets are typically selected using the relay agents' addresses. If the subnets are used indepen-
dently (not grouped within a shared network), a different relay address can be specified for each of these subnets. When
multiple subnets belong to a shared network they must be selected via the same relay address and, similarly to the case
of the local traffic described above, it is a configuration error to specify different relay addresses for the respective
subnets in the shared network. The following configuration is another example of what NOT to do:

{

"shared-networks": [

{
"name": "kakapo",
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/26",
"relay": {
"ip-addresses": ["192.1.1.1"]
e
"pools": [{ "pool": "192.0.2.63 - 192.0.2.63" }]
e
{
"id": 2,
"subnet": "10.0.0.0/24",
"relay": {

Specifying a different relay address for this
subnet is a configuration error. In this case
it should be 192.1.1.1 or the relay address
in the previous subnet should be 192.2.2.2.
"ip-addresses": ["192.2.2.2" 1]

3,

"pools": [{ "pool": "10.0.0.16 - 10.0.0.16" } 1]

(continues on next page)

150 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

Again, it is better to specify the relay address at the shared-network level; this value will be inherited by all subnets
belonging to the shared network.

{
"shared-networks": [
{
"name": "kakapo",
"relay": {
This relay address is inherited by both subnets.
"ip-addresses": ["192.1.1.1"]
b
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/26",
"pools": [{ "pool": "192.0.2.63 - 192.0.2.63" }]
e
{
"id": 2,
"subnet": "10.0.0.0/24",
"pools": [{ "pool": "10.0.0.16 - 10.0.0.16" } 1]
}
]
b
1,
3

Even though it is technically possible to configure two (or more) subnets within the shared network to use different
relay addresses, this will almost always lead to a different behavior than what the user expects. In this case, the Kea
server will initially select one of the subnets by matching the relay address in the client's packet with the subnet's
configuration. However, it MAY end up using the other subnet (even though it does not match the relay address) if the
client already has a lease in this subnet or has a host reservation in this subnet, or simply if the initially selected subnet
has no more addresses available. Therefore, it is strongly recommended to always specify subnet selectors (interface
or relay address) at the shared-network level if the subnets belong to a shared network, as it is rarely useful to specify
them at the subnet level and may lead to the configuration errors described above.

8.4. Shared Networks in DHCPv4 151

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.4.2 Client Classification in Shared Networks

Sometimes it is desirable to segregate clients into specific subnets based on certain properties. This mechanism is
called client classification and is described in Client Classification.

Client classification can be applied to subnets belonging to shared networks in the same way as it is used for subnets
specified outside of shared networks. It is important to understand how the server selects subnets for clients when client
classification is in use, to ensure that the appropriate subnet is selected for a given client type.

If a subnet is associated with one or more classes, only the clients belonging to at least one of these classes may use
this subnet. If there are no classes specified for a subnet, any client connected to a given shared network can use this
subnet. A common mistake is to assume that a subnet that includes a client class is preferred over subnets without
client classes.

The client-classes parameter may be specified at the shared network, subnet, and/or pool scopes. If specified for a
shared network, clients must belong to at least one of the classes specified for that network to be considered for subnets
within that network. If specified for a subnet, clients must belong to at least one of the classes specified for that subnet
to be considered for any of that subnet's pools or host reservations. If specified for a pool, clients must belong to at
least one of the classes specified for that pool to be given a lease from that pool.

Consider the following example:

{
"client-classes": [
{
"name": "b-devices",
"test": "option[93].hex == 0x0002"
}
1,
"shared-networks": [
{
"name": "galah",
"interface": "eth0",
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/26",
"pools": [{ "pool": "192.0.2.1 - 192.0.2.63" }]
e
{
"id": 2,
"subnet": "10.0.0.0/24",
"pools": [{ "pool": "10.0.0.2 - 10.0.0.250" } 1,
"client-classes": ["b-devices"]
}
]
}
]
}

If the client belongs to the "b-devices" class (because it includes option 93 with a value of 0x0002), that does not
guarantee that the subnet 10.0.0.0/24 will be used (or preferred) for this client. The server can use either of the two
subnets, because the subnet 192.0.2.0/26 is also allowed for this client. The client classification used in this case
should be perceived as a way to restrict access to certain subnets, rather than as a way to express subnet preference. For
example, if the client does not belong to the "b-devices" class, it may only use the subnet 192.0.2.0/26 and will never
use the subnet 10.0.0.0/24.

152 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

A typical use case for client classification is in a cable network, where cable modems should use one subnet and other
devices should use another subnet within the same shared network. In this case it is necessary to apply classification
on all subnets. The following example defines two classes of devices, and the subnet selection is made based on option
93 values.

{
"client-classes": [
{
"name": "a-devices",
"test": "option[93].hex == 0x0001"
if:
{
"name": "b-devices",
"test": "option[93].hex == 0x0002"
}
1,
"shared-networks": [
{
"name": "galah",
"interface": "eth0",
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/26",
"pools": [{ "pool": "192.0.2.1 - 192.0.2.63" } 1,
"client-classes": ["a-devices"]
B
{
"id": 2,
"subnet": "10.0.0.0/24",
"pools": [{ "pool": "10.0.0.2 - 10.0.0.250" } 1,
"client-classes": ["b-devices"]
}
]
}
]
}

In this example each class has its own restriction. Only clients that belong to class "a-devices" are able to use subnet
192.0.2.0/26 and only clients belonging to "b-devices" are able to use subnet 10.0.0.0/24. Care should be taken not to
define too-restrictive classification rules, as clients that are unable to use any subnets will be refused service. However,
this may be a desired outcome if one wishes to provide service only to clients with known properties (e.g. only VoIP
phones allowed on a given link).

It is possible to achieve an effect similar to the one presented in this section without the use of shared networks. If the
subnets are placed in the global subnets scope, rather than in the shared network, the server will still use classification
rules to pick the right subnet for a given class of devices. The major benefit of placing subnets within the shared network
is that common parameters for the logically grouped subnets can be specified once in the shared-network scope, e.g.
the interface or relay parameter. All subnets belonging to this shared network will inherit those parameters.

8.4. Shared Networks in DHCPv4 153

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.4.3 Host Reservations in Shared Networks

Subnets that are part of a shared network allow host reservations, similar to regular subnets:

{

"shared-networks": [

{
"name": "frog",
"interface": "eth0®",
"subnet4": [
{
"subnet": "192.0.2.0/26",
"id": 100,
"pools": [{ "pool": "192.0.2.1 - 192.0.2.63" } 1],
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:ff",
"ip-address": "192.0.2.28"
}
]
e
{
"subnet": "10.0.0.0/24",
"id": 101,
"pools": [{ "pool": "10.0.0.1 - 10.0.0.254" } 1],
"reservations": [
{
"hw-address": "11:22:33:44:55:66",
"ip-address": "10.0.0.29"
}
1
}
]
}
]

It is worth noting that Kea conducts additional checks when processing a packet if shared networks are defined. First,
instead of simply checking whether there is a reservation for a given client in its initially selected subnet, Kea looks
through all subnets in a shared network for a reservation. This is one of the reasons why defining a shared network may
impact performance. If there is a reservation for a client in any subnet, that particular subnet is selected for the client.
Although it is technically not an error, it is considered bad practice to define reservations for the same host in multiple
subnets belonging to the same shared network.

While not strictly mandatory, it is strongly recommended to use explicit "id" values for subnets if database storage will
be used for host reservations. If an ID is not specified, the values for it are auto-generated, i.e. Kea assigns increasing
integer values starting from 1. Thus, the auto-generated IDs are not stable across configuration changes.

154 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.5 Server Identifier in DHCPv4

The DHCPv4 protocol uses a "server identifier" to allow clients to discriminate between several servers present on the
same link; this value is an IPv4 address of the server. The server chooses the IPv4 address of the interface on which
the message from the client (or relay) has been received. A single server instance uses multiple server identifiers if it
is receiving queries on multiple interfaces.

It is possible to override the default server identifier values by specifying the dhcp-server-identifier option. This
option configuration is only supported at the subnet, shared network, client class, and global levels. It must not be
specified at the host-reservation level. When configuring the dhcp-server-identifier option at client-class level,
the class must not set the only-in-additional-1list flag, because this class would not be evaluated before the server
determines if the received DHCP message should be accepted for processing. Such classes are evaluated after subnet
selection. See Additional Classification for details.

The following example demonstrates how to override the server identifier for a subnet:

{
"subnet4": [
{
"subnet": "192.0.2.0/24",
"option-data": [
{
"name": "dhcp-server-identifier",
"data": "10.2.5.76"
}
ie
}
1,
}

8.6 How the DHCPV4 Server Selects a Subnet for the Client

The DHCPv4 server differentiates among directly connected clients, clients trying to renew leases, and clients sending
their messages through relays. For directly connected clients, the server checks the configuration for the interface on
which the message has been received and, if the server configuration does not match any configured subnet, the message
is discarded.

An optional interface parameter is available within a subnet definition to designate that a given subnet is local, i.e.
reachable directly over the specified interface. For example, a server that is intended to serve a local subnet over ethO
may be configured as follows:

"Dhcp4": {
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/24",
"pools": [
{
"pool": "192.0.2.100 - 192.0.2.199"
}

(continues on next page)

8.5. Server Identifier in DHCPv4 155

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

1,

"interface": "eth0"

}

Assuming that the server's interface is configured with the IPv4 address 192.0.2.3, the server only processes messages
received through this interface from a directly connected client if there is a subnet configured to which this IPv4 address
belongs, such as 192.0.2.0/24. The server uses this subnet to assign an IPv4 address for the client.

The rule above does not apply when the client unicasts its message, i.e. is trying to renew its lease; such a message
is accepted through any interface. The renewing client sets ciaddr to the currently used IPv4 address, and the server
uses this address to select the subnet for the client (in particular, to extend the lease using this address).

If the message is relayed it is accepted through any interface. The giaddr set by the relay agent is used to select the
subnet for the client.

It is also possible to specify a relay IPv4 address for a given subnet. It can be used to match incoming packets into a
subnet in uncommon configurations, e.g. shared networks. See Using a Specific Relay Agent for a Subnet for details.

Note: The subnet selection mechanism described in this section is based on the assumption that client classification
is not used. The classification mechanism alters the way in which a subnet is selected for the client, depending on the
classes to which the client belongs.

Note: When the selected subnet is a member of a shared network, the whole shared network is selected.

8.6.1 Using a Specific Relay Agent for a Subnet

A relay must have an interface connected to the link on which the clients are being configured. Typically the relay has
an IPv4 address configured on that interface, which belongs to the subnet from which the server assigns addresses.
Normally, the server is able to use the IPv4 address inserted by the relay (in the giaddr field of the DHCPv4 packet)
to select the appropriate subnet.

However, that is not always the case. In certain uncommon — but valid — deployments, the relay address may not match
the subnet. This usually means that there is more than one subnet allocated for a given link. The two most common
examples of this are long-lasting network renumbering (where both old and new address spaces are still being used)
and a cable network. In a cable network, both cable modems and the devices behind them are physically connected to
the same link, yet they use distinct addressing. In such a case, the DHCPv4 server needs additional information (the
IPv4 address of the relay) to properly select an appropriate subnet.

The following example assumes that there is a subnet 192.0.2.0/24 that is accessible via a relay that uses 10.0.0.1 as
its IPv4 address. The server is able to select this subnet for any incoming packets that come from a relay that has an
address in the 192.0.2.0/24 subnet. It also selects that subnet for a relay with address 10.0.0.1.

{
"Dhcp4": {
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/24",

(continues on next page)

156 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" } 1,
"relay": {

"ip-addresses": ["10.0.0.1"]
}

]
3
¥

If relay is specified, the ip-addresses parameter within it is mandatory. The ip-addresses parameter supports
specifying a list of addresses.

8.6.2 Segregating IPv4 Clients in a Cable Network

In certain cases, it is useful to mix relay address information (introduced in Using a Specific Relay Agent for a Subnet)
with client classification (explained in Client Classification). One specific example is in a cable network, where modems
typically get addresses from a different subnet than all the devices connected behind them.

Let us assume that there is one Cable Modem Termination System (CMTS) with one CM MAC (a physical link that
modems are connected to). We want the modems to get addresses from the 10.1.1.0/24 subnet, while everything
connected behind the modems should get addresses from the 192.0.2.0/24 subnet. The CMTS that acts as a relay uses
address 10.1.1.1. The following configuration can serve that situation:

"Dhcp4d": {
"subnet4": [
{
"id": 1,
"subnet": "10.1.1.0/24",
"pools": [{ "pool": "10.1.1.2 - 10.1.1.20" } 1,
"client-classes": ["docsis3.0"],
"relay": {
"ip-addresses": ["10.1.1.1"]
}
e
{
"id": 2,
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" } 1],
"relay": {
"ip-addresses": ["10.1.1.1"]
}
}
1,
}

8.6. How the DHCPv4 Server Selects a Subnet for the Client 157

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.7 Duplicate Addresses (DHCPDECLINE Support)

The DHCPv4 server is configured with a certain pool of addresses that it is expected to hand out to DHCPv4 clients.
It is assumed that the server is authoritative and has complete jurisdiction over those addresses. However, for various
reasons such as misconfiguration or a faulty client implementation that retains its address beyond the valid lifetime,
there may be devices connected that use those addresses without the server's approval or knowledge.

Such an unwelcome event can be detected by legitimate clients (using ARP or ICMP Echo Request mechanisms) and
reported to the DHCPv4 server using a DHCPDECLINE message. The server does a sanity check (to see whether the
client declining an address really was supposed to use it) and then conducts a clean-up operation. Any DNS entries
related to that address are removed, the event is logged, and hooks are triggered. After that is complete, the address
is marked as declined (which indicates that it is used by an unknown entity and thus not available for assignment) and
a probation time is set on it. Unless otherwise configured, the probation period lasts 24 hours; after that time, the
server will recover the lease (i.e. put it back into the available state) and the address will be available for assignment
again. It should be noted that if the underlying issue of a misconfigured device is not resolved, the duplicate-address
scenario will repeat. If reconfigured correctly, this mechanism provides an opportunity to recover from such an event
automatically, without any system administrator intervention.

To configure the decline probation period to a value other than the default, the following syntax can be used:

"Dhcp4": {
"decline-probation-period": 3600,
"subnet4": [

{

3,

The parameter is expressed in seconds, so the example above instructs the server to recycle declined leases after one
hour.

There are several statistics and hook points associated with the decline handling procedure. The lease4_decline
hook point is triggered after the incoming DHCPDECLINE message has been sanitized and the server is about to
decline the lease. The declined-addresses statistic is increased after the hook returns (both the global and subnet-
specific variants). (See Statistics in the DHCPv4 Server and Hook Libraries for more details on DHCPv4 statistics and
Kea hook points.)

Once the probation time elapses, the declined lease is recovered using the standard expired-lease reclamation procedure,
with several additional steps. In particular, both declined-addresses statistics (global and subnet-specific) are
decreased. At the same time, reclaimed-declined-addresses statistics (again in two variants, global and subnet-
specific) are increased.

A note about statistics: The Kea server does not decrease the assigned-addresses statistics when a DHCPDE-
CLINE is received and processed successfully. While technically a declined address is no longer assigned, the pri-
mary usage of the assigned-addresses statistic is to monitor pool utilization. Most people would forget to include
declined-addresses in the calculation, and would simply use assigned-addresses/total-addresses. This
would cause a bias towards under-representing pool utilization. As this has a potential to cause serious confusion, ISC
decided not to decrease assigned-addresses immediately after receiving DHCPDECLINE, but to do it later when
Kea recovers the address back to the available pool.

158 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.8 Statistics in the DHCPv4 Server

The DHCPv4 server supports the following statistics:

Table 8: DHCPv4 statistics

Statistic

Data Type |

Description

pktd-received

pkt4-discover-received

pkt4-offer-received

pkt4-request-received

pkt4-ack-received

pkt4-nak-received

pktd-release-received

pkt4-decline-received

pkt4-inform-received

pkt4-unknown-
received

pkt4-sent

pktd-offer-sent

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

Number of DHCPv4 packets received. This includes all packets: valid, bogus, cor-
rupted, rejected, etc. This statistic is expected to grow rapidly.

Number of DHCPDISCOVER packets received. This statistic is expected to grow;
its increase means that clients that just booted started their configuration process
and their initial packets reached the Kea server.

Number of DHCPOFFER packets received. This statistic is expected to remain
zero at all times, as DHCPOFFER packets are sent by the server and the server is
never expected to receive them. A non-zero value indicates an error. One likely
cause would be a misbehaving relay agent that incorrectly forwards DHCPOFFER
messages towards the server, rather than back to the clients.

Number of DHCPREQUEST packets received. This statistic is expected to grow.
Its increase means that clients that just booted received the server's response
(DHCPOFFER) and accepted it, and are now requesting an address (DHCPRE-
QUEST).

Number of DHCPACK packets received. This statistic is expected to remain zero
at all times, as DHCPACK packets are sent by the server and the server is never
expected to receive them. A non-zero value indicates an error. One likely cause
would be a misbehaving relay agent that incorrectly forwards DHCPACK messages
towards the server, rather than back to the clients.

Number of DHCPNAK packets received. This statistic is expected to remain zero
at all times, as DHCPNAK packets are sent by the server and the server is never
expected to receive them. A non-zero value indicates an error. One likely cause
would be a misbehaving relay agent that incorrectly forwards DHCPNAK messages
towards the server, rather than back to the clients.

Number of DHCPRELEASE packets received. This statistic is expected to grow.
Its increase means that clients that had an address are shutting down or ceasing to
use their addresses.

Number of DHCPDECLINE packets received. This statistic is expected to remain
close to zero. Its increase means that a client leased an address, but discovered that
the address is currently used by an unknown device elsewhere in the network.
Number of DHCPINFORM packets received. This statistic is expected to grow. Its
increase means that there are clients that either do not need an address or already
have an address and are interested only in getting additional configuration parame-
ters.

Number of packets received of an unknown type. A non-zero value of this statistic
indicates that the server received a packet that it was not able to recognize, either
with an unsupported type or possibly malformed (without a message-type option).
Number of DHCPv4 packets sent. This statistic is expected to grow every time the
server transmits a packet. In general, it should roughly match pkt4-received,
as most incoming packets cause the server to respond. There are exceptions (e.g.
DHCPRELEASE), so do not worry if it is less than pkt4-received.

Number of DHCPOFFER packets sent. This statistic is expected to grow in most
cases after a DHCPDISCOVER is processed. There are certain uncommon but
valid cases where incoming DHCPDISCOVER packets are dropped, but in general
this statistic is expected to be close to pkt4-discover-received.

continues on next page

8.8. Statistics in the DHCPv4 Server

159

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 8 — continued from previous page

Description

| Statistic Data Type |
pkt4-ack-sent integer
pkt4-nak-sent integer
pkt4-parse-failed integer
pktd-receive-drop integer
subnet[id].total- integer
addresses

subnet[id].pool[pid].total integer
addresses

cumulative-assigned- integer
addresses
subnet[id].camulative- integer

assigned-addresses

subnet[id].pool[pid].cum integer
assigned-addresses

subnet[id].assigned- integer
addresses

subnet[id].pool[pid].assig integer
addresses

Number of DHCPACK packets sent. This statistic is expected to grow in most cases
after a DHCPREQUEST is processed; there are certain cases where DHCPNAK is
sent instead. In general, the sum of pkt4-ack-sent and pkt4-nak-sent should
be close to pkt4-request-received.

Number of DHCPNAK packets sent. This statistic is expected to grow when
the server chooses not to honor the address requested by a client. In gen-
eral, the sum of pkt4-ack-sent and pkt4-nak-sent should be close to
pkt4-request-received.

Number of incoming packets that could not be parsed. A non-zero value of this
statistic indicates that the server received a malformed or truncated packet. This
may indicate problems in the network, faulty clients, or a bug in the server.
Number of incoming packets that were dropped. The exact reason for dropping
packets is logged, but the most common reasons may be that an unacceptable packet
type was received, direct responses are forbidden, or the server ID sent by the client
does not match the server's server ID.

Total number of addresses available for DHCPv4 management for a given subnet;
in other words, this is the count of all addresses in all configured pools. This statis-
tic changes only during configuration updates. It does not take into account any
addresses that may be reserved due to host reservation. The id is the the subnet ID
of a given subnet. This statistic is exposed for each subnet separately, and is reset
during a reconfiguration event.

Total number of addresses available for DHCPv4 management for a given subnet
pool; in other words, this is the count of all addresses in configured subnet pool.
This statistic changes only during configuration updates. It does not take into ac-
count any addresses that may be reserved due to host reservation. The id is the
subnet ID of a given subnet. The pid is the pool ID of a given pool. This statistic is
exposed for each subnet pool separately, and is reset during a reconfiguration event.
Cumulative number of addresses that have been assigned since server startup. It is
incremented each time an address is assigned and is not reset when the server is
reconfigured.

Cumulative number of assigned addresses in a given subnet. It increases every time
a new lease is allocated (as a result of receiving a DHCPREQUEST message) and
never decreases. The id is the subnet ID of the subnet. This statistic is exposed for
each subnet separately, and is reset during a reconfiguration event.

Cumulative number of assigned addresses in a given subnet pool. It increases every
time a new lease is allocated (as a result of receiving a DHCPREQUEST message)
and never decreases. The id is the subnet ID of the subnet. The pid is the pool ID
of the pool. This statistic is exposed for each subnet pool separately, and is reset
during a reconfiguration event.

Number of assigned addresses in a given subnet. It increases every time a new lease
is allocated (as a result of receiving a DHCPREQUEST message) and decreases
every time a lease is released (a DHCPRELEASE message is received) or expires.
The id is the subnet ID of the subnet. This statistic is exposed for each subnet
separately, and is reset during a reconfiguration event.

Number of assigned addresses in a given subnet pool. It increases every time a
new lease is allocated (as a result of receiving a DHCPREQUEST message) and
decreases every time a lease is released (a DHCPRELEASE message is received)
or expires. The id is the subnet ID of the subnet. The pid is the pool ID of the
pool. This statistic is exposed for each subnet pool separately, and is reset during a
reconfiguration event.

continues on next page

160

Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 8 — continued from previous page

Statistic

Data Type

Description

reclaimed-leases

subnet[id].reclaimed-
leases

subnet[id].pool[pid].recl:
leases

declined-addresses

subnet[id].declined-
addresses

subnet[id].pool[pid].decl
addresses

reclaimed-declined-
addresses

subnet[id].reclaimed-
declined-addresses

subnet[id].pool[pid].recl:
declined-addresses

pkt4-lease-query-
received
pkt4-lease-query-
response-unknown-
sent

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

Number of expired leases that have been reclaimed since server startup. It is incre-
mented each time an expired lease is reclaimed and never decreases. It can be used
as a long-term indicator of how many actual leases have been reclaimed. This is a
global statistic that covers all subnets.

Number of expired leases associated with a given subnet that have been reclaimed
since server startup. It is incremented each time an expired lease is reclaimed. The
id is the subnet ID of a given subnet. This statistic is exposed for each subnet
separately.

Number of expired leases associated with a given subnet pool that have been re-
claimed since server startup. It is incremented each time an expired lease is re-
claimed. The id is the subnet ID of a given subnet. The pid is the pool ID of the
pool. This statistic is exposed for each subnet pool separately.

Number of IPv4 addresses that are currently declined; a count of the number of
leases currently unavailable. Once a lease is recovered, this statistic is decreased;
ideally, this statistic should be zero. If this statistic is non-zero or increasing, a
network administrator should investigate whether there is a misbehaving device in
the network. This is a global statistic that covers all subnets.

Number of [Pv4 addresses that are currently declined in a given subnet; a count of
the number of leases currently unavailable. Once a lease is recovered, this statistic
is decreased; ideally, this statistic should be zero. If this statistic is non-zero or in-
creasing, a network administrator should investigate whether there is a misbehaving
device in the network. The id is the subnet ID of a given subnet. This statistic is
exposed for each subnet separately.

Number of IPv4 addresses that are currently declined in a given subnet pool; a
count of the number of leases currently unavailable. Once a lease is recovered,
this statistic is decreased; ideally, this statistic should be zero. If this statistic is
non-zero or increasing, a network administrator should investigate whether there is
a misbehaving device in the network. The id is the subnet ID of a given subnet.
The pid is the pool ID of the pool. This statistic is exposed for each subnet pool
separately.

Number of IPv4 addresses that were declined, but have now been recovered. Unlike
declined-addresses, this statistic never decreases. It can be used as a long-term
indicator of how many actual valid declines were processed and recovered from.
This is a global statistic that covers all subnets.

Number of IPv4 addresses that were declined, but have now been recovered. Unlike
declined-addresses, this statistic never decreases. It can be used as a long-term
indicator of how many actual valid declines were processed and recovered from.
The id is the subnet ID of a given subnet. This statistic is exposed for each subnet
separately.

Number of IPv4 addresses that were declined, but have now been recovered. Unlike
declined-addresses, this statistic never decreases. It can be used as a long-term
indicator of how many actual valid declines were processed and recovered from.
The id is the subnet ID of a given subnet. The pid is the pool ID of the pool. This
statistic is exposed for each subnet pool separately.

Number of IPv4 DHCPLEASEQUERY packets received. (Only exists if the Lease-
query hook library is loaded.)

Number of IPv4 DHCPLEASEUNKNOWN responses sent. (Only exists if the
Leasequery hook library is loaded.)

continues on next page

8.8. Statistics in the DHCPv4 Server 161

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 8 — continued from previous page

Statistic

Data Type |

Description

pkt4-lease-query-
response-unassigned-
sent
pkt4-lease-query-
response-active-sent
v4-allocation-fail

subnet[id].v4-
allocation-fail

v4-allocation-fail-
shared-network
subnet[id].v4-
allocation-fail-shared-
network
v4-allocation-fail-
subnet

subnet[id].v4-
allocation-fail-subnet

v4-allocation-fail-no-
pools

subnet[id].v4-
allocation-fail-no-
pools

v4-allocation-fail-
classes

subnet[id].v4-
allocation-fail-classes

v4-lease-reuses

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

Number of IPv4 DHCPLEASEUNASSIGNED responses sent. (Only exists if the
Leasequery hook library is loaded.)

Number of IPv4 DHCPLEASEACTIVE responses sent. (Only exists if the Lease-
query hook library is loaded.)

Number of total address allocation failures for a particular client. This consists of
the number of lease allocation attempts that the server made before giving up, if it
was unable to use any of the address pools. This is a global statistic that covers all
subnets.

Number of total address allocation failures for a particular client. This consists of
the number of lease allocation attempts that the server made before giving up, if
it was unable to use any of the address pools. The id is the subnet ID of a given
subnet. This statistic is exposed for each subnet separately.

Number of address allocation failures for a particular client connected to a shared
network. This is a global statistic that covers all subnets.

Number of address allocation failures for a particular client connected to a shared
network. The id is the subnet ID of a given subnet. This statistic is exposed for each
subnet separately.

Number of address allocation failures for a particular client connected to a subnet
that does not belong to a shared network. This is a global statistic that covers all
subnets.

Number of address allocation failures for a particular client connected to a subnet
that does not belong to a shared network. The id is the subnet ID of a given subnet.
This statistic is exposed for each subnet separately.

Number of address allocation failures because the server could not use any config-
ured pools for a particular client. Itis also possible that all of the subnets from which
the server attempted to assign an address lack address pools. In this case, it should
be considered misconfiguration if an operator expects that some clients should be
assigned dynamic addresses. This is a global statistic that covers all subnets.
Number of address allocation failures because the server could not use any con-
figured pools for a particular client. It is also possible that all of the subnets from
which the server attempted to assign an address lack address pools. In this case,
it should be considered misconfiguration if an operator expects that some clients
should be assigned dynamic addresses. The id is the subnet ID of a given subnet.
This statistic is exposed for each subnet separately.

Number of address allocation failures when the client's packet belongs to one or
more classes. There may be several reasons why a lease was not assigned: for
example, if all pools require packets to belong to certain classes and an incoming
packet does not belong to any. Another case where this information may be useful
is to indicate that the pool reserved for a given class has run out of addresses. This
is a global statistic that covers all subnets.

Number of address allocation failures when the client's packet belongs to one or
more classes. There may be several reasons why a lease was not assigned: for
example, if all pools require packets to belong to certain classes and an incoming
packet does not belong to any. Another case where this information may be useful is
to indicate that the pool reserved for a given class has run out of addresses. The id is
the subnet ID of a given subnet. This statistic is exposed for each subnet separately.
Number of times an IPv4 lease had its CLTT increased in memory and its expiration
time left unchanged in persistent storage, as part of the lease caching feature. This
is referred to as a lease reuse. This statistic is global.

continues on next page

162

Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 8 — continued from previous page

| Statistic Data Type | Description

subnet[id].v4-lease- integer Number of times an IPv4 lease had its CLTT increased in memory and its expiration

reuses time left unchanged in persistent storage, as part of the lease caching feature. This
is referred to as a lease reuse. This statistic is on a per-subnet basis. The id is the
subnet ID of a given subnet.

v4-reservation- integer Number of host reservation allocation conflicts which have occurred across every

conflicts subnet. When a client sends a DHCP Discover and is matched to a host reservation
which is already leased to another client, this counter is increased by 1.

subnet[id].v4- integer Number of host reservation allocation conflicts which have occurred in a specific

reservation-conflicts subnet. When a client sends a DHCP Discover and is matched to a host reservation
which is already leased to another client, this counter is increased by 1.

Note: The pool ID can be configured on each pool by explicitly setting the pool-id parameter in the pool parameter
map. If not configured, pool-id defaults to 0. The statistics related to pool ID O refer to all the statistics of all the
pools that have an unconfigured pool-id. The pool ID does not need to be unique within the subnet or across subnets.
The statistics regarding a specific pool ID within a subnet are combined with the other statistics of all other pools with
the same pool ID in the respective subnet.

Note: This section describes DHCPv4-specific statistics. For a general overview and usage of statistics, see Statistics.

The DHCPv4 server provides two global parameters to control the default sample limits of statistics:

* statistic-default-sample-count - determines the default maximum number of samples to be kept. The
special value of 0 indicates that a default maximum age should be used.

e statistic-default-sample-age - determines the default maximum age, in seconds, of samples to be kept.

For instance, to reduce the statistic-keeping overhead, set the default maximum sample count to 1 so only one sample
is kept:

"Dhcpd": {
"statistic-default-sample-count": 1,
"subnet4": [

{

3,

Statistics can be retrieved periodically to gain more insight into Kea operations. One tool that leverages that capability
is ISC Stork. See Monitoring Kea With Stork for details.

8.8. Statistics in the DHCPv4 Server 163

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.9 Management API for the DHCPv4 Server

The management API allows the issuing of specific management commands, such as statistics retrieval, reconfiguration,
or shutdown. For more details, see Management API. By default there are no sockets open; to instruct Kea to open a
socket, the following entry in the configuration file can be used:

"Dhcp4d": {
"control-sockets": [
{
"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket"
}
1,
"subnet4": [
{
e

8.9.1 UNIX Control Socket
Until Kea server 2.7.2 the only supported communication channel type was the UNIX stream socket with socket-type
set to unix and socket-name to the file path of the UNIX/LOCAL socket.

The length of the path specified by the socket-name parameter is restricted by the maximum length for the UNIX
socket name on the administrator's operating system, i.e. the size of the sun_path field in the sockaddr_un structure,
decreased by 1. This value varies on different operating systems, between 91 and 107 characters. Typical values are
107 on Linux and 103 on FreeBSD.

Communication over the control channel is conducted using JSON structures. See the Control Channel section in the
Kea Developer's Guide for more details.

The DHCPv4 server supports the following operational commands:
e build-report
e config-get
e config-hash-get
e config-reload
e config-set
e config-test
e config-write
e dhcp-disable
e dhcp-enable
* leases-reclaim

e]list-commands

164 Chapter 8. The DHCPv4 Server

https://reports.kea.isc.org/dev_guide/d2/d96/ctrlSocket.html
https://reports.kea.isc.org/dev_guide/d2/d96/ctrlSocket.html

Kea Administrator Reference Manual Documentation, Release 2.7.5

e shutdown
e status-get
e version-get

as described in Commands Supported by Both the DHCPv4 and DHCPv6 Servers. In addition, it supports the following
statistics-related commands:

e statistic-get

e statistic-reset

* statistic-remove

e statistic-get-all

e statistic-reset-all

* statistic-remove-all

* statistic-sample-age-set

e statistic-sample-age-set-all

e statistic-sample-count-set

e statistic-sample-count-set-all

as described in Commands for Manipulating Statistics.

8.9.2 HTTP/HTTPS Control Socket

The socket-type must be http or https (when the type is https TLS is required). The socket-address (default
127.0.0.1) and socket-port (default 8000) specify an IP address and port to which the HTTP service will be bound.

Since Kea 2.7.5 the http-headers parameter specifies a list of extra HTTP headers to add to HTTP responses.

The trust-anchor, cert-file, key-file, and cert-required parameters specify the TLS setup for HTTP,
i.e. HTTPS. If these parameters are not specified, HTTP is used. The TLS/HTTPS support in Kea is described in
TLS/HTTPS Support.

Basic HTTP authentication protects against unauthorized uses of the control agent by local users. For protection against
remote attackers, HTTPS and reverse proxy of Secure Connections provide stronger security.

The authentication is described in the authentication block with the mandatory type parameter, which selects the
authentication. Currently only the basic HTTP authentication (type basic) is supported.

The realm authentication parameter (default kea-dhcpv4-server is used for error messages when the basic HTTP
authentication is required but the client is not authorized.

When the clients authentication list is configured and not empty, basic HTTP authentication is required. Each element
of the list specifies a user ID and a password. The user ID is mandatory, must not be empty, and must not contain the
colon (:) character. The password is optional; when it is not specified an empty password is used.

Note: The basic HTTP authentication user ID and password are encoded in UTF-8, but the current Kea JSON syntax
only supports the Latin-1 (i.e. 0x00..0xff) Unicode subset.

To avoid exposing the user ID and/or the associated password, these values can be read from files. The syntax is
extended by:

* The directory authentication parameter, which handles the common part of file paths. The default value is the
empty string.

8.9. Management API for the DHCPv4 Server 165

Kea Administrator Reference Manual Documentation, Release 2.7.5

* The password-file client parameter, which, alongside the directory parameter, specifies the path of a file
that can contain the password, or when no user ID is given, the whole basic HTTP authentication secret.

* The user-file client parameter, which, with the directory parameter, specifies the path of a file where the
user ID can be read.

When files are used, they are read when the configuration is loaded, to detect configuration errors as soon as possible.

"Dhcp4d": {
"control-sockets": [
{
"socket-type": "https",
"socket-address": "10.20.30.40",
"socket-port": 8004,
"http-headers": [
{
"name": "Strict-Transport-Security",
"value": "max-age=31536000"
}
g
"trust-anchor": "/path/to/the/ca-cert.pem",
"cert-file": "/path/to/the/agent-cert.pem",
"key-file": "/path/to/the/agent-key.pem",
"cert-required": true,
"authentication": {
"type": "basic",
"realm": "kea-dhcpv4-server",
"clients": [
{
"user": "admin",
"password": "1234"
11
}
}
1,
"subnet4": [
{
e

166 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.10 User Contexts in IPv4

Kea allows the loading of hook libraries that can sometimes benefit from additional parameters. If such a parameter is
specific to the whole library, it is typically defined as a parameter for the hook library. However, sometimes there is a
need to specify parameters that are different for each pool.

See Comments and User Context for additional background regarding the user-context idea. See User Contexts in
Hooks for a discussion from the hooks perspective.

User contexts can be specified at global scope; at the shared-network, subnet, pool, client-class, option-data, or defini-
tion level; and via host reservation. One other useful feature is the ability to store comments or descriptions.

Let's consider an imaginary case of devices that have colored LED lights. Depending on their location, they should
glow red, blue, or green. It would be easy to write a hook library that would send specific values, maybe as a vendor
option. However, the server has to have some way to specify that value for each pool. This need is addressed by user
contexts. In essence, any user data can be specified in the user context as long as it is a valid JSON map. For example,
the aforementioned case of LED devices could be configured in the following way:

"Dhcp4": {
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/24",
"pools": [
{
"pool": "192.0.2.10 - 192.0.2.20",
This is pool specific user context
"user-context": { "color": "red" }
}
i

This is a subnet-specific user context. Any type
of information can be entered here as long as it is valid JSON.
"user-context": {

"comment": "network on the second floor",
"last-modified": "2017-09-04 13:32",
"description": "you can put anything you like here",

"phones": ["x1234", "x2345"],
"devices-registered": 42,
"billing": false

Kea does not interpret or use the user-context information; it simply stores it and makes it available to the hook libraries.
It is up to each hook library to extract that information and use it. The parser translates a comment entry into a user
context with the entry, which allows a comment to be attached inside the configuration itself.

8.10. User Contexts in IPv4 167

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.11 Supported DHCP Standards

The following standards are currently supported in Kea:

BOOTP Vendor Information Extensions, RFC 1497: This requires the open source BOOTP hook to be loaded.
See libdhcp_bootp.so: Support for BOOTP Clients for details.

Dynamic Host Configuration Protocol, RFC 1531: This RFC is obsolete and was replaced by RFC 1541, which
in turn was replaced by RFC 2131. Kea supports all three RFCs.

Clarifications and Extensions for the Bootstrap Protocol, RFC 1532: This RFC has an editorial error and was
quickly superseeded by RFC 1542. Kea supports them both.

DHCP Options and BOOTP Vendor Extensions, RFC 1533: This RFC is obsolete and was replaced by RFC
2132. Nevertheless, Kea supports the options defined in it.

Dynamic Host Configuration Protocol, RFC 1541: This RFC is obsolete and was replaced by RFC 2131. Kea
supports both.

Clarifications and Extensions for the Bootstrap Protocol, RFC 1542: This RFC is supported.

Dynamic Host Configuration Protocol, RFC 2131: Supported messages are DHCPDISCOVER (1), DHCPOF-
FER (2), DHCPREQUEST (3), DHCPRELEASE (7), DHCPINFORM (8), DHCPACK (5), and DHCPNAK(6).

DHCP Options and BOOTP Vendor Extensions, REC 2132: Supported options are PAD (0), END(255), Message
Type(53), DHCP Server Identifier (54), Domain Name (15), DNS Servers (6), IP Address Lease Time (51),
Subnet Mask (1), and Routers (3).

DHCP Options for Novell Directory Services, REC 2241: All three options are supported.

Management of IP numbers by peg-dhcp, REC 2322: This RFC is supported, although additional hardware is
required for full deployment.

DHCP Option for The Open Group's User Authentication Protocol, RFC 2485: The option is supported.
DHCP Option to Disable Stateless Auto-Configuration in IPv4 Clients, RFC 2563: The option is supported.
DHCP Options for Service Location Protocol, RFC 2610: Both options are supported.

The Name Service Search Option for DHCP, RFEC 2937: The option is supported.

The User Class Option for DHCP, RFC 3004: The user class is supported and can be used in any expression.
The option's structure is not parsed and has to be referenced using hex.

The IPv4 Subnet Selection Option for DHCP, RFC 3011: The subnet-selection option is supported; if received
in a packet, it is used in the subnet-selection process.

DHCP Relay Agent Information Option, RFC 3046: Relay Agent Information, Circuit ID, and Remote ID options
are supported.

The DOCSIS (Data-Over-Cable Service Interface Specifications) Device Class DHCP (Dynamic Host Configu-
ration Protocol) Relay Agent Information Sub-option, RFC 3256: The DOCSIS sub-option is supported and can
be used in any expression.

Encoding Long Options in the Dynamic Host Configuration Protocol (DHCPv4), RFC 3396: The Kea server
can both receive and send long options. The long options can be configured and Kea will send them as separate
instances if the payload length is longer than 255 octets.

Dynamic Host Configuration Protocol (DHCP) Domain Search Option, RFC 3397: The option is supported.

The Classless Static Route Option for Dynamic Host Configuration Protocol (DHCP) version 4, RFC 3442: The
option is supported.

168

Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc1497
https://tools.ietf.org/html/rfc1531
https://tools.ietf.org/html/rfc1532
https://tools.ietf.org/html/rfc1533
https://tools.ietf.org/html/rfc1541
https://tools.ietf.org/html/rfc1542
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc2132
https://tools.ietf.org/html/rfc2241
https://tools.ietf.org/html/rfc2322
https://tools.ietf.org/html/rfc2485
https://tools.ietf.org/html/rfc2563
https://tools.ietf.org/html/rfc2610
https://tools.ietf.org/html/rfc2937
https://tools.ietf.org/html/rfc3004
https://tools.ietf.org/html/rfc3011
https://tools.ietf.org/html/rfc3046
https://tools.ietf.org/html/rfc3256
https://tools.ietf.org/html/rfc3396
https://tools.ietf.org/html/rfc3397
https://tools.ietf.org/html/rfc3442

Kea Administrator Reference Manual Documentation, Release 2.7.5

* Dynamic Host Configuration Protocol (DHCP) Option for CableLabs Client Configuration, RFC 3495: The
option and its suboptions 1, 2, 4, 5, 6, 7 and 8 are supported. See CableLabs Client Conf Suboptions for details.

* Link Selection sub-option for the Relay Agent Option, REC 3527: The link selection sub-option is supported.

* PacketCable Security Ticket Control Sub-Option for the DHCP CableLabs Client Configuration (CCC) Option,
RFC 3594: The Security Ticket Control sub-option is supported.

* Key Distribution Center (KDC) Server Address Sub-option for the Dynamic Host Configuration Protocol (DHCP)
CableLabs Client Configuration (CCC) Option, RFC 3634: The Key Distribution Center IP Address sub-option
is supported.

* Unused Dynamic Host Configuration Protocol (DHCP) Option Codes, RFC 3679: Kea does not support any of
the old options that were obsoleted by this RFC.

 Vendor-1dentifying Vendor Options for Dynamic Host Configuration Protocol version 4, RFC 3925: The Vendor-
Identifying Vendor Class and Vendor-Identifying Vendor-Specific Information options are supported.

* Reclassifying Dynamic Host Configuration Protocol version 4 (DHCPv4) Options, REC 3942: Kea supports
options with codes greater than 127.

» Subscriber-ID Suboption for the DHCP Relay Agent Option, RFC 3993: The Subscriber-ID option is supported.

* Dynamic Host Configuration Protocol (DHCP) Options for Broadcast and Multicast Control Servers, REC 4280:
The DHCPv4 options are supported.

* Node-specific Client Identifiers for Dynamic Host Configuration Protocol Version Four (DHCPv4), RFC 4361:
The DUID in DHCPv4 is supported.

* Dynamic Host Configuration Protocol (DHCP) Leasequery, RFC 4388: The server functionality is supported.
This requires leasequery hook. See libdhcp_lease_query.so: Leasequery Support for details.

e Dynamic Host Configuration Protocol (DHCP) Options for the Intel Preboot eXecution Environment (PXE),
RFC 4578: All three options defined are supported.

* A DNS Resource Record (RR) for Encoding Dynamic Host Configuration Protocol (DHCP) Information (DHCID
RR), REC 4701: The DHCPv4 server supports DHCID records. The DHCP-DDNS server must be running to
add, update, and/or delete DHCID records.

e The Dynamic Host Configuration Protocol (DHCP) Client Fully Qualified Domain Name (FQDN) Option, REC
4702: The Kea server is able to handle the Client FQDN option. Also, it is able to use the kea-dhcp-ddns
component to initiate appropriate DNS Update operations.

* Resolution of Fully Qualified Domain Name (FOQDN) Conflicts among Dynamic Host Configuration Protocol
(DHCP) Clients, REC 4703: The DHCPv6 server uses a DHCP-DDNS server to resolve conflicts.

 Timezone Options for DHCP: RFC 4833: Both DHCPv4 options are supported.

» The Dynamic Host Configuration Protocol Version 4 (DHCPv4) Relay Agent Flags Suboption: RFC 5010: The
Relay Agent Flags sub-option is understood by Kea and can be used in an expression.

o Server Identifier Override sub-option for the Relay Agent Option, REC 5107: The server identifier override sub-
option is supported. The implementation is not complete according to the RFC, because the server does not store
the RALI, but the functionality handles expected use cases.

* DHCP Options for Protocol for Carrying Authentication for Network Access (PANA) Authentication Agents:
RFC 5192: The PANA option is supported.

* Discovering Location-to-Service Translation (LoST) Servers Using the Dynamic Host Configuration Protocol
(DHCP): RFC 5223: The LOST option is supported.

* Control And Provisioning of Wireless Access Points (CAPWAP) Access Controller DHCP Option: RFC 5417:
The CAPWAP for IPv4 option is supported.

8.11. Supported DHCP Standards 169

https://tools.ietf.org/html/rfc3495
https://tools.ietf.org/html/rfc3527
https://tools.ietf.org/html/rfc3594
https://tools.ietf.org/html/rfc3634
https://tools.ietf.org/html/rfc3679
https://tools.ietf.org/html/rfc3925
https://tools.ietf.org/html/rfc3942
https://tools.ietf.org/html/rfc3993
https://tools.ietf.org/html/rfc4280
https://datatracker.ietf.org/doc/html/rfc4361
https://datatracker.ietf.org/doc/html/rfc4388
https://datatracker.ietf.org/doc/html/rfc4578
https://tools.ietf.org/html/rfc4701
https://tools.ietf.org/html/rfc4702
https://tools.ietf.org/html/rfc4702
https://tools.ietf.org/html/rfc4703
https://tools.ietf.org/html/rfc4833
https://tools.ietf.org/html/rfc5010
https://tools.ietf.org/html/rfc5107
https://tools.ietf.org/html/rfc5192
https://tools.ietf.org/html/rfc5223
https://tools.ietf.org/html/rfc5417

Kea Administrator Reference Manual Documentation, Release 2.7.5

DHCPv4 Lease Query by Relay Agent Remote ID, RFC 6148: The leasequery by remote-id is supported. This
requires leasequery hook. See libdhcp_lease_query.so: Leasequery Support for details.

Client Identifier Option in DHCP Server Replies, REC 6842: The server by default sends back the client-id
option. That capability can be disabled. See Echoing Client-ID (RFC 6842) for details.

The DHCPv4 Relay Agent Identifier Sub-Option, RFC 6925: The relay-id option is supported and can be used
in all features that are using expressions (client classification, flex-id reservations, etc.).

DHCPv4 Bulk Leasequery, REC 6926: The server functionality (TCP connections, new query types, multiple
responses, etc.) is supported. This requires leasequery hook. See libdhcp_lease_query.so: Leasequery Support
for details.

Generalized UDP Source Port for the DHCP Relay Agent Option, RFC 8357: The Kea server handles the Relay
Agent Information Source Port sub-option in a received message, remembers the UDP port, and sends back a
reply to the same relay agent using this UDP port.

Captive-Portal Identification in DHCP and Router Advertisements (RAs), RFC 8910: The Kea server can con-
figure both v4 and v6 versions of the captive portal options.

IPv6-Only Preferred Option for DHCPv4, REC 8925: The Kea server is able to designate its pools and subnets
as [Pv6-Only Preferred and send back the v6-only-preferred option to clients that requested it.

DHCP and Router Advertisement Options for the Discovery of Network-designated Resolvers (DNR), REC 9463.
The Kea server supports the DNR option.

8.11.1 Known RFC Violations

In principle, Kea aspires to be a reference implementation and aims to implement 100% of the RFC standards. However,
in some cases there are practical aspects that prevent Kea from completely adhering to the text of all RFC documents.

e RFC 2131, page 30, says that if the incoming DHCPREQUEST packet has no "requested IP address" option and

ciaddr is not set, the server is supposed to respond with NAK. However, broken clients exist that will always send
a DHCPREQUEST without those options indicated. In that event, Kea accepts the DHCPREQUEST, assigns an
address, and responds with an ACK.

RFC 2131, table 5, says that messages of type DHCPDECLINE or DHCPRELEASE must have the server iden-
tifier set and should be dropped if that option is missing. However, ISC DHCP does not enforce this, presumably
as a compatibility effort for broken clients, and the Kea team decided to follow suit.

8.12 DHCPvV4 Server Limitations

These are the current known limitations of the Kea DHCPv4 server software. Most of them are reflections of the current
stage of development and should be treated as “not yet implemented,” rather than as actual limitations. However, some
of them are implications of the design choices made. Those are clearly marked as such.

¢ On the Linux and BSD system families, DHCP messages are sent and received over raw sockets (using LPF and

BPF) and all packet headers (including data link layer, IP, and UDP headers) are created and parsed by Kea, rather
than by the system kernel. Currently, Kea can only parse the data-link layer headers with a format adhering to
the IEEE 802.3 standard, and assumes this data-link-layer header format for all interfaces. Thus, Kea does not
work on interfaces which use different data-link-layer header formats (e.g. Infiniband).

170

Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc6148
https://tools.ietf.org/html/rfc6842
https://tools.ietf.org/html/rfc6925
https://tools.ietf.org/html/rfc6926
https://tools.ietf.org/html/rfc8357
https://tools.ietf.org/html/rfc8910
https://tools.ietf.org/html/rfc8925
https://tools.ietf.org/html/rfc9463
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.13 Kea DHCPv4 Server Examples

A collection of simple-to-use examples for the DHCPv4 component of Kea is available with the source files, located
in the doc/examples/kea4 directory.

8.14 Configuration Backend in DHCPv4

In the Kea Configuration Backend section we have described the Configuration Backend (CB) feature, its applicability,
and its limitations. This section focuses on the usage of the CB with the Kea DHCPv4 server. It lists the supported
parameters, describes limitations, and gives examples of DHCPv4 server configurations to take advantage of the CB.
Please also refer to the corresponding section Configuration Backend in DHCPv6 for DHCPv6-specific usage of the
CB.

8.14.1 Supported Parameters

The ultimate goal for the CB is to serve as a central configuration repository for one or multiple Kea servers connected
to a database. In currently supported Kea versions, only a subset of the DHCPv4 server parameters can be configured
in the database. All other parameters must be specified in the JSON configuration file, if required.

All supported parameters can be configured via 1ibdhcp_cb_cmds.so. The general rule is that scalar global
parameters are set using remote-global-parameter4-set; shared-network-specific parameters are set using
remote-network4-set; and subnet-level and pool-level parameters are set using remote-subnet4-set. Whenever
there is an exception to this general rule, it is highlighted in the table. Non-scalar global parameters have dedicated com-
mands; for example, the global DHCPv4 options (option-data) are modified using remote-option4-global-set.
Client classes, together with class-specific option definitions and DHCPv4 options, are configured using the
remote-class4-set command.

The Configuration Sharing and Server Tags section explains the concept of shareable and non-shareable configuration
elements and the limitations for sharing them between multiple servers. In the DHCP configuration (both DHCPv4
and DHCPv60), the shareable configuration elements are subnets and shared networks. Thus, they can be explicitly
associated with multiple server tags. The global parameters, option definitions, and global options are non-shareable
and can be associated with only one server tag. This rule does not apply to the configuration elements associated with
all servers. Any configuration element associated with all servers (using the all keyword as a server tag) is used by
all servers connecting to the configuration database.

The following table lists DHCPv4-specific parameters supported by the configuration backend, with an indication of
the level of the hierarchy at which it is currently supported.

Table 9: List of DHCPv4 parameters supported by the configuration

backend
Parameter Gilobal Client Class Shared Network Subnet Pool
4o6-interface n/a n/a n/a yes n/a
4o6-interface-id n/a n/a n/a yes n/a
406-subnet n/a n/a n/a yes n/a
allocator yes n/a yes yes n/a
boot-file-name yes yes yes yes n/a
cache-max-age yes n/a no no n/a
cache-threshold yes n/a no no n/a
calculate-tee-times yes n/a yes yes n/a
client-class n/a n/a yes yes yes

continues on next page

8.13. Kea DHCPv4 Server Examples 171

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 9 - continued from previous page

Parameter Global Client Class Shared Network Subnet Pool
ddns-send-update yes n/a yes yes n/a
ddns-override-no-update yes n/a yes yes n/a
ddns-override-client-update yes n/a yes yes n/a
ddns-replace-client-name yes n/a yes yes n/a
ddns-generated-prefix yes n/a yes yes n/a
ddns-qualifying-suffix yes n/a yes yes n/a
decline-probation-period yes n/a n/a n/a n/a
dhcp4o6-port yes n/a n/a n/a n/a
echo-client-id yes n/a n/a n/a n/a
hostname-char-set yes n/a yes yes n/a
hostname-char-replacement yes n/a yes yes n/a
interface n/a n/a yes yes n/a
match-client-id yes n/a yes yes n/a
min-valid-lifetime yes yes yes yes n/a
max-valid-lifetime yes yes yes yes n/a
next-server yes yes yes yes n/a
option-data yes (via remote-option4-global-set) yes yes yes yes
option-def yes (via remote-option-def4d-set) yes n/a n/a n/a
rebind-timer yes n/a yes yes n/a
renew-timer yes n/a yes yes n/a
server-hostname yes yes yes yes n/a
valid-lifetime yes yes yes yes n/a
relay n/a n/a yes yes n/a
require-client-classes no n/a yes yes yes
evaluate-additional-classes no n/a yes yes yes
reservations-global yes n/a yes yes n/a
reservations-in-subnet yes n/a yes yes n/a
reservations-out-of-pool yes n/a yes yes n/a
t1-percent yes n/a yes yes n/a
t2-percent yes n/a yes yes n/a

* yes - indicates that the parameter is supported at the given level of the hierarchy and can be configured via the
configuration backend.

* no - indicates that a parameter is supported at the given level of the hierarchy but cannot be configured via the
configuration backend.

* n/a - indicates that a given parameter is not applicable at the particular level of the hierarchy or that the server
does not support the parameter at that level.

Some scalar parameters contained by top-level global maps are supported by the configuration backend.

172 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 10: List of DHCPv4 map parameters supported by the configura-

tion backend

Parameter name (flat naming format) Global map Parameter name
compatibility.ignore-dhcp-server-identifier compatibility ignore-dhcp-server-identifier
compatibility.ignore-rai-link-selection compatibility ignore-rai-link-selection
compatibility.lenient-option-parsing compatibility lenient-option-parsing
compatibility.exclude-first-last-24 compatibility exclude-first-last-24
dhcp-ddns.enable-updates dhcp-ddns enable-updates
dhcp-ddns.max-queue-size dhcp-ddns max-queue-size
dhcp-ddns.ncr-format dhcp-ddns ner-format
dhcp-ddns.ner-protocol dhcp-ddns ncr-protocol
dhcp-ddns.sender-ip dhcp-ddns sender-ip
dhcp-ddns.sender-port dhcp-ddns sender-port
dhcp-ddns.server-ip dhcp-ddns server-ip
dhcp-ddns.server-port dhcp-ddns server-port
expired-leases-processing.flush-reclaimed-timer-wait- expired-leases- flush-reclaimed-timer-wait-
time processing time
expired-leases-processing.hold-reclaimed-time expired-leases- hold-reclaimed-time
processing
expired-leases-processing.max-reclaim-leases expired-leases- max-reclaim-leases
processing
expired-leases-processing.max-reclaim-time expired-leases- max-reclaim-time
processing
expired-leases-processing.reclaim-timer-wait-time expired-leases- reclaim-timer-wait-time
processing
expired-leases-processing.unwarned-reclaim-cycles expired-leases- unwarned-reclaim-cycles
processing

multi-threading.enable-multi-threading
multi-threading.thread-pool-size
multi-threading.packet-queue-size
sanity-checks.lease-checks
sanity-checks.extended-info-checks
dhcp-queue-control.enable-queue
dhcp-queue-control.queue-type
dhcp-queue-control.capacity

multi-threading
multi-threading
multi-threading
sanity-checks
sanity-checks

dhcp-queue-control
dhcp-queue-control
dhcp-queue-control

enable-multi-threading
thread-pool-size
packet-queue-size
lease-checks
extended-info-checks
enable-queue
queue-type

capacity

8.14.2 Enabling the Configuration Backend

Consider the following configuration snippet, which uses a MySQL configuration database:

{
"Dhcp4": {
"server-tag": "my DHCPv4 server",
"config-control": {
"config-databases": [

{
"type": "mysql",
"name": "kea",
"user": "kea",
"password": "kea",

(continues on next page)

8.14. Configuration Backend in DHCPv4

173

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"host": "192.0.2.1",

"port": 3302
}
g
"config-fetch-wait-time": 20
}’
"hooks-libraries": [
{
"library": "/usr/local/lib/kea/hooks/libdhcp_mysql.so"
Fg
{
"library": "/usr/local/lib/kea/hooks/libdhcp_cb_cmds.so"
}

}

The following snippet illustrates the use of a PostgreSQL database:

{
"Dhcp4": {
"server-tag": "my DHCPv4 server",
"config-control": {
"config-databases": [
{
"type": "postgresql",
"name": "kea",
"user": "kea'",
"password": "kea",
"host": "192.0.2.1",
"port": 3302
}
Ay
"config-fetch-wait-time": 20
e
"hooks-libraries": [
{
"library": "/usr/local/lib/kea/hooks/libdhcp_pgsqgl.so"
o
{
"library": "/usr/local/lib/kea/hooks/libdhcp_cb_cmds.so"
}
]
1
}

The config-control map contains two parameters. config-databases is a list that contains one element, which
includes the database type, its location, and the credentials to be used to connect to this database. (Note that the parame-
ters specified here correspond to the database specification for the lease database backend and hosts database backend.)
Currently only one database connection can be specified on the config-databases list. The server connects to this
database during startup or reconfiguration, and fetches the configuration available for this server from the database.
This configuration is merged into the configuration read from the configuration file.

174 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

Note: Whenever there is a conflict between the parameters specified in the configuration file and the database, the
parameters from the database take precedence. We strongly recommend avoiding the duplication of parameters in
the file and the database, but this recommendation is not enforced by the Kea servers. In particular, if the subnets'
configuration is sourced from the database, we recommend that all subnets be specified in the database and that no
subnets be specified in the configuration file. It is possible to specify the subnets in both places, but the subnets in the
configuration file with overlapping IDs and/or prefixes with the subnets from the database will be superseded by those
from the database.

Once the Kea server is configured, it starts periodically polling the database for configuration changes. The polling
frequency is controlled by the config-fetch-wait-time parameter, expressed in seconds; it is the period between the
time when the server completed its last poll (and possibly the local configuration update) and the time when it will begin
polling again. In the example above, this period is set to 20 seconds. This means that after adding a new configuration
into the database (e.g. adding a new subnet), it will take up to 20 seconds (plus the time needed to fetch and apply
the new configuration) before the server starts using this subnet. The lower the config-fetch-wait-time value, the
shorter the time for the server to react to incremental configuration updates in the database. On the other hand, polling
the database too frequently may impact the DHCP server's performance, because the server needs to make at least one
query to the database to discover any pending configuration updates. The default value of config-fetch-wait-time
is 30 seconds.

The config-backend-pull command can be used to force the server to immediately poll any configuration changes
from the database and avoid waiting for the next fetch cycle.

In the configuration examples above, two hook libraries are loaded. The first is a library which implements
the configuration backend for a specific database type: I1ibdhcp_mysql.so provides support for MySQL and
libdhcp_pgsql. so provides support for PostgreSQL. The library loaded must match the database type specified
within the config-control parameter; otherwise an error is logged when the server attempts to load its configura-
tion, and the load fails.

The second hook library, 1ibdhcp_cb_cmds. so, is optional. It should be loaded when the Kea server instance is to
be used to manage the configuration in the database. See the libdhcp_cb_cmds.so: Configuration Backend Commands
section for details.

8.15 Kea DHCPv4 Compatibility Configuration Parameters

ISC's intention is for Kea to follow the RFC documents to promote better standards compliance. However, many buggy
DHCP implementations already exist that cannot be easily fixed or upgraded. Therefore, Kea provides an easy-to-use
compatibility mode for broken or non-compliant clients. For that purpose, the compatibility option must be enabled to
permit uncommon practices:

{
"Dhcp4d": {
"compatibility": {
1
}
}

8.15. Kea DHCPv4 Compatibility Configuration Parameters 175

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.15.1 Lenient Option Parsing

By default, tuple fields defined in custom options are parsed as a set of length-value pairs.

With "lenient-option-parsing”: true, ifalength ever exceeded the rest of the option's buffer, previous versions
of Kea returned a log message unable to parse the opaque data tuple, the buffer length is x, but
the tuple length is y with x < y; this no longer occurs. Instead, the value is considered to be the rest of the
buffer, or in terms of the log message above, the tuple length y becomes x.

{
"Dhcp4": {
"compatibility": {
"lenient-option-parsing": true
}
}
}

Starting with Kea version 2.5.8, this parsing is extended to silently ignore FQDN (81) options with some invalid domain
names.

8.15.2 Ignore DHCP Server Identifier

With "ignore-dhcp-server-identifier": true, the server does not check the address in the DHCP Server
Identifier option, i.e. whether a query is sent to this server or another one (and in the second case dropping the query).

{
"Dhcp4": {
"compatibility": {
"ignore-dhcp-server-identifier": true
}
}
}

8.15.3 Ignore RAI Link Selection

With "ignore-rai-link-selection": true, Relay Agent Information Link Selection sub-option data is not used
for subnet selection. In this case, normal logic drives the subnet selection, instead of attempting to use the subnet
specified by the sub-option. This option is not RFC-compliant and is set to false by default. Setting this option to
true can help with subnet selection in certain scenarios; for example, when DHCP relays do not allow the administrator
to specify which sub-options are included in the Relay Agent Information option, and include incorrect Link Selection
information.

{
"Dhcpd": {
"compatibility": {
"ignore-rai-link-selection": true
}
}
3

176 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.15.4 Exclude First Last Addresses in /24 Subnets or Larger

The exclude-first-last-24 compatibility flag is described in Configuration of IPv4 Address Pools (when true .0
and .255 addresses are excluded from subnets with prefix length less than or equal to 24).

8.16 Address Allocation Strategies in DHCPv4

A DHCEP server follows a complicated algorithm to select an IPv4 address for a client. It prefers assigning specific
addresses requested by the client and the addresses for which the client has reservations.

If the client requests no particular address and has no reservations, or other clients are already using any requested
addresses, the server must find another available address within the configured pools. A server function called an
"allocator" is responsible in Kea for finding an available address in such a case.

The Kea DHCPv4 server provides configuration parameters to select different allocators at the global, shared-network,
and subnet levels. Consider the following example:

{
"Dhcp4": {
"allocator": "random",
"subnet4": [
{
"id": 1,
"subnet": "10.0.0.0/8",
"allocator": "iterative"
Fo
{
"id": 2,
"subnet": "192.0.2.0/24"
}
]
1
}

This allocator overrides the default iterative allocation strategy at the global level and selects the random allocation
instead. The random allocation will be used for the subnet with ID 2, while the iterative allocation will be used for the
subnet with ID 1.

The following sections describe the supported allocators and their recommended uses.

8.16.1 Allocators Comparison

In the table below, we briefly compare the supported allocators, all of which are described in detail in later sections.

Table 11: Comparison of the lease allocators supported by Kea DHCPv4

Allocator Low Utilization High Utilization Lease Ran- Startup/Configurat Memory

Performance Performance domization Usage
Iterative very high low no very fast low
Random high low yes very fast high (vary-
ing)
Free Lease high high yes slow (depends on high (vary-
Queue pool sizes) ing)

8.16. Address Allocation Strategies in DHCPv4 177

Kea Administrator Reference Manual Documentation, Release 2.7.5

8.16.2 Iterative Allocator

This is the default allocator used by the Kea DHCPv4 server. It remembers the last offered address and offers this
address, increased by one, to the next client. For example, it may offer addresses in this order: 192.0.2.10, 192.0.
2.11,192.0.2.12, and so on. The time to find and offer the next address is very short; thus, this is the most performant
allocator when pool utilization is low and there is a high probability that the next address is available.

The iterative allocation underperforms when multiple DHCP servers share a lease database or are connected to a cluster.
The servers tend to offer and allocate the same blocks of addresses to different clients independently, which causes many
allocation conflicts between the servers and retransmissions by clients. A random allocation addresses this issue by
dispersing the allocation order.

8.16.3 Random Allocator

The random allocator uses a uniform randomization function to select offered addresses from subnet pools. It is suitable
in deployments where multiple servers are connected to a shared database or a database cluster. By dispersing the
offered addresses, the servers minimize the risk of allocating the same address to two different clients at the same or
nearly the same time. In addition, it improves the server's resilience against attacks based on allocation predictability.

The random allocator is, however, slightly slower than the iterative allocator. Moreover, it increases the server's memory
consumption because it must remember randomized addresses to avoid offering them repeatedly. Memory consumption
grows with the number of offered addresses; in other words, larger pools and more clients increase memory consumption
by random allocation.

The following configuration snippet shows how to select the random allocator for a subnet:

{
"Dhcp4": {
"allocator": "random",
"subnet4": [
{
"id": 1,
"subnet": "10.0.0.0/8",
"allocator": "random"
}
]
}
3

8.16.4 Free Lease Queue Allocator

This is a sophisticated allocator whose use should be considered in subnets with highly utilized address pools. In
such cases, it can take a considerable amount of time for the iterative or random allocator to find an available address,
because they must repeatedly check whether there is a valid lease for an address they will offer. The number of checks
can be as high as the number of addresses in the subnet when the subnet pools are exhausted, which can have a direct
negative impact on the DHCP response time for each request.

The Free Lease Queue (FLQ) allocator tracks lease allocations and de-allocations and maintains a running list of
available addresses for each address pool. It allows an available lease to be selected within a constant time, regardless
of the subnet pools' utilization. The allocator continuously updates the list of free leases by removing any allocated
leases and adding released or reclaimed ones.

The following configuration snippet shows how to select the FLQ allocator for a subnet:

178 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

{
"Dhcp4": {
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/24",
"allocator": "flqg"
}
]
}
}

There are several considerations that the administrator should take into account before using this allocator. The FLQ
allocator can heavily impact the server's startup and reconfiguration time, because the allocator has to populate the
list of free leases for each subnet where it is used. These delays can be observed both during the configuration reload
and when the subnets are created using 1ibdhcp_subnet_cmds. so. This allocator increases memory consumption to
hold the list of free leases, proportional to the total size of the address pools for which the FL.Q allocator is used. Finally,
lease reclamation must be enabled with a low value of the reclaim-timer-wait-time parameter, to ensure that the
server frequently collects expired leases and makes them available for allocation via the free lease queue; expired leases
are not considered free by the allocator until they are reclaimed by the server. See Lease Reclamation for more details
about the lease reclamation process.

We recommend that the FLQ allocator be selected only after careful consideration. For example, using it for a subnet
with a /8 pool may delay the server's startup by 15 seconds or more. On the other hand, the startup delay and the memory
consumption increase should be acceptable for subnets with a /16 pool or smaller. We also recommend specifying
another allocator type in the global configuration settings and overriding this selection at the subnet or shared-network
level, to use the FLQ allocator only for selected subnets. That way, when a new subnet is added without an allocator
specification, the global setting is used, thus avoiding unnecessary impact on the server's startup time.

Warning: The FLQ allocator is not suitable for use with a shared lease database (i.e., when multiple Kea servers
store leases in the same database). The servers are unaware of the expired leases reclaimed by the sibling servers
and never return them to their local free lease queues. As a result, the servers will not be able to offer some of the
available leases to the clients. Only a server reclaiming a particular lease will be able to offer it.

8.16. Address Allocation Strategies in DHCPv4 179

Kea Administrator Reference Manual Documentation, Release 2.7.5

180 Chapter 8. The DHCPv4 Server

CHAPTER
NINE

9.1

THE DHCPV6 SERVER

Starting and Stopping the DHCPv6 Server

It is recommended that the Kea DHCPv6 server be started and stopped using keactrl (described in Managing Kea
with keactrl); however, it is also possible to run the server directly via the kea-dhcp6 command, which accepts the
following command-line switches:

-c file - specifies the configuration file. This is the only mandatory switch.

-d - specifies whether the server logging should be switched to debug/verbose mode. In verbose mode, the
logging severity and debuglevel specified in the configuration file are ignored; "debug" severity and the maximum
debuglevel (99) are assumed. The flag is convenient for temporarily switching the server into maximum verbosity,
e.g. when debugging.

-p server-port - specifies the local UDP port on which the server listens. This is only useful during testing, as
a DHCPv6 server listening on ports other than the standard ones is not able to handle regular DHCPv6 queries.

-P client-port - specifies the remote UDP port to which the server sends all responses. This is only useful
during testing, as a DHCPv6 server sending responses to ports other than the standard ones is not able to handle
regular DHCPv6 queries.

-t file - specifies a configuration file to be tested. kea-dhcp6 loads it, checks it, and exits. During the test, log
messages are printed to standard output and error messages to standard error. The result of the test is reported
through the exit code (0 = configuration looks OK, 1 = error encountered). The check is not comprehensive;
certain checks are possible only when running the server.

-T file - specifies a configuration file to be tested. kea-dhcp6 loads it, checks it, and exits. It performs extra
checks beyond what -t offers, such as establishing database connections (for the lease backend, host reservations
backend, configuration backend, and forensic logging backend), loading hook libraries, parsing hook-library
configurations, etc. It does not open UNIX or TCP/UDP sockets, nor does it open or rotate files, as any of these
actions could interfere with a running process on the same machine.

-v - displays the Kea version and exits.

-V - displays the Kea extended version with additional parameters and exits. The listing includes the versions of
the libraries dynamically linked to Kea.

-W - displays the Kea configuration report and exits. The report is a copy of the config.report file produced
by ./configure; it is embedded in the executable binary.

The contents of the config.report file may also be accessed by examining certain libraries in the installation
tree or in the source tree.

from installation using libkea-process.so
$ strings prefix}/1lib/libkea-process.so | sed -n 's/;;;; //p'
(continues on next page)

181

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

from sources using libkea-process.so
$ strings src/lib/process/.libs/libkea-process.so | sed -n 's/;;;; //p'

from sources using libkea-process.a
$ strings src/lib/process/.libs/libkea-process.a | sed -n 's/;;;; //p'

from sources using libcfgrpt.a
$ strings src/lib/process/cfgrpt/.libs/libcfgrpt.a | sed -n 's/;;;; //p'

.

On startup, the server detects available network interfaces and attempts to open UDP sockets on all interfaces listed in
the configuration file. Since the DHCPv6 server opens privileged ports, it requires root access; this daemon must be
run as root.

During startup, the server attempts to create a PID file of the form: [runstatedir]/kea/[conf name].kea-dhcp6.
pid, where:

* runstatedir: The value as passed into the build configure script; it defaults to /usr/local/var/run. Note
that this value may be overridden at runtime by setting the environment variable KEA_PIDFILE_DIR, although
this is intended primarily for testing purposes.

* conf name: The configuration file name used to start the server, minus all preceding paths and the file extension.
For example, given a pathname of /usr/local/etc/kea/myconf. txt, the portion used would be myconf.

If the file already exists and contains the PID of a live process, the server issues a DHCP6_ALREADY_RUNNING log
message and exits. It is possible, though unlikely, that the file is a remnant of a system crash and the process to which
the PID belongs is unrelated to Kea. In such a case, it would be necessary to manually delete the PID file.

The server can be stopped using the kill command. When running in a console, the server can also be shut down by
pressing Ctrl-c. Kea detects the key combination and shuts down gracefully.

The reconfiguration of each Kea server is triggered by the SIGHUP signal. When a server receives the SIGHUP signal it
rereads its configuration file and, if the new configuration is valid, uses the new configuration. If the new configuration
proves to be invalid, the server retains its current configuration; however, in some cases a fatal error message is logged
indicating that the server is no longer providing any service: a working configuration must be loaded as soon as possible.

9.2 DHCPv6 Server Configuration

9.2.1 Introduction

This section explains how to configure the Kea DHCPv6 server using a configuration file.

Before DHCPV6 is started, its configuration file must be created. The basic configuration is as follows:

{

DHCPv6 configuration starts on the next line
"Dhcp6": {

First we set up global values
"valid-lifetime": 4000,
"renew-timer": 1000,
"rebind-timer": 2000,
"preferred-lifetime": 3000,

(continues on next page)

182 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

Next we set up the interfaces to be used by the server.
"interfaces-config": {
"interfaces": ["eth®"]

b,

And we specify the type of lease database
"lease-database": {
"type": "memfile",
"persist": true,
"name": "/var/lib/kea/dhcp6.leases"
3

Finally, we list the subnets from which we will be leasing addresses.
"subnet6": [

{
"id": 1,
"subnet": "2001:db8:1::/64",
"pools": [
{
"pool": "2001:db8:1::1-2001:db8:1::ffff"
}
]
}
]
DHCPv6 configuration ends with the next line
}
}

The following paragraphs provide a brief overview of the parameters in the above example, along with their format.
Subsequent sections of this chapter go into much greater detail for these and other parameters.

The lines starting with a hash (#) are comments and are ignored by the server; they do not impact its operation in any
way.

The configuration starts in the first line with the initial opening curly bracket (or brace). Each configuration must
contain an object specifying the configuration of the Kea module using it. In the example above, this object is called
Dhcp6.

The Dhcp6 configuration starts with the "Dhcp6": { line and ends with the corresponding closing brace (in the
above example, the brace after the last comment). Everything defined between those lines is considered to be the
Dhcp6 configuration.

In general, the order in which those parameters appear does not matter, but there are two caveats. The first one is that
the configuration file must be well-formed JSON, meaning that the parameters for any given scope must be separated
by a comma, and there must not be a comma after the last parameter. When reordering a configuration file, moving
a parameter to or from the last position in a given scope may also require moving the comma. The second caveat is
that it is uncommon — although legal JSON — to repeat the same parameter multiple times. If that happens, the last
occurrence of a given parameter in a given scope is used, while all previous instances are ignored. This is unlikely to
cause any confusion as there are no real-life reasons to keep multiple copies of the same parameter in the configuration
file.

The first few DHCPv6 configuration elements define some global parameters. valid-lifetime defines how long
the addresses (leases) given out by the server are valid; the default is for a client to be allowed to use a given address
for 4000 seconds. (Note that integer numbers are specified as is, without any quotes around them.) The address will

9.2. DHCPv6 Server Configuration 183

Kea Administrator Reference Manual Documentation, Release 2.7.5

become deprecated in 3000 seconds, i.e. clients are allowed to keep old connections, but cannot use this address to
create new connections. renew-timer and rebind-timer are values (also in seconds) that define T1 and T2 timers,
which govern when the client begins the renewal and rebind procedures.

The interfaces-config map specifies the network interfaces on which the server should listen to DHCP messages.
The interfaces parameter specifies a list of network interfaces on which the server should listen. Lists are opened and
closed with square brackets, with elements separated by commas. To listen on two interfaces, the interfaces-config
element should look like this:

{
"interfaces-config": {
"interfaces": ["eth®", "ethl"]

1

}

The next lines define the lease database, the place where the server stores its lease information. This particular example
tells the server to use memfile, which is the simplest and fastest database backend. It uses an in-memory database and
stores leases on disk in a CSV (comma-separated values) file. This is a very simple configuration example; usually the
lease database configuration is more extensive and contains additional parameters. Note that lease-database is an
object and opens up a new scope, using an opening brace. Its parameters (just one in this example: type) follow. If
there were more than one, they would be separated by commas. This scope is closed with a closing brace. As more
parameters for the Dhcp6 definition follow, a trailing comma is present.

Finally, we need to define a list of IPv6 subnets. This is the most important DHCPv6 configuration structure, as the
server uses that information to process clients' requests. It defines all subnets from which the server is expected to
receive DHCP requests. The subnets are specified with the subnet6 parameter. It is a list, so it starts and ends with
square brackets. Each subnet definition in the list has several attributes associated with it, so it is a structure and is
opened and closed with braces. At a minimum, a subnet definition must have at least two parameters: subnet, which
defines the whole subnet; and pools, which is a list of dynamically allocated pools that are governed by the DHCP
server.

The example contains a single subnet. If more than one were defined, additional elements in the subnet6 parameter
would be specified and separated by commas. For example, to define two subnets, the following syntax would be used:

{
"subnet6": [
{
"id": 1,
"pools": [{ "pool": "2001:db8:1::/112" } 1],
"subnet": "2001:db8:1::/64"
1
{
"id": 2,
"pools": [{ "pool": "2001:db8:2::1-2001:db8:2::£ff£ff" } 1],
"subnet": "2001:db8:2::/64"
}
1,
}

Note that indentation is optional and is used for aesthetic purposes only. In some cases it may be preferable to use more
compact notation.

After all the parameters have been specified, there are two contexts open: global and Dhcp6; thus, two closing curly
brackets must be used to close them.

184 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.2.2 Lease Storage

All leases issued by the server are stored in the lease database. There are three database backends available: memfile
(the default), MySQL, PostgreSQL.

9.2.2.1 Memfile - Basic Storage for Leases

The server is able to store lease data in different repositories. Larger deployments may elect to store leases in a database;
Lease Database Configuration describes this option. In typical smaller deployments, though, the server stores lease
information in a CSV file rather than a database. As well as requiring less administration, an advantage of using a file
for storage is that it eliminates a dependency on third-party database software.

The configuration of the memfile backend is controlled through the Dhcp6/lease-database parameters. The type
parameter is mandatory and specifies which storage for leases the server should use, through the "memfile" value.
The following list gives additional optional parameters that can be used to configure the memfile backend.

e persist: controls whether the new leases and updates to existing leases are written to the file. It is strongly
recommended that the value of this parameter be set to true at all times during the server's normal operation.
Not writing leases to disk means that if a server is restarted (e.g. after a power failure), it will not know which
addresses have been assigned. As a result, it may assign new clients addresses that are already in use. The value
of false is mostly useful for performance-testing purposes. The default value of the persist parameter is
true, which enables writing lease updates to the lease file.

* name: specifies an absolute location of the lease file in which new leases and lease updates are recorded. The
default value for this parameter is " [kea-install-dir]/var/lib/kea/kea-leases6.csv".

» 1fc-interval: specifies the interval, in seconds, at which the server will perform a lease file cleanup (LFC).
This removes redundant (historical) information from the lease file and effectively reduces the lease file size.
The cleanup process is described in more detail later in this section. The default value of the 1fc-interval is
3600. A value of 0 disables the LFC.

* max-row-errors: specifies the number of row errors before the server stops attempting to load a lease file.
When the server loads a lease file, it is processed row by row, each row containing a single lease. If a row
is flawed and cannot be processed correctly the server logs it, discards the row, and goes on to the next row.
This parameter can be used to set a limit on the number of such discards that can occur, after which the server
abandons the effort and exits. The default value of ® disables the limit and allows the server to process the entire
file, regardless of how many rows are discarded.

An example configuration of the memfile backend is presented below:

"Dhcp6": {
"lease-database": {
"type": "memfile",
"persist": true,
"name": "/tmp/kea-leases6.csv",
"lfc-interval": 1800,
"max-row-errors": 100

This configuration selects /tmp/kea-leases6.csv as the storage file for lease information and enables persistence
(writing lease updates to this file). It also configures the backend to perform a periodic cleanup of the lease file every
1800 seconds (30 minutes) and sets the maximum number of row errors to 100.

9.2. DHCPv6 Server Configuration 185

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.2.2.2 Why Is Lease File Cleanup Necessary?

It is important to know how the lease file contents are organized to understand why the periodic lease file cleanup is
needed. Every time the server updates a lease or creates a new lease for a client, the new lease information must be
recorded in the lease file. For performance reasons, the server does not update the existing client's lease in the file, as
this would potentially require rewriting the entire file. Instead, it simply appends the new lease information to the end
of the file; the previous lease entries for the client are not removed. When the server loads leases from the lease file,
e.g. at server startup, it assumes that the latest lease entry for the client is the valid one. Previous entries are discarded,
meaning that the server can reconstruct accurate information about the leases even though there may be many lease
entries for each client. However, storing many entries for each client results in a bloated lease file and impairs the
performance of the server's startup and reconfiguration, as it needs to process a larger number of lease entries.

Lease file cleanup (LFC) removes all previous entries for each client and leaves only the latest ones. The interval at
which the cleanup is performed is configurable, and it should be selected according to the frequency of lease renewals
initiated by the clients. The more frequent the renewals, the smaller the value of 1fc-interval should be. Note,
however, that the LFC takes time and thus it is possible (although unlikely) that, if the 1fc-interval is too short, a
new cleanup may be started while the previous one is still running. The server would recover from this by skipping
the new cleanup when it detected that the previous cleanup was still in progress, but it implies that the actual cleanups
will be triggered more rarely than the configured interval. Moreover, triggering a new cleanup adds overhead to the
server, which is not able to respond to new requests for a short period of time when the new cleanup process is spawned.
Therefore, it is recommended that the 1fc-interval value be selected in a way that allows the LFC to complete the
cleanup before a new cleanup is triggered.

Lease file cleanup is performed by a separate process (in the background) to avoid a performance impact on the server
process. To avoid conflicts between two processes using the same lease files, the LFC process starts with Kea opening
a new lease file; the actual LFC process operates on the lease file that is no longer used by the server. There are also
other files created as a side effect of the lease file cleanup. The detailed description of the LFC process is located later
in this Kea Administrator's Reference Manual: 7he LFC Process.

9.2.2.3 Lease Database Configuration

Note: Lease database access information must be configured for the DHCPv6 server, even if it has already been
configured for the DHCPv4 server. The servers store their information independently, so each server can use a separate
database or both servers can use the same database.

Note: Kea requires the database timezone to match the system timezone. For more details, see First-Time Creation of
the MySQL Database and First-Time Creation of the PostgreSQL Database.

Lease database configuration is controlled through the Dhcp6/lease-database parameters. The database type must
be set to memfile, mysql or postgresql, e.g.:

["Dhcp6": { "lease-database": { "type": "mysql", ... }, ... }]

Next, the name of the database to hold the leases must be set; this is the name used when the database was created (see
First-Time Creation of the MySQL Database or First-Time Creation of the PostgreSQL Database).

For MySQL or PostgreSQL.:

["Dhcp6": { "lease-database": { "name": "database-name" , ... }, ... } J

If the database is located on a different system from the DHCPv6 server, the database host name must also be specified:

186 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

[”Dhcp6": { "lease-database": { "host": "remote-host-name", ... }, ... } J

Normally, the database is on the same machine as the DHCPv6 server. In this case, set the value to the empty string:

["Dhcp6": { "lease-database": { "host" : "", ... }, ... } J

Should the database use a port other than the default, it may be specified as well:

["Dhcp6": { "lease-database": { "port" : 12345, ... }, ... } J

Should the database be located on a different system, the administrator may need to specify a longer interval for the
connection timeout:

["Dhcp6": { "lease-database": { "connect-timeout" : timeout-in-seconds, ... }, ... }]

The default value of five seconds should be more than adequate for local connections. If a timeout is given, though, it
should be an integer greater than zero.

The maximum number of times the server automatically attempts to reconnect to the lease database after connectivity
has been lost may be specified:

[”Dhcp6": { "lease-database": { "max-reconnect-tries" : number-of-tries, ... }, ... } J

If the server is unable to reconnect to the database after making the maximum number of attempts, the server will exit.
A value of 0 (the default) disables automatic recovery and the server will exit immediately upon detecting a loss of
connectivity (MySQL and PostgreSQL only).

The number of milliseconds the server waits between attempts to reconnect to the lease database after connectivity has
been lost may also be specified:

-}

‘”Dhch": { "lease-database": { "reconnect-wait-time" : number-of-milliseconds, ... }, ... ’

The default value for MySQL and PostgreSQL is 0, which disables automatic recovery and causes the server to exit
immediately upon detecting the loss of connectivity.

[”Dhcp6": { "lease-database": { "on-fail" : "stop-retry-exit", ... }, ... } J

The possible values are:

e stop-retry-exit - disables the DHCP service while trying to automatically recover lost connections, and
shuts down the server on failure after exhausting max-reconnect-tries. This is the default value for the lease
backend, the host backend, and the configuration backend.

* serve-retry-exit - continues the DHCP service while trying to automatically recover lost connections, and
shuts down the server on failure after exhausting max-reconnect-tries.

* serve-retry-continue - continues the DHCP service and does not shut down the server even if the recovery
fails. This is the default value for forensic logging.

Note: Automatic reconnection to database backends is configured individually per backend; this allows users to tailor
the recovery parameters to each backend they use. We suggest that users enable it either for all backends or none, so
behavior is consistent.

Losing connectivity to a backend for which reconnection is disabled results (if configured) in the server shutting itself
down. This includes cases when the lease database backend and the hosts database backend are connected to the same
database instance.

9.2. DHCPv6 Server Configuration 187

Kea Administrator Reference Manual Documentation, Release 2.7.5

It is highly recommended not to change the stop-retry-exit default setting for the lease manager, as it is critical
for the connection to be active while processing DHCP traffic. Change this only if the server is used exclusively as a
configuration tool.

[”Dhcp6": { "lease-database": { "retry-on-startup" : true, ... }, ... }]

During server startup, the inability to connect to any of the configured backends is considered fatal only if
retry-on-startup is set to false (the default). A fatal error is logged and the server exits, based on the idea
that the configuration should be valid at startup. Exiting to the operating system allows nanny scripts to detect the
problem. If retry-on-startup is set to true, the server starts reconnection attempts even at server startup or on
reconfigure events, and honors the action specified in the on-fail parameter.

The host parameter is used by the MySQL and PostgreSQL backends.

Finally, the credentials of the account under which the server will access the database should be set:

"Dhcp6": {
"lease-database": {
"user": "user-name",
"password": "password",
1,
}

If there is no password to the account, set the password to the empty string "". (This is the default.)

9.2.2.4 Tuning Database Timeouts

In rare cases, reading or writing to the database may hang. This can be caused by a temporary network issue, or by mis-
configuration of the proxy server switching the connection between different database instances. These situations are
rare, but users have reported that Kea sometimes hangs while performing database IO operations. Setting appropriate
timeout values can mitigate such issues.

MySQL exposes two distinct connection options to configure the read and write timeouts. Kea's corresponding
read-timeout and write-timeout configuration parameters specify the timeouts in seconds. For example:

[”Dhcp6": { "lease-database": { "read-timeout" : 10, "write-timeout": 20, ... }, ... } J

Setting these parameters to O is equivalent to not specifying them, and causes the Kea server to establish a connection
to the database with the MySQL defaults. In this case, Kea waits indefinitely for the completion of the read and write
operations.

MySQL versions earlier than 5.6 do not support setting timeouts for read and write operations. Moreover, the
read-timeout and write-timeout parameters can only be specified for the MySQL backend; setting them for any
other backend database type causes a configuration error.

To set a timeout in seconds for PostgreSQL, use the tcp-user-timeout parameter. For example:

["Dhcp6": { "lease-database": { "tcp-user-timeout" : 10, ... }, ... }]

Specifying this parameter for other backend types causes a configuration error.

Note: The timeouts described here are only effective for TCP connections. Please note that the MySQL client library
used by the Kea servers typically connects to the database via a UNIX domain socket when the host parameter is

188 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

localhost, but establishes a TCP connection for 127.0.0. 1.

Since Kea.2.7.4, the libdhcp_mysql.so hook library must be loaded in order to store leases in the MySQL Lease
Database Backend. Specify the lease backend hook library location:

"Dhcp6": { "hooks-libraries": [

{
// the MySQL lease backend hook library required for lease storage.
"library": "/opt/lib/kea/hooks/libdhcp_mysqgl.so"

y, ...1, ...}

Since Kea.2.7.4, the libdhcp_pgsql.so hook library must be loaded in order to store leases in the PostgreSQL Lease
Database Backend. Specify the lease backend hook library location.

"Dhcp6": { "hooks-libraries": [

{
// the PostgreSQL lease backend hook library required for lease storage.
"library": "/opt/lib/kea/hooks/libdhcp_pgsgl.so"

Y, ...1, ...}

9.2.3 Hosts Storage

Kea is also able to store information about host reservations in the database. The hosts database configuration uses the
same syntax as the lease database. In fact, the Kea server opens independent connections for each purpose, be it lease
or hosts information, which gives the most flexibility. Kea can keep leases and host reservations separately, but can
also point to the same database. Currently the supported hosts database types are MySQL and PostgreSQL.

The following configuration can be used to configure a connection to MySQL.:

"Dhcp6": {
"hosts-database": {
"type": "mysql",

"name": "kea",

"user": "kea",
"password": "secretl23",
"host": "localhost",
"port": 3306

Depending on the database configuration, many of the parameters may be optional.

Please note that usage of hosts storage is optional. A user can define all host reservations in the configuration file, and
that is the recommended way if the number of reservations is small. However, when the number of reservations grows,
it is more convenient to use host storage. Please note that both storage methods (the configuration file and one of the
supported databases) can be used together. If hosts are defined in both places, the definitions from the configuration
file are checked first and external storage is checked later, if necessary.

Host information can be placed in multiple stores. Operations are performed on the stores in the order they are defined in
the configuration file, although this leads to a restriction in ordering in the case of a host reservation addition; read-only
stores must be configured after a (required) read-write store, or the addition will fail.

Note: Kea requires the database timezone to match the system timezone. For more details, see First-Time Creation of

9.2. DHCPv6 Server Configuration 189

Kea Administrator Reference Manual Documentation, Release 2.7.5

the MySQL Database and First-Time Creation of the PostgreSQL Database.

9.2.3.1 DHCPv6 Hosts Database Configuration

Hosts database configuration is controlled through the Dhcp6/hosts-database parameters. If enabled, the type of
database must be set to mysqgl or postgresql.

["Dhcp6": { "hosts-database": { "type": "mysql", ... }, ... } J

Next, the name of the database to hold the reservations must be set; this is the name used when the lease database was
created (see Supported Backends for instructions on how to set up the desired database type):

["Dhcp6": { "hosts-database": { "name": "database-name" , ... }, ... } }

If the database is located on a different system than the DHCPv6 server, the database host name must also be specified:

["Dhcp6": { "hosts-database": { "host": remote-host-name, ... }, ... } J

Normally, the database is on the same machine as the DHCPv6 server. In this case, set the value to the empty string:

["Dhcp6": { "hosts-database": { "host" : "", ... }, ... }]

Should the database use a port different than the default, it may be specified as well:

["Dhcp6": { "hosts-database": { "port" : 12345, ... }, ... }]

The maximum number of times the server automatically attempts to reconnect to the host database after connectivity
has been lost may be specified:

["Dhcp6": { "hosts-database": { "max-reconnect-tries" : number-of-tries, ... }, ... }]

If the server is unable to reconnect to the database after making the maximum number of attempts, the server will exit.
A value of 0 (the default) disables automatic recovery and the server will exit immediately upon detecting a loss of
connectivity (MySQL and PostgreSQL only).

The number of milliseconds the server waits between attempts to reconnect to the host database after connectivity has
been lost may also be specified:

"Dhcp6": { "hosts-database": { "reconnect-wait-time" : number-of-milliseconds, ... }, ... ’

-}

The default value for MySQL and PostgreSQL is 0, which disables automatic recovery and causes the server to exit
immediately upon detecting the loss of connectivity.

["Dhcp6": { "hosts-database": { "on-fail" : "stop-retry-exit", ... }, ... }]

The possible values are:

e stop-retry-exit - disables the DHCP service while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries. This is the default value for MySQL and
PostgreSQL.

* serve-retry-exit - continues the DHCP service while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries.

190 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

* serve-retry-continue - continues the DHCP service and does not shut down the server even if the recovery
fails.

Note: Automatic reconnection to database backends is configured individually per backend. This allows users to tailor
the recovery parameters to each backend they use. We suggest that users enable it either for all backends or none, so
behavior is consistent.

Losing connectivity to a backend for which reconnection is disabled results (if configured) in the server shutting itself
down. This includes cases when the lease database backend and the hosts database backend are connected to the same
database instance.

["Dhcp6": { "hosts-database": { "retry-on-startup" : true, ... }, ... }]

During server startup, the inability to connect to any of the configured backends is considered fatal only if
retry-on-startup is set to false (the default). A fatal error is logged and the server exits, based on the idea
that the configuration should be valid at startup. Exiting to the operating system allows nanny scripts to detect the
problem. If retry-on-startup is set to true, the server starts reconnection attempts even at server startup or on
reconfigure events, and honors the action specified in the on-fail parameter.

Finally, the credentials of the account under which the server will access the database should be set:

"Dhcp6": {
"hosts-database": {
"user": "user-name",
"password": "password",
1,
}

If there is no password to the account, set the password to the empty string "". (This is the default.)

The multiple-storage extension uses a similar syntax; a configuration is placed into a hosts-databases list instead
of into a hosts-database entry, as in:

[”Dhcp6": { "hosts-databases": [{ "type": "mysql", ... }, ... 1, ... }]

If the same host is configured both in-file and in-database, Kea does not issue a warning, as it would if both were
specified in the same data source. Instead, the host configured in-file has priority over the one configured in-database.

9.2.3.2 Using Read-Only Databases for Host Reservations with DHCPv6

In some deployments, the user whose name is specified in the database backend configuration may not have write
privileges to the database. This is often required by the policy within a given network to secure the data from being
unintentionally modified. In many cases administrators have deployed inventory databases, which contain substantially
more information about the hosts than just the static reservations assigned to them. The inventory database can be used
to create a view of a Kea hosts database and such a view is often read-only.

Kea host-database backends operate with an implicit configuration to both read from and write to the database. If the
user does not have write access to the host database, the backend will fail to start and the server will refuse to start (or
reconfigure). However, if access to a read-only host database is required for retrieving reservations for clients and/or
assigning specific addresses and options, it is possible to explicitly configure Kea to start in "read-only" mode. This is
controlled by the readonly boolean parameter as follows:

9.2. DHCPv6 Server Configuration 191

Kea Administrator Reference Manual Documentation, Release 2.7.5

["Dhcp6": { "hosts-database": { "readonly": true, ... }, ... } J

Setting this parameter to false configures the database backend to operate in "read-write" mode, which is also the
default configuration if the parameter is not specified.

Note: The readonly parameter is only supported for MySQL and PostgreSQL databases.

Since Kea.2.7.4, the libdhcp_mysql.so hook library must be loaded in order to store host reservations in the MySQL
Host Database Backend. Specify the lease backend hook library location:

"Dhcp6": { "hooks-libraries": [

{
// the MySQL host backend hook library required for host storage.
"library": "/opt/lib/kea/hooks/libdhcp_mysqgl.so"

, ... 1, ...}

Since Kea.2.7.4, the libdhcp_pgsql.so hook library must be loaded in order to store host reservations in the PostgreSQL
Host Database Backend. Specify the lease backend hook library location.

"Dhcp6": { "hooks-libraries": [

{
// the PostgreSQL host backend hook library required for host storage.
"library": "/opt/lib/kea/hooks/libdhcp_pgsqgl.so"

}, ... 1, ...}

9.2.3.3 Tuning Database Timeouts for Hosts Storage

See Tuning Database Timeouts.

9.2.4 Interface Configuration

The DHCPv6 server must be configured to listen on specific network interfaces. The simplest network interface con-
figuration tells the server to listen on all available interfaces:

lthCp6||: {
"interfaces-config": {
"interfaces": ["*"]
b,
}

The asterisk plays the role of a wildcard and means "listen on all interfaces." However, it is usually a good idea to
explicitly specify interface names:

"Dhcp6": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"]
Yo
}

192 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

It is possible to use an interface wildcard (*) concurrently with explicit interface names:

"Dhcp6": {
"interfaces-config": {
"interfaces": ["ethl", "eth3", "*"]
b
}

This format should only be used when it is desired to temporarily override a list of interface names and listen on all
interfaces.

As with the DHCPv4 server, binding to specific addresses and disabling re-detection of interfaces are supported. But
dhcp-socket-type is not supported, because DHCPv6 uses only UDP/IPv6 sockets. The following example shows
how to disable interface detection:

"Dhcp6": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],

"re-detect": false

},

The loopback interfaces (i.e. the 1o or 100 interface) are not configured by default, unless explicitly mentioned in the
configuration. Note that Kea requires a link-local address (which does not exist on all systems) or a specified unicast
address, as in:

"Dhcp6": {
"interfaces-config": {
"interfaces": ["enp0s2/2001:db8::1234:abcd"]

3,

Kea binds the service sockets for each interface on startup. If another process is already using a port, then Kea logs the
message and suppresses an error. DHCP service runs, but it is unavailable on some interfaces.

The "service-sockets-require-all" option makes Kea require all sockets to be successfully bound. If any opening fails,
Kea interrupts the initialization and exits with a non-zero status. (Default is false).

"Dhcp6": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],

"service-sockets-require-all": true

},

Sometimes, immediate interruption isn't a good choice. The port can be unavailable only temporary. In
this case, retrying the opening may resolve the problem. Kea provides two options to specify the retrying:
service-sockets-max-retries and service-sockets-retry-wait-time.

The first defines a maximal number of retries that Kea makes to open a socket. The zero value (default) means that the
Kea doesn't retry the process.

The second defines a wait time (in milliseconds) between attempts. The default value is 5000 (5 seconds).

9.2. DHCPv6 Server Configuration 193

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcp6": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],

"service-sockets-max-retries": 5,
"service-sockets-retry-wait-time": 5000

b,
}

If "service-sockets-max-retries" is non-zero and "service-sockets-require-all" is false, then Kea retries the opening (if
needed) but does not fail if any socket is still not opened.

9.2.5 IPv6 Subnet Identifier

The subnet identifier (subnet ID) is a unique number associated with a particular subnet. In principle, it is used to as-
sociate clients' leases with their respective subnets. The server configuration must contain unique and stable identifiers
for all subnets.

Note: Subnet IDs must be greater than zero and less than 4294967295.

The following configuration assigns the specified subnet identifier to a newly configured subnet:

"Dhcp6": {
"subnet6": [
{
"subnet": "2001:db8:1::/64",
"id": 1024,
}
]
}

9.2.6 IPv6 Subnet Prefix

The subnet prefix is the second way to identify a subnet. Kea can accept non-canonical subnet addresses; for instance,
this configuration is accepted:

"Dhcp6": {
"subnet6": [
{
"subnet": "2001:db8:1::1/64",
}
]
}

This works even if there is another subnet with the "2001:db8:1::/64" prefix; only the textual form of subnets are
compared to avoid duplicates.

194 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

Note: Abuse of this feature can lead to incorrect subnet selection (see /Pv6 Subnet Selection).

9.2.7 Unicast Traffic Support

When the DHCPV6 server starts, by default it listens to the DHCP traffic sent to multicast address f02::1:2 on each
interface that it is configured to listen on (see Interface Configuration). In some cases it is useful to configure a server
to handle incoming traffic sent to global unicast addresses as well; the most common reason for this is to have relays
send their traffic to the server directly. To configure the server to listen on a specific unicast address, add a slash (/) after
the interface name, followed by the global unicast address on which the server should listen. The server will listen to
this address in addition to normal link-local binding and listening on the ff02::1:2 address. The sample configuration
below shows how to listen on 2001:db8::1 (a global address) configured on the ethl interface.

"Dhcp6": {
"interfaces-config": {
"interfaces": ["eth1/2001:db8::1"]

Yo
"option-data": [
{
"name": "unicast",
"data": "2001:db8::1"
1,

}

This configuration will cause the server to listen on eth1l on the link-local address, the multicast group (ff02::1:2), and
2001:db8::1.

Usually, unicast support is associated with a server unicast option which allows clients to send unicast messages to the
server. The example above includes a server unicast option specification which causes the client to send messages to
the specified unicast address.

It is possible to mix interface names, wildcards, and interface names/addresses in the list of interfaces. It is not possible,
however, to specify more than one unicast address on a given interface.

Care should be taken to specify proper unicast addresses, as the server will attempt to bind to the addresses specified
without any additional checks. This approach was selected intentionally, to allow the software to communicate over
uncommon addresses if so desired.

9.2.8 Configuration of IPv6 Address Pools

The main role of a DHCPvG6 server is address assignment. For this, the server must be configured with at least one
subnet and one pool of dynamic addresses to be managed. For example, assume that the server is connected to a
network segment that uses the 2001:db8:1::/64 prefix. The administrator of that network decides that addresses from
the range 2001:db8:1::1 to 2001:db8:1::fIff are going to be managed by the DHCPv6 server. Such a configuration can
be achieved in the following way:

"Dhcp6": {
"subnet6": [
{
"subnet": "2001:db8:1::/64",
"pools": [

(continues on next page)

9.2. DHCPv6 Server Configuration 195

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"pool": "2001:db8:1::1-2001:db8:1::ffff"

}

Note that subnet is defined as a simple string, but the pools parameter is actually a list of pools; for this reason, the
pool definition is enclosed in square brackets, even though only one range of addresses is specified.

Each pool is a structure that contains the parameters that describe a single pool. Currently there is only one parameter,
pool, which gives the range of addresses in the pool.

It is possible to define more than one pool in a subnet; continuing the previous example, further assume
that 2001:db8:1:0:5::/80 should also be managed by the server. It could be written as 2001:db8:1:0:5:: to
2001:db8: 1::5:fHT:fHT:fIff, but typing so many f characters is cumbersome. The pool can be expressed more sim-
ply as 2001:db8:1:0:5::/80. Both formats are supported by Dhcp6 and they can be mixed in the pool list. For example,
the following pools could be defined:

"Dhcp6": {
"subnet6": [

{
"subnet": "2001:db8:1::/64",
"pools": [
{ "pool": "2001:db8:1::1-2001:db8:1::£ffff" },
{ "pool": "2001:db8:1:05::/80" }
ie

}

White space in pool definitions is ignored, so spaces before and after the hyphen are optional. They can be used to
improve readability.

The number of pools is not limited, but for performance reasons it is recommended to use as few as possible.

The server may be configured to serve more than one subnet. To add a second subnet, use a command similar to the
following:

"Dhcp6": {

"subnet6": [

{
"id": 1,
"subnet": "2001:db8:1::/64",
"pools": [

{ "pool": "2001:db8:1::1-2001:db8:1::£ffff" }

]

1

{
"id": 2,
"subnet": "2001:db8:2::/64",

(continues on next page)

196 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)
"pools": [
{ "pool": "2001:db8:2::/64" }

In this example, we allow the server to dynamically assign all addresses available in the whole subnet. Although rather
wasteful, it is certainly a valid configuration to dedicate the whole /64 subnet for that purpose. Note that the Kea server
does not preallocate the leases, so there is no danger in using gigantic address pools.

When configuring a DHCPvV6 server using prefix/length notation, please pay attention to the boundary values. When
specifying that the server can use a given pool, it is also able to allocate the first (typically a network address) address
from that pool. For example, for pool 2001:db8:2::/64, the 2001:db8:2:: address may be assigned as well. To avoid
this, use the min-max notation.

9.2.9 Subnet and Prefix Delegation Pools

Subnets may also be configured to delegate prefixes, as defined in RFC 8415, section 6.3. A subnet may have one or
more prefix delegation pools. Each pool has a prefixed address, which is specified as a prefix (prefix) and a prefix
length (prefix-1len), as well as a delegated prefix length (delegated-1len). The delegated length must not be shorter
than (i.e. it must be numerically greater than or equal to) the prefix length. If both the delegated and prefix lengths are
equal, the server will be able to delegate only one prefix. The delegated prefix does not have to match the subnet prefix.

Below is a sample subnet configuration which enables prefix delegation for the subnet:

"Dhcp6": {
"subnet6": [
{
"id": 1,
"subnet": "2001:d8b:1::/64",
"pd-pools": [
{
"prefix": "3000:1::",
"prefix-len": 64,
"delegated-len": 96
}
]
}
1,
}

9.2. DHCPv6 Server Configuration 197

https://tools.ietf.org/html/rfc8415

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.2.10 Prefix Exclude Option

For each delegated prefix, the delegating router may choose to exclude a single prefix out of the delegated prefix as
specified in RFC 6603. The requesting router must not assign the excluded prefix to any of its downstream interfaces.
The excluded prefix is intended to be used on a link through which the delegating router exchanges DHCPv6 messages
with the requesting router. The configuration example below demonstrates how to specify an excluded prefix within
a prefix pool definition. The excluded prefix 2001:db8:1:8000:cafe:80::/72 will be sent to a requesting router
which includes the Prefix Exclude option in the Option Request option (ORO), and which is delegated a prefix from
this pool.

"Dhcp6": {
"subnet6": [
{
"id": 1,
"subnet": "2001:db8:1::/48",
"pd-pools": [
{
"prefix": "2001:db8:1:8000::",
"prefix-len": 56,
"delegated-len": 64,
"excluded-prefix": "2001:db8:1:8000:cafe:80::",
"excluded-prefix-len": 72
}
1
}
]
}

Note: Here are some liberties and limits to the values that subnets and pools can take in Kea configurations that are
out of the ordinary:

198 Chapter 9. The DHCPv6 Server

https://tools.ietf.org/html/rfc6603

Kea Administrator Reference Manual Documentation, Release 2.7.5

Kea con- Al- Comment

figuration lowe:

case

Overlapping Yes Administrator consideration needs to be given to how clients are matched to these subnets.

subnets

Overlapping No Startup error: DHCP6_PARSER_FAIL

address

pools in one

subnet

Overlapping Yes Specifying the same address pool in different subnets can be used as an equivalent of the

address global address pool. In that case, the server can assign addresses from the same range re-

pools in gardless of the client's subnet. If an address from such a pool is assigned to a client in one

different subnet, the same address will be renewed for this client if it moves to another subnet. Another

subnets client in a different subnet will not be assigned an address already assigned to the client in
any of the subnets.

Address No Startup error: DHCP6_PARSER_FAIL

pools that

are outside

the subnet

they are

configured

under

Overlap- No Startup error: DHCP6_PARSER_FAIL

ping prefix

delegation

pools in one

subnet

Overlapping Yes Specifying the same prefix delegation pool in different subnets can be used as an equivalent

prefix dele- of the global pool. In that case, the server can delegate the same prefixes regardless of the

gation pools client's subnet. If a prefix from such a pool is delegated to a client in one subnet, the same

in different prefix will be renewed for this client if it moves to another subnet. Another client in a different

subnets subnet will not be delegated a prefix already delegated to the client in any of the subnets.

Prefix dele- Yes Itis common in many deployments to configure the prefix delegation pools not matching the

gation pools
not matching
the subnet
prefix

subnet prefix, e.g. a prefix pool of 3000::/96 within the 2001:db8:1::/64 subnet. Such use
cases are supported by the Kea DHCPv6 server.

9.2.11 Standard DHCPv6 Options

One of the major features of the DHCPvV6 server is the ability to provide configuration options to clients. Although
there are several options that require special behavior, most options are sent by the server only if the client explicitly
requests them. The following example shows how to configure the addresses of DNS servers, one of the most frequently
used options. Options specified in this way are considered global and apply to all configured subnets.

"Dhcp6": {
"option

{

-data":

"name" :

L

"dns-servers",
(continues on next page)

9.2. DHCPv6 Server Configuration

199

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)
"code": 23,
"space": "dhcp6",
"csv-format": true,
"data": "2001:db8::cafe, 2001:db8::babe"

The option-data line creates a new entry in the option-data table. This table contains information on all global options
that the server is supposed to configure in all subnets. The name line specifies the option name. (For a complete list
of currently supported names, see List of standard DHCPv6 options configurable by an administrator.) The next line
specifies the option code, which must match one of the values from that list. The line beginning with space specifies
the option space, which must always be set to dhcp6 as these are standard DHCPv6 options. For other name spaces,
including custom option spaces, see Nested DHCPv6 Options (Custom Option Spaces). The following line specifies
the format in which the data will be entered; use of CSV (comma-separated values) is recommended. Finally, the data
line gives the actual value to be sent to clients. The data parameter is specified as normal text, with values separated
by commas if more than one value is allowed.

Options can also be configured as hexadecimal values. If csv-format is set to false, the option data must be specified
as a hexadecimal string. The following commands configure the dns-servers option for all subnets with the addresses
2001:db8:1::cafe and 2001:db8:1::babe.

"Dhcp6": {
"option-data": [
{
"name": "dns-servers",
"code": 23,
"space": "dhcp6",
"csv-format": false,
"data": "20 01 OD B8 00 01 00 00 00 60 00 00 00 00 CA FE \
20 01 OD B8 00 01 60 60 00 00 00 00 00 00 BA BE"
B
]
}

Note: The value for the setting of the data element is split across two lines in this example for clarity; when entering
the command, the whole string should be entered on the same line.

Kea supports the following formats when specifying hexadecimal data:

non nn

* Delimited octets - one or more octets separated by either colons or spaces (":" or " "). While each octet may
contain one or two digits, we strongly recommend always using two digits. Valid examples are "ab:cd:ef" and
"ab cd ef".

e String of digits - a continuous string of hexadecimal digits with or without a "0x" prefix. Valid examples
are "Oxabcdef" and "abcdef".

Care should be taken to use proper encoding when using hexadecimal format; Kea's ability to validate data correctness
in hexadecimal is limited.

It is also possible to specify data for binary options as a single-quoted text string within double quotes, as shown (note
that csv-format must be set to false):

200 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcp6": {
"option-data": [
{
"name": "subscriber-id",
"code": 38,
"space": "dhcp6",
"csv-format": false,
"data": "'convert this text to binary'"
e
1,
}

Most of the parameters in the option-data structure are optional and can be omitted in some circumstances, as
discussed in Unspecified Parameters for DHCPv6 Option Configuration. Only one of name or code is required; it is
not necessary to specify both. Space has a default value of dhcp®6, so this can be skipped as well if a regular (not
encapsulated) DHCPv6 option is defined. Finally, csv-format defaults to true, so it too can be skipped, unless the
option value is specified as hexstring. Therefore, the above example can be simplified to:

"Dhcp6": {
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8::cafe, 2001:db8::babe"
B
]
3

Defined options are added to the response when the client requests them, as well as any options required by a protocol.
An administrator can also specify that an option is always sent, even if a client did not specifically request it. To enforce
the addition of a particular option, set the always-send flag to true, as in:

"Dhcp6": {
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8::cafe, 2001:db8::babe",
"always-send": true
e
]
}

The effect is the same as if the client added the option code in the Option Request Option (or its equivalent for vendor
options), as in:

"Dhcp6": {
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8::cafe, 2001:db8::babe",

(continues on next page)

9.2. DHCPv6 Server Configuration 201

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"always-send": true
o
1,
"subnet6": [
{
"subnet": "2001:db8:1::/64",
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8:1::cafe, 2001:db8:1::babe"
3,
1;
e
i
}

In the example above, the dns-servers option respects the global always-send flag and is always added to responses,
but for subnet 2001:db8:1:: /64, the value is taken from the subnet-level option data specification.

Contrary to always-send, if the never-send flag is set to true for a particular option, the server does not add it
to the response. The effect is the same as if the client removed the option code in the Option Request Option (or its

equivalent for vendor options):

"Dhcp6": {
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8::cafe, 2001:db8::babe"
o
1,
"subnet6": [
{
"subnet": "2001:db8:1::/64",
"option-data": [
{
"name": "dns-servers",
"never-send": true
3,
1;
e
i
}

202 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

In the example above, the dns-server option is never added to responses on subnet 2001:db8:1: : /64. never-send
has precedence over always-send, so if both are true the option is not added.

Note: The always-send and never-send flags are sticky, meaning they do not follow the usual configuration
inheritance rules. Instead, if they are enabled at least once along the configuration inheritance chain, they are applied
- even if they are disabled in other places which would normally receive a higher priority. For instance, if one of the
flags is enabled in the global scope, but disabled at the subnet level, it is enabled, disregarding the subnet-level setting.

Note: The never-send flag is less powerful than 1ibdhcp_flex_option.so; for instance, it has no effect on
options managed by the server itself. Both always-send and never-send have no effect on options which cannot be
requested, for instance from a custom space.

It is possible to override options on a per-subnet basis. If clients connected to most subnets are expected to get the same
values of a given option, administrators should use global options; it is possible to override specific values for a small
number of subnets. On the other hand, if different values are used in each subnet, it does not make sense to specify
global option values; rather, only subnet-specific ones should be set.

The following commands override the global dns-servers option for a particular subnet, setting a single DNS server
with address 2001:db8:1::3.

"Dhcp6": {
"subnet6": [
{
"option-data": [
{
"name": "dns-servers",
"code": 23,
"space": "dhcp6",
"csv-format": true,
"data": "2001:db8:1::3"
B
]1
o
1,
}

In some cases it is useful to associate some options with an address or prefix pool from which a client is assigned a lease.
Pool-specific option values override subnet-specific and global option values. If the client is assigned multiple leases
from different pools, the server assigns options from all pools from which the leases have been obtained. However, if
the particular option is specified in multiple pools from which the client obtains the leases, only one instance of this
option is handed out to the client. The server's administrator must not try to prioritize assignment of pool-specific
options by trying to order pool declarations in the server configuration.

The following configuration snippet demonstrates how to specify the dns-servers option, which will be assigned to
a client only if the client obtains an address from the given pool:

"Dhcp6": {
"subnet6": [

(continues on next page)

9.2. DHCPv6 Server Configuration 203

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

{
"pools": [
{
"pool": "2001:db8:1::100-2001:db8:1::300",
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8:1::10"
}
]
}
1
b

}

Options can also be specified in class or host-reservation scope. The current Kea options precedence order is (from
most important to least): host reservation, pool, subnet, shared network, class, global.

Note: Beginning with Kea 2.7.4, option inclusion can also be controlled through option class-tagging, see Option
Class-Tagging

When a data field is a string and that string contains the comma (,; U+002C) character, the comma must be escaped
with two backslashes (\\,; U+005C). This double escape is required because both the routine splitting of CSV data
into fields and JSON use the same escape character; a single escape (\,) would make the JSON invalid. For example,
the string "ESTSEDT4,M3.2.0/02:00,M11.1.0/02:00" must be represented as:

"Dhcp6": {
"subnet6": [
{
"pools": [
{
"option-data": [
{
"name": "new-posix-timezone",
"data": "ESTSEDT4\\,M3.2.0/02:00\\,M11.1.0/02:00"
3
]
1,
g
Bo
]1
}

Some options are designated as arrays, which means that more than one value is allowed. For example, the option
dns-servers allows the specification of more than one IPv6 address, enabling clients to obtain the addresses of

204 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

multiple DNS servers.

Custom DHCPv6 Options describes the configuration syntax to create custom option definitions (formats). Creation
of custom definitions for standard options is generally not permitted, even if the definition being created matches the
actual option format defined in the RFCs. However, there is an exception to this rule for standard options for which Kea
currently does not provide a definition. To use such options, a server administrator must create a definition as described
in Custom DHCPv6 Options in the dhcp6 option space. This definition should match the option format described in
the relevant RFC, but the configuration mechanism allows any option format as there is currently no way to validate it.

The currently supported standard DHCPv6 options are listed in the table below. "Name" and "Code" are the values that
should be used as a name/code in the option-data structures. "Type" designates the format of the data; the meanings of
the various types are given in List of standard DHCP option types.

Table 1: List of standard DHCPv6 options configurable by an

administrator
Name Code Type Array?
preference 7 uint§ false
unicast 12 ipv6-address false
sip-server-dns 21 fqdn true
sip-server-addr 22 ipv6-address true
dns-servers 23 ipv6-address true
domain-search 24 fqdn true
nis-servers 27 ipv6-address true
nisp-servers 28 ipv6-address true
nis-domain-name 29 fqdn true
nisp-domain-name 30 fqdn true
sntp-servers 31 ipv6-address true
information-refresh-time 32 uint32 false
bcmes-server-dns 33 fqdn true
bcemces-server-addr 34 ipv6-address true
geoconf-civic 36 record (uint8, uint16, binary) false
remote-id 37 record (uint32, binary) false
subscriber-id 38 binary false
client-fqdn 39 record (uint8, fqdn) false
pana-agent 40 ipv6-address true
new-posix-timezone 41 string false
new-tzdb-timezone 42 string false
ero 43 uint16 true
1g-query (1) 44 record (uint8, ipv6-address) false
client-data (1) 45 empty false
clt-time (1) 46 uint32 false
1g-relay-data (1) 47 record (ipv6-address, binary) false
1g-client-link (1) 48 ipv6-address true
v6-lost 51 fqdn false
capwap-ac-v6 52 ipv6-address true
relay-id 53 binary false
ntp-server 56 empty false
vb-access-domain 57 fqdn false
sip-ua-cs-list 58 fqdn true
bootfile-url 59 string false
bootfile-param 60 tuple true
client-arch-type 61 uint16 true
nii 62 record (uint8, uint8, uint8) false

continues on next page

9.2. DHCPv6 Server Configuration 205

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 1 - continued from previous page

Name Code Type Array?
aftr-name 64 fqdn false
erp-local-domain-name 65 fqdn false
S00 66 empty false
pd-exclude 67 binary false
rdnss-selection 74 record (ipv6-address, uint8, fqdn) true
client-linklayer-addr 79 binary false
link-address 80 ipv6-address false
solmax-rt 82 uint32 false
inf-max-rt 83 uint32 false
dhcp4o6-server-addr 88 ipv6-address true
s46-rule 89 record (uint8, uint8, uint8, ipv4-address, ipvo-prefix) false
s46-br 90 ipv6-address false
s46-dmr 91 ipv6-prefix false
s46-v4v6bind 92 record (ipv4-address, ipv6-prefix) false
s46-portparams 93 record(uint8, psid) false
s46-cont-mape 94 empty false
s46-cont-mapt 95 empty false
s46-cont-lw 96 empty false
vb6-captive-portal 103 string false
v6-sztp-redirect 136 tuple true
ipv6-address-andsf 143 ipv6-address true
v6-dnr 144 record (uint16, uint16, fqdn, binary) false

Options marked with (1) have option definitions, but the logic behind them is not implemented. That means that,
technically, Kea knows how to parse them in incoming messages or how to send them if configured to do so, but not
what to do with them. Since the related RFCs require certain processing, the support for those options is non-functional.
However, it may be useful in some limited lab testing; hence the definition formats are listed here.

Some options are more complex to configure than others. In particular, the Softwire46 family of options and Discovery
of Network-designated Resolvers (DNR) are discussed in separate sections below.

Kea supports more options than those listed above. The following list is mostly useful for readers who want to under-
stand whether Kea is able to support certain options. The following options are returned by the Kea engine itself and
in general should not be configured manually.

206 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 2: List of standard DHCPv6 options managed by Kea on its own
and not directly configurable by an administrator

Name Code¢ Description

client- 1 Sent by the client; Kea uses it to distinguish between clients.

id

server 2 Sent by clients to request action from a specific server and by the server to identify itself. See Server

id Identifier in DHCPv6 for details.

ia- 3 A container option that conveys IPv6 addresses (iaddr options). Kea receives and sends those options

na using its allocation engine.

ia-ta 4 Conveys temporary addresses. Deprecated feature, not supported.

iaaddr 5 Conveys addresses with lifetimes in ia-na and ia-ta options.

oro 6 ORO (or Option Request Option) is used by clients to request a list of options they are interested in.
Kea supports it and sends the requested options back if configured with required options.

elapse 8 Sent by clients to identify how long they have been trying to obtain a configuration. Kea uses high

time values sent by clients as an indicator that something is wrong; this is one of the aspects used in HA
to determine if the partner is healthy or not.

relay- 9 Used by relays to encapsulate the original client message. Kea uses it when sending back relayed

msg responses to the relay agent.

auth 11 Used to pass authentication information between clients and server. The support for this option is
very limited.

status- 13 An option that the server can attach in case of various failures, such as running out of addresses or

code not being configured to assign prefixes.

rapid- 14 Used to signal the client's willingness to support rapid-commit and the server's acceptance for this

comm configuration. See Rapid Commit for details.

user- 15 Sent by the client to self-identify the device type. Kea can use this for client classification.

class

vendo. 16 Similar to user-class, but vendor-specific.

class
vendo. 17 A vendor-specific container that is used by both the client and the server to exchange vendor-specific
opts options. The logic behind those options varies between vendors. Vendor options are explained in

DHCPv6 Vendor-Specific Options.
interfa 18 May be inserted by the relay agent to identify the interface that the original client message was re-

id ceived on. Kea may be told to use this information to select specific subnets. Also, if specified, Kea
echoes this option back, so the relay will know which interface to use to reach the client.

ia- 25 A container for conveying Prefix Delegations (PDs)) that are being delegated to clients. See Subnet

pd and Prefix Delegation Pools for details.

iapre- 26 Conveys the IPv6 prefix in the ia-pd option. See Subnet and Prefix Delegation Pools for details.
fix

9.2.12 Common Softwire46 Options

Softwire46 options are involved in IPv4-over-IPv6 provisioning by means of tunneling or translation, as specified in
RFC 7598. The following sections provide configuration examples of these options.

9.2. DHCPv6 Server Configuration 207

https://tools.ietf.org/html/rfc7598

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.2.12.1 Softwire46 Container Options

Softwire46 (S46) container options group rules and optional port parameters for a specified domain. There are three
container options specified in the "dhcp6"” (top-level) option space: the MAP-E Container option, the MAP-T Container
option, and the S46 Lightweight 4over6 Container option. These options only contain the encapsulated options specified
below; they do not include any data fields.

To configure the server to send a specific container option along with all encapsulated options, the container option
must be included in the server configuration as shown below:

"Dhcp6": {
"option-data": [
{
"name": "s46-cont-mape"
1,
}

This configuration will cause the server to include the MAP-E Container option to the client. Use s46-cont-mapt or
s46-cont-1w for the MAP-T Container and S46 Lightweight 4over6 Container options, respectively.

All remaining Softwire46 options described below are included in one of the container options. Thus, they must be
included in appropriate option spaces by selecting a space name, which specifies the option where they are supposed
to be included.

9.2.12.2 S46 Rule Option

The S46 Rule option is used to convey the Basic Mapping Rule (BMR) and Forwarding Mapping Rule (FMR).

{

"space": "s46-cont-mape-options",

"name": "s46-rule",

"data": "128, 0, 24, 192.0.2.0, 2001:db8:1::/64"
}

Another possible space value is s46-cont-mapt-options.
The S46 Rule option conveys a number of parameters:

e flags - an unsigned 8-bit integer, with currently only the most-significant bit specified. It denotes whether the
rule can be used for forwarding (128) or not (0).

¢ ea-len - an 8-bit-long Embedded Address length. Allowed values range from O to 48.

e TPv4 prefix length - an 8-bit-long expression of the prefix length of the Rule IPv4 prefix specified in the
ipv4-prefix field. Allowed values range from O to 32.

* TPv4 prefix - a fixed-length 32-bit field that specifies the IPv4 prefix for the S46 rule. The bits in the prefix
after a specific number of bits (defined in prefix4-1len) are reserved, and MUST be initialized to zero by the
sender and ignored by the receiver.

e TPv6 prefix - afield in prefix/length notation that specifies the IPv6 domain prefix for the S46 rule. The field
is padded on the right with zero bits up to the nearest octet boundary, when prefix6-1en is not evenly divisible
by 8.

208 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.2.12.3 S46 BR Option

The S46 BR option is used to convey the IPv6 address of the Border Relay. This option is mandatory in the MAP-E
Container option and is not permitted in the MAP-T and S46 Lightweight 4over6 Container options.

{
"space": "s46-cont-mape-options",
"name": "s46-br",
"data": "2001:db8:cafe::1"

}

Another possible space value is s46-cont-1w-options.

9.2.12.4 S46 DMR Option

The S46 DMR option is used to convey values for the Default Mapping Rule (DMR). This option is mandatory in the
MAP-T container option and is not permitted in the MAP-E and S46 Lightweight 4over6 Container options.

{
"space": "s46-cont-mapt-options",
"name": "s46-dmr",
"data": "2001:db8:cafe::/64"

}

This option must not be included in other containers.

9.2.12.5 S46 IPv4/IPv6 Address Binding Option

The S46 1Pv4/IPv6 Address Binding option may be used to specify the full or shared IPv4 address of the Customer
Edge (CE). The IPv6 prefix field is used by the CE to identify the correct prefix to use for the tunnel source.

{

"space": "s46-cont-lw",

"name": '"s46-v4vé6bind",

"data": "192.0.2.3, 2001:db8:1:cafe::/64"
3

This option must not be included in other containers.

9.2.12.6 S46 Port Parameters

The S46 Port Parameters option specifies optional port-set information that may be provided to CEs.

{
"space": "s46-rule-options",
"name": "s46-portparams",
"data": 112, 3/4"

}

Another possible space value is s46-v4v6bind, to include this option in the S46 IPv4/IPv6 Address Binding option.

Note that the second value in the example above specifies the PSID and PSID-length fields in the format of PSID/PSID
length. This is equivalent to the values of PSID-1len=4 and PSID=12288 conveyed in the S46 Port Parameters option.

9.2. DHCPv6 Server Configuration 209

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.2.13 DNR (Discovery of Network-designated Resolvers) Options for DHCPv6

The Discovery of Network-designated Resolvers, or DNR option, was introduced in RFC 9463 as a way to communicate
location of DNS resolvers available over means other than the classic DNS over UDP over port 53. As of spring 2024,
the supported technologies are DoT (DNS-over-TLS), DoH (DNS-over-HTTPS), and DoQ (DNS-over-QUIC), but the
option was designed to be extensible to accommodate other protocols in the future.

The DNR option may be configured using convenient notation: comma-delimited fields must be provided in the fol-
lowing order:

* Service Priority (mandatory),
* ADN FQDN (mandatory),
TP address(es) (optional; if more than one, they must be separated by spaces)

* SvcParams as a set of key=value pairs (optional; if more than one, they must be separated by spaces) To provide
more than one alpn-id, separate them with double backslash-escaped commas as in the example below).

Let's imagine that we want to convey a Dol server operating at dotl.example.org (which resolves to two IPv6
addresses: 2001:db8: :1 and 2001:db8: : 2) on a non-standard port 8530. An example option that would convey this
information looks as follows:

{

"name": "v6-dnr", // name of the option

// The following fields should be specified:

// - service priority (unsigned 16-bit integer)

// - authentication-domain-name (FQDN of the encrypted resolver)

// - a list of one or more IPv6 addresses

// - list of parameters in key=value format, space separated; any comma

// characters in this field must be escaped with double backslashes

"data": "100, dotl.example.org., 2001:db8::1 2001:db8::2, alpn=dot port=8530"
}

The above option will be encoded on-wire as follows:

00 64 - service priority (100 in hex as unsigned 16-bit integer)

00 12 - length of the Authentication Domain Name (name of the resolver) FQDN (18 in hex.
—as unsigned 16-bit integer)

04 64 6f 74 31 07 65 78 61 6d 70 6¢c 65 03 6f 72 67 00 - 18 octets of the ADN FQDN
00 20 - 32 octets is the length of the following two IPv6 addresses

20 01 0d b8 00 00 OO0 00 00 600 00 600 00 00 00 01 - 2001:db8::1

20 01 6d b8 00 00 OO0 00 00 60 00 00 00 00 00 02 - 2001:db8::2

00 01 - SvsParams begin - this is alpn SvcParamKey

00 04 - length of the alpn SvcParamValue field (4 octets)

03 - length of the following alpn-id coded on one octet

64 6f 74 - "dot" - value of the alpn

00 03 - this is port SvcParamKey

00 02 - length of the SvcParamValue field is 2 octets

21 52 - the actual value is 0x2152 or 8530 in decimal

The following example shows how to configure more than one ALPN protocol in Service Parameters. The example
specifies a resolver known as resolver.example that supports:

* DoT on default port 853
* DoQ on default port 853

210 Chapter 9. The DHCPv6 Server

https://tools.ietf.org/html/rfc9463

Kea Administrator Reference Manual Documentation, Release 2.7.5

* DoH at https://resolver.example/q{?dns}

{

"name": "v6-dnr", // name of the option

// Note the double backslash-escaped commas in the alpn-id list.

"data": "150, resolver.example., 2001:db8::1 2001:db8::2, alpn=dot\\,doq\\,h2\\,h3.
—dohpath=/q{?dns}"
}

The above option will be encoded on-wire as follows:

00 96 - service priority (150 in hex as unsigned 16-bit integer)

00 12 - length of the Authentication Domain Name (name of the resolver) FQDN (18 in hex.
—as unsigned 16-bit integer)

08 72 65 73 6f 6¢c 76 65 72 07 65 78 61 6d 70 6¢c 65 00 - 18 octets of the ADN FQDN

00 20 - 32 octets is the length of the following two IPv6 addresses

20 01 0d b8 00 00 00 00 00 600 00 600 00 00 00 01 - 2001:db8::1

20 01 6d b8 00 00 OO0 00 00 600 00 00 00 00 00 02 - 2001:db8::2

00 01 - SvsParams begin - this is the alpn SvcParamKey

00 Oe - length of the alpn SvcParamValue field (14 octets)

03 - length of the following alpn-id coded on one octet
64 6f 74 - "dot" - value of the alpn

03 - length of the following alpn-id coded on one octet
64 6f 71 - "doq" - value of the alpn

02 - length of the following alpn-id coded on one octet
68 32 - "h2" - value of the alpn "HTTP/2 over TLS"

02 - length of the following alpn-id coded on one octet

68 33 - "h3" - value of the alpn "HTTP/3"

00 07 - this is dohpath SvcParamKey

00 08 - length of the SvcParamValue field is 8 octets
2f 71 7b 3f 64 6e 73 7d - "/g{?dns}" dohpath

Note: If "comma" or "pipe" characters are used as text rather than as field delimiters, they must be escaped with double
backslashes (\\, or \\|). Escaped commas must be used when configuring more than one ALPN protocol, to separate
them. The "pipe" (0x7C) character can be used in the dohpath service parameter, as it is allowed in a URIL.

RFC 9463, Section 4.1 encourages the use of the ALPN (Application-Layer Protocol Negotiation) SvcParam, as it is
required in most cases. It defines the protocol for reaching the encrypted resolver. The most common values are dot,
dog, and h2 (meaning HTTP/2.0 over TLS, used in DoH).

Per RFC 9461 Section 5: if the alpn SvcParam indicates support for HTTP, dohpath MUST be present. The URI
Template MUST contain a "dns" variable. For example, when advertising a DoH resolver available at https://dohl.
example.org/query{?dns}, the dohpath should be set to relative URI /query{?dns}.

Users interested in configuring this option are encouraged to read the following materials:
* A very nice set of examples is available in Section 7 of RFC 9461.

A list of all currently defined service parameters is maintained in the IANA registry. This specifies records that
can be stored in the svcParams field of the DNR option.

* A list of currently allowed protocols in the ALPN parameter is maintained in another IANA registry.

* RFC 9463 provides option definitions. In terms of SvcParams, it states that alpn and port must be supported,
and support for dohpath (used for DoH) is recommended.

9.2. DHCPv6 Server Configuration 211

https://www.rfc-editor.org/rfc/rfc9463#name-option-format
https://www.rfc-editor.org/rfc/rfc9461.html#name-new-svcparamkey-dohpath
https://www.rfc-editor.org/rfc/rfc9461#name-examples
https://www.iana.org/assignments/dns-svcb/dns-svcb.xhtml
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids
https://www.rfc-editor.org/rfc/rfc9463

Kea Administrator Reference Manual Documentation, Release 2.7.5

¢ Section 2.2 of RFC 9460 defines the on-wire format for SvcParams.
* Sections 7.1 and 7.2 of RFC 9460 define the on-wire format for alpn and port.
* Section 5 of RFC 9461 defines the on-wire format for dohpath.

Kea currently supports the following service parameters:

Name Code Description

alpn 1 Specifies comma-separated protocol types (DoT, DoH, etc.)
port 3 Unsigned 16-bit integer. Indicates a non-standard TCP or UDP port.
dohpath 7 Mandatory for DoH. Contains URL path for the DoT resolver.

The other currently defined service parameters mandatory (0), no-default-alpn (2), ipv4hint (4), ech (5), ipv6hint (6),
and ohttp (8) are not usable in the DNR option.

Further examples are provided in Kea sources in the all-options. json file in the doc/examples/kea6 directory.
The DHCPv4 option is nearly identical, and is described in DNR (Discovery of Network-designated Resolvers) Options
Jor DHCPv4.

9.2.14 NTP Server Suboptions

NTP server option is a container of suboptions: ntp-server-address (1), ntp-server-multicast (2) carrying an IPv6 ad-
dress, and ntp-server-fqdn (3) carrying a FQDN in wire format defined in the "v6-ntp-server-suboptions" option space.
Each option instance carries one and only one suboption as required by RFC 5908.

9.2.15 Custom DHCPv6 Options

Kea supports custom (non-standard) DHCPv6 options. Let's say that we want to define a new DHCPv6 option called
foo, which will have code 100 and will convey a single, unsigned, 32-bit integer value. Such an option can be defined
by putting the following entry in the configuration file:

"Dhcp6": {
"option-def": [
{
"name": "foo",
"code": 100,
"type": "uint32",
"array": false,
"record-types": "",
"space": "dhcp6",
"encapsulate": ""
i
1,
}

The false value of the array parameter determines that the option does NOT comprise an array of uint32 values
but is, instead, a single value. Two other parameters have been left blank: record-types and encapsulate. The
former specifies the comma-separated list of option data fields, if the option comprises a record of data fields. The
record-types value should be non-empty if type is set to record; otherwise it must be left blank. The latter
parameter specifies the name of the option space being encapsulated by the particular option. If the particular option

212 Chapter 9. The DHCPv6 Server

https://www.rfc-editor.org/rfc/rfc9460
https://www.rfc-editor.org/rfc/rfc9460
https://www.rfc-editor.org/rfc/rfc9461#name-new-svcparamkey-dohpath
https://tools.ietf.org/html/rfc5908

Kea Administrator Reference Manual Documentation, Release 2.7.5

does not encapsulate any option space, the parameter should be left blank. Note that the option-def configuration
statement only defines the format of an option and does not set its value(s).

The name, code, and type parameters are required; all others are optional. The array parameter's default value is
false. The record-types and encapsulate parameters' default values are blank (""). The default space is dhcp6.

Once the new option format is defined, its value is set in the same way as for a standard option. For example, the
following commands set a global value that applies to all subnets.

"Dhcp6": {
"option-data": [
{
"name": "foo",
"code": 100,
"space": "dhcp6",
"csv-format": true,
"data": "12345"
e
1,
}

New options can take more complex forms than the simple use of primitives (uint8, string, ipv6-address, etc.); it is
possible to define an option comprising a number of existing primitives.

For example, say we want to define a new option that will consist of an IPv6 address, followed by an unsigned 16-bit
integer, followed by a boolean value, followed by a text string. Such an option could be defined in the following way:

"Dhcp6": {
"option-def": [
{
"name": "bar",
"code": 101,
"space": "dhcp6",
"type": "record",
"array": false,
"record-types": "ipv6-address, uintl6, boolean, string",
"encapsulate": ""
e
1,
}

The type parameter is set to "record" to indicate that the option contains multiple values of different types. These
types are given as a comma-separated list in the record-types field and should be ones from those listed in List of
standard DHCP option types.

The values of the options are set in an option-data statement as follows:

"Dhcp6": {
"option-data": [
{
"name": "bar",
"space": "dhcp6",

(continues on next page)

9.2. DHCPv6 Server Configuration 213

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)
"code": 101,

"csv-format": true,
"data": "2001:db8:1::10, 123, false, Hello World"

The csv-format parameter is set to true to indicate that the data field comprises a comma-separated list of values.
The values in data must correspond to the types set in the record-types field of the option definition.

When array is set to true and type is set to "record", the last field is an array, i.e. it can contain more than one
value, as in:

"Dhcp6": {
"option-def": [
{
"name": "bar",
"code": 101,
"space": "dhcp6",
"type": "record",
"array": true,
"record-types": "ipv6-address, uintl6",
"encapsulate": ""
e
1,
}

The new option content is one IPv6 address followed by one or more 16-bit unsigned integers.

Note: In general, boolean values are specified as true or false, without quotes. Some specific boolean parameters
may also accept "true", "false", 0,1, "0", and "1".

9.2.16 DHCPv6 Vendor-Specific Options

Vendor options in DHCPV6 are carried in the Vendor-Specific Information option (code 17). The idea behind option
17 is that each vendor has its own unique set of options with their own custom formats. The vendor is identified by a
32-bit unsigned integer called enterprise-number or vendor-id.

The standard spaces defined in Kea and their options are:

* vendor-2495: Internet Systems Consortium, Inc. for 406 options:

option code option name option description

60000 4o6-interface the name of the 406 server's client-facing interface

60001 406-source-address the address that the 406 server uses to send packets to the client
60002 406-source-port the port that the 406 server opens to send packets to the client

* vendor-4491: Cable Television Laboratories, Inc. for DOCSIS3 options:

214 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

option option option description

code name

1 oro ORO (or Option Request Option) is used by clients to request a list of options they are
interested in.

2 tftp-servers a list of IPv4 addresses of TFTP servers to be used by the cable modem

The following examples show how to define an option "foo" with code 1 that consists of an IPv6 address, an unsigned
16-bit integer, and a string. The "foo" option is conveyed in a Vendor-Specific Information option, which comprises
a single uint32 value that is set to 12345. The sub-option "foo" follows the data field holding this value.

The first step is to define the format of the option:

"Dhcp6": {
"option-def": [
{
"name": "foo",
"code": 1,
"space": "vendor-12345",
"type": "record",
"array": false,
"record-types": "ipv6-address, uintl6, string",
"encapsulate": ""
}
1,
}

Note that the option space is set to "vendor-12345
actual values for that option:

. Once the option format is defined, the next step is to define

"Dhcp6": {
"option-data": [
{
llnamell: Ilfooll ,
"space": "vendor-12345",
"data": "2001:db8:1::10, 123, Hello World"
o
1,
}

We should also define a value ("enterprise-number") for the Vendor-Specific Information option, to convey the
option foo.

"Dhcp6": {
"option-data": [
{
"name": "vendor-opts",
"data": "12345"
e

(continues on next page)

9.2. DHCPv6 Server Configuration 215

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

Alternatively, the option can be specified using its code.

"Dhcp6": {
"option-data": [
{
"code": 17,
"data": "12345"
b
1,
}

A common configuration is to set the always-send flag to true, so the vendor option is sent even when the client did
not specify it in the query.

This is also how kea-dhcp6 can be configured to send multiple vendor options from different vendors, along with
each of their specific enterprise numbers. To send these options regardless of whether the client specifies an enterprise

number, the server must be configured with "always-send": true, including the Vendor-Specific Information
option (code 17).
{
"Dhcp6": {
"option-data": [
{

"always-send": true,
"data": "tagged",

name": "tag",
"space": "vendor-2234"
1,
{
"always-send": true,
"data": "https://example.com:1234/path",
"name": "url",
"space": "vendor-3561"
}
1,
"option-def": [
{
"code": 22,
"name": "tag",

"space": "vendor-2234",
'ltype'l: "String“

"code": 11,
"name": "url",
"space": "vendor-3561",
"type": "string"
(continues on next page)

216 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

Note: The kea-dhcp6 server is able to recognize multiple Vendor Class options (code 16) with different enterprise
numbers in the client requests, and to send multiple Vendor-Specific Information options (code 17) in the responses,
one for each vendor.

9.2.17 Nested DHCPv6 Options (Custom Option Spaces)

It is sometimes useful to define a completely new option space: for example, a user might create a new option to convey
sub-options that use a separate numbering scheme, such as sub-options with codes 1 and 2. Those option codes conflict
with standard DHCPv6 options, so a separate option space must be defined.

Note that the creation of a new option space is not required when defining sub-options for a standard option, because one
is created by default if the standard option is meant to convey any sub-options (see DHCPv6 Vendor-Specific Options).

If we want a DHCPv6 option called container with code 102, that conveys two sub-options with codes 1 and 2, we
first need to define the new sub-options:

"Dhcp6": {
"option-def": [

{
"name": "suboptl",
"code": 1,
"space": "isc",
"type": "ipv6-address",
"record-types": "",
"array": false,
"encapsulate": ""

B

{
"name": "subopt2",
"code": 2,
"space": "isc",
"type": "string",
"record-types": "",
"array": false,
"encapsulate": ""

}

1,
}

Note that we have defined the options to belong to a new option space (in this case, "isc").

The next step is to define a regular DHCPv6 option with the desired code and specify that it should include options
from the new option space:

9.2. DHCPv6 Server Configuration 217

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcp6": {
"option-def": [
{
"name": "container",
"code": 102,
"space": "dhcp6",
"type": "empty",
"array": false,
"record-types": "",
"encapsulate": "isc"
B
1,
}

The name of the option space in which the sub-options are defined is set in the encapsulate field. The type field is
setto "empty", to indicate that this option does not carry any data other than sub-options.

Finally, we can set values for the new options:

{
"Dhcp6": {
"option-data": [

{
"name": "suboptl",
"code": 1,
"space": "isc",
"data": "2001:db8::abcd"

Bo

{
"name": "subopt2",
"code": 2,
"space": "isc",
"data": "Hello world"

Fg

{
"name": "container",
"code": 102,
"space": "dhcp6"

}

]
}
}

It is possible to create an option which carries some data in addition to the sub-options defined in the encapsulated
option space. For example, if the container option from the previous example were required to carry a uint16 value
as well as the sub-options, the type value would have to be set to "uint16" in the option definition. (Such an option
would then have the following data structure: DHCP header, uint16 value, sub-options.) The value specified with the
data parameter — which should be a valid integer enclosed in quotes, e.g. "123" — would then be assigned to the
uint16 field in the container option.

218 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.2.18 Unspecified Parameters for DHCPv6 Option Configuration

In many cases it is not required to specify all parameters for an option configuration, and the default values can be used.
However, it is important to understand the implications of not specifying some of them, as it may result in configuration
errors. The list below explains the behavior of the server when a particular parameter is not explicitly specified:

* name - the server requires either an option name or an option code to identify an option. If this parameter is
unspecified, the option code must be specified.

* code - the server requires either an option name or an option code to identify an option; this parameter may be
left unspecified if the name parameter is specified. However, this also requires that the particular option have a
definition (either as a standard option or an administrator-created definition for the option using an option-def
structure), as the option definition associates an option with a particular name. It is possible to configure an
option for which there is no definition (unspecified option format). Configuration of such options requires the
use of the option code.

* space - if the option space is unspecified it defaults to dhcp6, which is an option space holding standard DHCPv6
options.

* data - if the option data is unspecified it defaults to an empty value. The empty value is mostly used for the
options which have no payload (boolean options), but it is legal to specify empty values for some options which
carry variable-length data and for which the specification allows a length of 0. For such options, the data param-
eter may be omitted in the configuration.

» csv-format - if this value is not specified, the server assumes that the option data is specified as a list of comma-
separated values to be assigned to individual fields of the DHCP option.

9.2.19 Controlling the Values Sent for T1 and T2 Times

According to RFC 8415, section 21.4, the recommended T1 and T2 values are 50% and 80% of the preferred lease time,
respectively. Kea can be configured to send values that are specified explicitly or that are calculated as percentages of
the preferred lease time. The server's behavior is determined by a combination of configuration parameters, of which
T1 and T2 are only two.

The lease's preferred and valid lifetimes are expressed as triplets with minimum, default, and maximum values using
configuration entries:

* min-preferred-lifetime - specifies the minimum preferred lifetime (optional).
» preferred-lifetime - specifies the default preferred lifetime.
* max-preferred-lifetime - specifies the maximum preferred lifetime (optional).
e min-valid-lifetime - specifies the minimum valid lifetime (optional).
e valid-lifetime - specifies the default valid lifetime.
* max-valid-lifetime - specifies the maximum valid lifetime (optional).

These values may be specified within client classes.

When the client does not specify lifetimes, the default is used. A specified lifetime - using the IAADDR or IAPREFIX
sub-option with non-zero values - uses these values when they are between the configured minimum and maximum
bounds. Values outside the bounds are rounded up or down as needed.

Note: If the preferred-1lifetime has not been explicitly specified, or if the specified value is larger than the value
of valid-lifetime, the server uses the value of valid-1ifetime multiplied by 0.625.

To send specific fixed values, use the following two parameters:

9.2. DHCPv6 Server Configuration 219

Kea Administrator Reference Manual Documentation, Release 2.7.5

* renew-timer - specifies the value of T1 in seconds.
* rebind-timer - specifies the value of T2 in seconds.

Any value greater than or equal to zero may be specified for T2. T1, if specified, must be less than T2. This flexibility
allows a use case where administrators want to suppress client renewals and rebinds by deferring them beyond the
lifespan of the lease. This should cause the lease to expire, rather than get renewed by clients. If T1 is specified as
larger than T2, T1 is silently set to zero in the outbound IA.

In the great majority of cases, the values should follow this rule: T1 < T2 < preferred lifetime < valid lifetime. Alterna-
tively, both T1 and T2 values can be configured to 0, which is a signal to DHCPv6 clients that they may renew at their
own discretion. However, there are known broken client implementations in use that will start renewing immediately.
Administrators who plan to use T1=T2=0 values should test first and make sure their clients behave rationally.

In some rare cases there may be a need to disable a client's ability to renew addresses. This is undesired from a protocol
perspective and should be avoided if possible. However, if necessary, administrators can configure the T1 and T2 values
to be equal or greater to the valid lifetime. Be advised that this will cause clients to occasionally lose their addresses,
which is generally perceived as poor service. However, there may be some rare business cases when this is desired (e.g.
when it is desirable to intentionally break long-lasting connections).

Calculation of the values is controlled by the following three parameters:

e calculate-tee-times - when true, T1 and T2 are calculated as percentages of the valid lease time. It defaults
to true.

e tl-percent - the percentage of the valid lease time to use for T1. It is expressed as a real number between 0.0
and 1.0 and must be less than t2-percent. The default value is 0.5, per RFC 8415.

* t2-percent - the percentage of the valid lease time to use for T2. It is expressed as a real number between 0.0
and 1.0 and must be greater than t1-percent. The default value is 0.8 per RFC 8415.

Note: Unlike DHCPv4 the tee (T1, T2) times are always present in DHCPv6 address and prefix options. Therefore
the default value for calculate-tee-times for kea-dhcpé6 is true. This ensures the server's default behavior will
result in non-zero tee times being sent to clients. This is to avoid the server being swamped by misbehaving clients that
do not calculate it for themselves.

Note: If both explicit values are specified and calculate-tee-times is true, the server will use the explicit values.
Administrators with a setup where some subnets or shared-networks use explicit values and some use calculated values
must not define the explicit values at any level higher than where they will be used. Inheriting them from too high a
scope, such as global, will cause them to have values at every level underneath (both shared-networks and subnets),
effectively disabling calculated values.

9.2.20 IPv6 Subnet Selection

The DHCPvV6 server may receive requests from local (connected to the same subnet as the server) and remote (connected
via relays) clients. As the server may have many subnet configurations defined, it must select an appropriate subnet for
a given request.

In IPv4, the server can determine which of the configured subnets are local, as there is a reasonable expectation that the
server will have a (global) IPv4 address configured on the interface. That assumption is not true in IPv6; the DHCPv6
server must be able to operate while only using link-local addresses. Therefore, an optional interface parameter is
available within a subnet definition to designate that a given subnet is local, i.e. reachable directly over the specified
interface. For example, a server that is intended to serve a local subnet over ethQ may be configured as follows:

220 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcp6": {
"subnet6": [
{
"id": 1,
"subnet": "2001:db8:beef::/48",
"pools": [
{
"pool": "2001:db8:beef::/48"
}
1,
"interface": "eth®"
}
1,
}

9.2.21 Rapid Commit

The Rapid Commit option, described in RFC 8415, is supported by the Kea DHCPv6 server. However, support is
disabled by default. It can be enabled on a per-subnet basis using the rapid-commit parameter as shown below:

{
"Dhcp6": {
"subnet6": [
{
"id": 1,
"subnet": "2001:db8:beef::/48",
"rapid-commit": true,
"pools": [
{
"pool": "2001:db8:beef::1-2001:db8:beef::10"
}
]
}
]
}
1

This setting only affects the subnet for which rapid-commit is set to true. For clients connected to other subnets,
the server ignores the Rapid Commit option sent by the client and follows the 4-way exchange procedure, i.e. responds
with an Advertise for a Solicit containing a Rapid Commit option.

9.2. DHCPv6 Server Configuration 221

https://tools.ietf.org/html/rfc8415

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.2.22 DHCPv6 Relays

A DHCPv6 server with multiple subnets defined must select the appropriate subnet when it receives a request from a
client. For clients connected via relays, two mechanisms are used:

The first uses the 1inkaddr field in the RELAY_FORW message. The name of this field is somewhat misleading in that
it does not contain a link-layer address; instead, it holds an address (typically a global address) that is used to identify
a link. The DHCPv6 server checks to see whether the address belongs to a defined subnet and, if it does, that subnet is
selected for the client's request.

The second mechanism is based on interface-id options. While forwarding a client's message, relays may insert
an interface-id option into the message that identifies the interface on the relay that received the message. (Some
relays allow configuration of that parameter, but it is sometimes hard-coded and may range from the very simple [e.g.
"vlan100"] to the very cryptic; one example seen on real hardware was "[ISAM144|299[ipv6|nt:vp:1:110".) The server
can use this information to select the appropriate subnet. The information is also returned to the relay, which then
knows the interface to use to transmit the response to the client. For this to work successfully, the relay interface IDs
must be unique within the network and the server configuration must match those values.

When configuring the DHCPv6 server, two similarly named parameters can be configured for a subnet:
* interface - defines which local network interface can be used to access a given subnet.

e interface-id - specifies the content of the interface-id option used by relays to identify the interface on
the relay to which the response packet is sent.

The two are mutually exclusive; a subnet cannot be reachable both locally (direct traffic) and via relays (remote traffic).
Specifying both is a configuration error and the DHCPv6 server will refuse such a configuration.

The following example configuration shows how to specify an interface-id with a value of "vlan123":

"Dhcp6": {
"subnet6": [
{
"id": 1,
"subnet": "2001:db8:beef::/48",
"pools": [
{
"pool": "2001:db8:beef::/48"
}
1,
"interface-id": "vlanl23"
}
1,
}

9.2.23 Relay-Supplied Options

RFC 6422 defines a mechanism called Relay-Supplied DHCP Options. In certain cases relay agents are the only entities
that may have specific information, and they can insert options when relaying messages from the client to the server.
The server then does certain checks and copies those options to the response sent to the client.

There are certain conditions that must be met for the option to be included. First, the server must not provide the
option itself; in other words, if both relay and server provide an option, the server always takes precedence. Second,
the option must be RSOO-enabled. (RSOO is the "Relay Supplied Options option.") IANA maintains a list of RSOO-
enabled options here. However, there may be cases when system administrators want to echo other options. Kea can be

222 Chapter 9. The DHCPv6 Server

https://tools.ietf.org/html/rfc6422
https://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xhtml#options-relay-supplied

Kea Administrator Reference Manual Documentation, Release 2.7.5

instructed to treat other options as RSOO-enabled; for example, to mark options 110, 120, and 130 as RSOO-enabled,
the following syntax should be used:

"Dhcp6": {
"relay-supplied-options": ["110", "120", "130"],

At this time, only option 65 is RSOO-enabled by IANA. This option will always be treated as RSOO-enabled, so there
is no need to explicitly mark it. When enabling standard options, it is also possible to use their names rather than their
option code, e.g. use dns-servers instead of 23. See ref:dhcp6-std-options-list for the names. In certain cases this
may also work for custom options, but due to the nature of the parser code this may be unreliable and should be avoided.

9.2.24 Client Classification in DHCPv6

The DHCPv6 server includes support for client classification. For a deeper discussion of the classification process, see
Client Classification.

In certain cases it is useful to configure the server to differentiate between DHCP client types and treat them accord-
ingly. Client classification can be used to modify the behavior of almost any part of DHCP message processing. Kea
currently offers three mechanisms that take advantage of client classification in DHCPv6: subnet selection, address
pool selection, and DHCP options assignment.

Kea can be instructed to limit access to given subnets based on class information. This is particularly useful for cases
where two types of devices share the same link and are expected to be served from two different subnets. The primary
use case for such a scenario is cable networks, where there are two classes of devices: the cable modem itself, which
should be handed a lease from subnet A; and all other devices behind the modem, which should get leases from subnet
B. That segregation is essential to prevent overly curious end-users from playing with their cable modems. For details
on how to set up class restrictions on subnets, see Configuring Subnets With Class Information.

When subnets belong to a shared network, the classification applies to subnet selection but not to pools; that is, a pool
in a subnet limited to a particular class can still be used by clients which do not belong to the class, if the pool they are
expected to use is exhausted. The limit on access based on class information is also available at the address/prefix pool
level within a subnet: see Configuring Pools With Class Information. This is useful when segregating clients belonging
to the same subnet into different address ranges.

In a similar way, a pool can be constrained to serve only known clients, i.e. clients which have a reservation, using the
built-in KNOWN or UNKNOWN classes. Addresses can be assigned to registered clients without giving a different address
per reservation: for instance, when there are not enough available addresses. The determination whether there is a
reservation for a given client is made after a subnet is selected, so it is not possible to use KNOWN/UNKNOWN classes to
select a shared network or a subnet.

The process of classification is conducted in five steps. The first step is to assess an incoming packet and assign it to zero
or more classes. The second step is to choose a subnet, possibly based on the class information. When the incoming
packet is in the special class DROP, it is dropped and a debug message logged. The next step is to evaluate class
expressions depending on the built-in KNOWN/UNKNOWN classes after host reservation lookup, using them for pool/pd-
pool selection and assigning classes from host reservations. The list of required classes is then built and each class of
the list has its expression evaluated; when it returns true, the packet is added as a member of the class. The last step is
to assign options, again possibly based on the class information. More complete and detailed information is available
in Client Classification.

There are two main methods of classification. The first is automatic and relies on examining the values in the vendor
class options or the existence of a host reservation. Information from these options is extracted, and a class name is
constructed from it and added to the class list for the packet. The second method specifies an expression that is evaluated
for each packet. If the result is true, the packet is a member of the class.

9.2. DHCPv6 Server Configuration 223

Kea Administrator Reference Manual Documentation, Release 2.7.5

Note: The new early-global-reservations-lookup global parameter flag enables a lookup for global reser-
vations before the subnet selection phase. This lookup is similar to the general lookup described above with two
differences:

¢ the lookup is limited to global host reservations

¢ the UNKNOWN class is never set

Note: Care should be taken with client classification, as it is easy for clients that do not meet class criteria to be denied
all service.

9.2.24.1 Defining and Using Custom Classes

The following example shows how to configure a class using an expression and a subnet using that class. This config-
uration defines the class named Client_enterprise. It is comprised of all clients whose client identifiers start with
the given hex string (which would indicate a DUID based on an enterprise id of 0xAABBCCDD). Members of this
class will be given an address from 2001:db8:1::0 to 2001:db8:1::FFFF and the addresses of their DNS servers set to
2001:db8:0::1 and 2001:db8:2::1.

"Dhcp6": {
"client-classes": [
{
"name": "Client_enterprise",
"test": "substring(option[1l].hex,0,6) == 0x0002AABBCCDD",
"option-data": [
{
"name": "dns-servers",
"code": 23,
"space": "dhcp6",
"csv-format": true,
"data": "2001:db8:0::1, 2001:db8:2::1"
}
1
e
1,
"subnet6": [
{
"id": 1,
"subnet": "2001:db8:1::/64",
"pools": [{ "pool": "2001:db8:1::-2001:db8:1::ffff" }],
"client-classes": ["Client_enterprise"]
}
1,
}

This example shows a configuration using an automatically generated VENDOR_CLASS_ class. The administrator of the
network has decided that addresses in the range 2001:db8:1::1 to 2001:db8:1::fHff are to be managed by the DHCPv6
server and that only clients belonging to the eRouter1.0 client class are allowed to use that pool.

224 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcp6": {
"subnet6": [
{
"id": 1,
"subnet": "2001:db8:1::/64",
"pools": [
{
"pool": "2001:db8:1::-2001:db8:1::ffff"
}
1,
"client-classes": ["VENDOR_CLASS_eRouterl.0"]
}
1,
}

9.2.24.2 Additional Classification

In some cases it is useful to limit the scope of a class to a pool, subnet, or shared network. There are two parameters
which are used to limit the scope of the class by instructing the server to evaluate test expressions when required.

The evaluate-additional-classes, which takes a list of class names and is valid in pool, subnet, and shared
network scope. Classes in these lists are marked as additional and evaluated after selection of this specific
pool/subnet/shared network and before output-option processing.

The second one is the per-class only-in-additional-1ist flag, which is false by default. When it is set to true,
the test expression of the class is not evaluated at the reception of the incoming packet but later, and only if the class is
present in an evaluate-additional-classes list.

In this example, a class is assigned to the incoming packet when the specified subnet is used:

"Dhcp6": {
"client-classes": [
{
"name": "Client_foo",
"test": "member('ALL')",
"only-in-additional-list": true
g
1,
"subnet6": [
{
"subnet": "2001:db8:1::/64",
"pools": [
{
"pool": "2001:db8:1::-2001:db8:1::ffff"
}
i
"evaluate-additional-classes": ["Client_foo" 1],
i
i

(continues on next page)

9.2. DHCPv6 Server Configuration 225

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

Additional evaluation can be used to express complex dependencies like subnet membership. It can also be used
to reverse the precedence; if option-data is set in a subnet, it takes precedence over option-data in a class. If
option-data is moved to a required class and required in the subnet, a class evaluated earlier may take precedence.

Additional evaluation is also available at shared network and pool/pd-pool levels. The order in which additional classes
are considered is: (pd-)pool, subnet, and shared network, i.e. in the same order from the way in which option-data
is processed.

Since Kea version 2.7.4 additional classes configured without a test expression are unconditionally added, i.e. they are
considered to always be evaluated to true.

Note: Because additional evaluation occurs after lease assignment, parameters that would otherwise impact lease
life times (e.g. valid-lifetime, preferred-lifetime) will have no effect when specified in a class that also sets
only-in-additional-list true.

Note: As of Kea version 2.7.4, only-if-required and require-client-classes have been renamed to
only-in-additional-list and evaluate-additional-classes respectivley. The original names will still be
accepted as input to allow users to migrate but will eventually be rejected.

9.2.25 DDNS for DHCPv6

As mentioned earlier, kea-dhcp6 can be configured to generate requests to the DHCP-DDNS server, kea-dhcp-ddns,
(referred to herein as "D2") to update DNS entries. These requests are known as NameChangeRequests or NCRs. Each
NCR contains the following information:

1. Whether it is a request to add (update) or remove DNS entries.

2. Whether the change requests forward DNS updates (AAAA records), reverse DNS updates (PTR records), or
both.

3. The Fully Qualified Domain Name (FQDN), lease address, and DHCID (information identifying the client as-
sociated with the FQDN).

DDNS-related parameters are split into two groups:
1. Connectivity Parameters

These are parameters which specify where and how kea-dhcp6 connects to and communicates with
D2. These parameters can only be specified within the top-level dhcp-ddns section in the kea-dhcp6
configuration. The connectivity parameters are listed below:

e enable-updates
e server-ip

e server-port

¢ sender-ip

¢ sender-port

* max-queue-size

226 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

* ncr-protocol
e ncr-format
2. Behavioral Parameters

These parameters influence behavior such as how client host names and FQDN options are han-
dled. They have been moved out of the dhcp-ddns section so that they may be specified at the
global, shared-network, and/or subnet levels. Furthermore, they are inherited downward from global
to shared-network to subnet. In other words, if a parameter is not specified at a given level, the value
for that level comes from the level above it. The behavioral parameters are as follows:

¢ ddns-send-updates

¢ ddns-override-no-update

¢ ddns-override-client-update

¢ ddns-replace-client-name

¢ ddns-generated-prefix

e ddns-qualifying-suffix

¢ ddns-update-on-renew

e ddns-conflict-resolution-mode
¢ ddns-ttl-percent

* hostname-char-set

* hostname-char-replacement

Note: Behavioral parameters that affect the FQDN are in effect even if both enable-updates and
ddns-send-updates are false, to support environments in which clients are responsible for their own DNS
updates. This applies to ddns-replace-client-name, ddns-generated-prefix, ddns-qualifying-suffix,

hostname-char-set, and hostname-char-replacement.

The default configuration and values would appear as follows:

"Dhcp6": {
"dhcp-ddns": {

// Connectivity parameters
"enable-updates": false,
"server-ip": "127.0.0.1",
"server-port":53001,
"sender-ip":"",
"sender-port":0,
"max-queue-size":1024,
"ncr-protocol":"UDP",
"ncr-format":"JSON"

},

// Behavioral parameters (global)
"ddns-send-updates": true,
"ddns-override-no-update": false,
"ddns-override-client-update": false,
"ddns-replace-client-name": '"never",

(continues on next page)

9.2. DHCPv6 Server Configuration

227

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"ddns-generated-prefix": "myhost",
"ddns-qualifying-suffix": ""

"ddns-update-on-renew": false,
"ddns-conflict-resolution-mode": "check-with-dhcid",
"hostname-char-set": ""

"hostname-char-replacement": "",

}

There are two parameters which determine whether kea-dhcp6 can generate DDNS requests to D2: the existing
dhcp-ddns:enable-updates parameter, which now only controls whether kea-dhcp6 connects to D2; and the new
behavioral parameter, ddns-send-updates, which determines whether DDNS updates are enabled at a given level
(i.e. global, shared-network, or subnet). The following table shows how the two parameters function together:

Table 3: Enabling and disabling DDNS updates

dhcp-ddns: enable- Global ddns-send- Outcome

updates updates

false (default) false no updates at any scope

false true (default) no updates at any scope

true false updates only at scopes with a local value of true for
ddns-enable-updates

true true updates at all scopes except those with a local value of false for

ddns-enable-updates

Kea 1.9.1 added two new parameters; the first is ddns-update-on-renew. Normally, when leases are renewed, the
server only updates DNS if the DNS information for the lease (e.g. FQDN, DNS update direction flags) has changed.
Setting ddns-update-on-renew to true instructs the server to always update the DNS information when a lease is
renewed, even if its DNS information has not changed. This allows Kea to "self-heal" if it was previously unable to add
DNS entries or they were somehow lost by the DNS server.

Note: Setting ddns-update-on-renew to true may impact performance, especially for servers with numerous
clients that renew often.

The second parameter added in Kea 1.9.1 is ddns-use-conflict-resolution. This boolean parameter was passed
through to D2 and enabled or disabled conflict resolution as described in RFC 4703. Beginning with Kea 2.5.0, it
is deprecated and replaced by ddns-conflict-resolution-mode, which offers four modes of conflict resolution-
related behavior:

¢ check-with-dhcid - This mode, the default, instructs D2 to carry out RFC 4703-compliant conflict resolution.
Existing DNS entries may only be overwritten if they have a DHCID record and it matches the client's DHCID.
This is equivalent to ddns-use-conflict-resolution: true;

* no-check-with-dhcid - Existing DNS entries may be overwritten by any client, whether those entries include
a DHCID record or not. The new entries will include a DHCID record for the client to whom they belong. This
is equivalent to ddns-use-conflict-resolution: false;

e check-exists-with-dhcid - Existing DNS entries may only be overwritten if they have a DHCID record.
The DHCID record need not match the client's DHCID. This mode provides a way to protect static DNS entries
(those that do not have a DHCID record) while allowing dynamic entries (those that do have a DHCID record)
to be overwritten by any client. This behavior was not supported prior to Kea 2.4.0.

228 Chapter 9. The DHCPv6 Server

https://tools.ietf.org/html/rfc4703

Kea Administrator Reference Manual Documentation, Release 2.7.5

* no-check-without-dhcid - Existing DNS entries may be overwritten by any client; new entries will not in-
clude DHCID records. This behavior was not supported prior to Kea 2.4.0.

Note: For backward compatibility, ddns-use-conflict-resolution is still accepted in JSON configuration.
The server replaces the value internally with ddns-conflict-resolution-mode and an appropriate value:
check-with-dhcid for true and no-check-with-dhcid for false.

Note: Setting ddns-conflict-resolution-mode to any value other than check-with-dhcid disables the over-
write safeguards that the rules of conflict resolution (from RFC 4703) are intended to prevent. This means that existing
entries for an FQDN or an IP address made for Client-A can be deleted or replaced by entries for Client-B. Furthermore,
there are two scenarios by which entries for multiple clients for the same key (e.g. FQDN or IP) can be created.

1. Client-B uses the same FQDN as Client-A but a different IP address. In this case, the forward DNS entries (AAAA
and DHCID RRs) for Client-A will be deleted as they match the FQDN, and new entries for Client-B will be added.
The reverse DNS entries (PTR and DHCID RRs) for Client-A, however, will not be deleted as they belong to a different
IP address, while new entries for Client-B will still be added.

2. Client-B uses the same IP address as Client-A but a different FQDN. In this case, the reverse DNS entries (PTR and
DHCID RRs) for Client-A will be deleted as they match the IP address, and new entries for Client-B will be added.
The forward DNS entries (AAAA and DHCID RRs) for Client-A, however, will not be deleted, as they belong to a
different FQDN, while new entries for Client-B will still be added.

Disabling conflict resolution should be done only after careful review of specific use cases. The best way to avoid
unwanted DNS entries is to always ensure that lease changes are processed through Kea, whether they are released,
expire, or are deleted via the Iease6-del command, prior to reassigning either FQDNs or IP addresses. Doing so
causes kea-dhcp6 to generate DNS removal requests to D2.

The DNS entries Kea creates contain a value for TTL (time to live). The kea-dhcp6 server calculates that value based
on RFC 4702, Section 5, which suggests that the TTL value be 1/3 of the lease's lifetime, with a minimum value of 10
minutes.

The parameter ddns-ttl-percent, when specified, causes the TTL to be calculated as a simple percentage of the
lease's lifetime, using the parameter's value as the percentage. It is specified as a decimal percent (e.g. .25, .75, 1.00)
and may be specified at the global, shared-network, and subnet levels. By default it is unspecified.

9.2.25.1 DHCP-DDNS Server Connectivity

For NCRs to reach the D2 server, kea-dhcp6 must be able to communicate with it. kea-dhcp6 uses the following
configuration parameters to control this communication:

enable-updates - This enables connectivity to kea-dhcp-ddns such that DDNS updates can be constructed
and sent. It must be true for NCRs to be generated and sent to D2. It defaults to false.

server-ip - This is the IP address on which D2 listens for requests. The default is the local loopback interface
at address 127.0.0.1. Either an IPv4 or IPv6 address may be specified.

server-port - This is the port on which D2 listens for requests. The default value is 53001.

sender-ip - This is the IP address which kea-dhcp6 uses to send requests to D2. The default value is blank,
which instructs kea-dhcpé6 to select a suitable address.

sender-port - This is the port which kea-dhcp6 uses to send requests to D2. The default value of 0 instructs
kea-dhcp6 to select a suitable port.

max-queue-size - This is the maximum number of requests allowed to queue while waiting to be sent to D2.
This value guards against requests accumulating uncontrollably if they are being generated faster than they can

9.2. DHCPv6 Server Configuration 229

https://tools.ietf.org/html/rfc4703
https://tools.ietf.org/html/rfc4702#section-5

Kea Administrator Reference Manual Documentation, Release 2.7.5

be delivered. If the number of requests queued for transmission reaches this value, DDNS updating is turned off
until the queue backlog has been sufficiently reduced. The intent is to allow the kea-dhcp4 server to continue
lease operations without running the risk that its memory usage may grow without limit. The default value is
1024.

* ncr-protocol - This specifies the socket protocol to use when sending requests to D2. Currently only UDP is
supported.

* ncr-format - This specifies the packet format to use when sending requests to D2. Currently only JSON format
is supported.

By default, kea-dhcp-ddns is assumed to be running on the same machine as kea-dhcp6, and all of the default
values mentioned above should be sufficient. If, however, D2 has been configured to listen on a different address or
port, these values must be altered accordingly. For example, if D2 has been configured to listen on 2001:db8::5 port
900, the following configuration is required:

"Dhcp6": {
"dhcp-ddns": {
"server-ip": "2001:db8::5",
"server-port": 900,

},

9.2.25.2 When Does the kea-dhcp6 Server Generate a DDNS Request?

The kea-dhcp6 server follows the behavior prescribed for DHCP servers in REC 4704. It is important to keep in mind
that kea-dhcp6 makes the initial decision of when and what to update and forwards that information to D2 in the
form of NCRs. Carrying out the actual DNS updates and dealing with such things as conflict resolution are within the
purview of D2 itself (see The DHCP-DDNS Server). This section describes when kea-dhcp6 generates NCRs and the
configuration parameters that can be used to influence this decision. It assumes that both the connectivity parameter
enable-updates and the behavioral parameter ddns-send-updates are true.

Note: Currently the interface between kea-dhcp6 and D2 only supports requests which update DNS entries for a
single IP address. If a lease grants more than one address, kea-dhcp6 creates the DDNS update request for only the
first of these addresses.

In general, kea-dhcp6 generates DDNS update requests when:
1. A new lease is granted in response to a DHCPREQUEST;
2. An existing lease is renewed but the FQDN associated with it has changed; or
3. An existing lease is released in response to a DHCPRELEASE.

In the second case, lease renewal, two DDNS requests are issued: one request to remove entries for the previous FQDN,
and a second request to add entries for the new FQDN. In the third case, a lease release - a single DDNS request - to
remove its entries will be made.

As for the first case, the decisions involved when granting a new lease are more complex. When a new lease is granted,
kea-dhcp6 generates a DDNS update request only if the DHCPREQUEST contains the FQDN option (code 39). By
default, kea-dhcp6 respects the FQDN N and S flags specified by the client as shown in the following table:

230 Chapter 9. The DHCPv6 Server

https://tools.ietf.org/html/rfc4704

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 4: Default FQDN flag behavior

Client Client Intent Server Response Server
Flags:N-S Flags:N-S-O
0-0 Client wants to do forward updates, server Server generates reverse-only re- 1-0-0

should do reverse updates quest
0-1 Server should do both forward and reverse up- Server generates request to up- 0-1-0

dates date both directions
1-0 Client wants no updates done Server does not generate arequest 1-0-0

The first row in the table above represents "client delegation." Here the DHCP client states that it intends to
do the forward DNS updates and the server should do the reverse updates. By default, kea-dhcp6 honors the
client's wishes and generates a DDNS request to the D2 server to update only reverse DNS data. The parameter
ddns-override-client-update can be used to instruct the server to override client delegation requests. When
this parameter is true, kea-dhcp6 disregards requests for client delegation and generates a DDNS request to update
both forward and reverse DNS data. In this case, the N-S-O flags in the server's response to the client will be 0-1-1,
respectively.

(Note that the flag combination N=1, S=1 is prohibited according to RFC 4702. If such a combination is received from
the client, the packet will be dropped by kea-dhcp6.)

To override client delegation, set the following values in the configuration file:

"Dhcp6": {
"ddns-override-client-update": true,

}

The third row in the table above describes the case in which the client requests that no DNS updates be done. The
parameter ddns-override-no-update can be used to instruct the server to disregard the client's wishes. When this
parameter is true, kea-dhcp6 generates DDNS update requests to kea-dhcp-ddns even if the client requests that no
updates be done. The N-S-O flags in the server's response to the client will be 0-1-1.

To override client delegation, issue the following commands:

"Dhcp6": {
"ddns-override-no-update": true,

}

The kea-dhcp6 server always generates DDNS update requests if the client request only contains the Host Name
option. In addition, it includes an FQDN option in the response to the client, with the FQDN N-S-O flags set to 0-1-0,
respectively. The domain name portion of the FQDN option is the name submitted to D2 in the DDNS update request.

9.2.25.3 kea-dhcp6 Name Generation for DDNS Update Requests

Each NameChangeRequest must of course include the fully qualified domain name whose DNS entries are to be af-
fected. kea-dhcp6 can be configured to supply a portion or all of that name, based on what it receives from the client
in the DHCPREQUEST.

The default rules for constructing the FQDN that will be used for DNS entries are:
1. If the DHCPREQUEST contains the client FQDN option, take the candidate name from there.

2. If the candidate name is a partial (i.e. unqualified) name, then add a configurable suffix to the name and use the
result as the FQDN.

9.2. DHCPv6 Server Configuration 231

https://tools.ietf.org/html/rfc4702

Kea Administrator Reference Manual Documentation, Release 2.7.5

3. If the candidate name provided is empty, generate an FQDN using a configurable prefix and suffix.
4. If the client provides neither option, then take no DNS action.

These rules can be amended by setting the ddns-replace-client-name parameter, which provides the following
modes of behavior:

* never - use the name the client sent. If the client sent no name, do not generate one. This is the default mode.
* always - replace the name the client sent. If the client sent no name, generate one for the client.
* when-present - replace the name the client sent. If the client sent no name, do not generate one.

* when-not-present - use the name the client sent. If the client sent no name, generate one for the client.

Note: In early versions of Kea, this parameter was a boolean and permitted only values of true and false. Boolean
values have been deprecated and are no longer accepted; administrators currently using booleans must replace them
with the desired mode name. A value of true maps to when-present, while false maps to never.

For example, to instruct kea-dhcp6 to always generate the FQDN for a client, set the parameter
ddns-replace-client-name to always as follows:

"Dhcp6": {
"ddns-replace-client-name": "always",

The prefix used in the generation of an FQDN is specified by the ddns-generated-prefix parameter. The default
value is "myhost". To alter its value, simply set it to the desired string:

"Dhcp6": {
"ddns-generated-prefix": "another.host",

The suffix used when generating an FQDN, or when qualifying a partial name, is specified by the
ddns-qualifying-suffix parameter. It is strongly recommended that the user supply a value for the qualifying
suffix when DDNS updates are enabled. For obvious reasons, we cannot supply a meaningful default.

"Dhcp6": {
"ddns-qualifying-suffix": "foo.example.org",

When qualifying a partial name, kea-dhcp6 constructs the name in the format:
[candidate-name]. [ddns-qualifying-suffix].

where candidate-name is the partial name supplied in the DHCPREQUEST. For example, if the FQDN domain name
value is "some-computer” and the ddns-qualifying-suffix is "example.com", the generated FQDN is:

some-computer.example.com.
When generating the entire name, kea-dhcp6 constructs the name in the format:
[ddns-generated-prefix]-[address-text]. [ddns-qualifying-suffix].

where address-text is simply the lease IP address converted to a hyphenated string. For example, if the lease address
is 3001:1::70E, the qualifying suffix is "example.com", and the default value is used for ddns-generated-prefix,
the generated FQDN is:

232 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

myhost-3001-1--70E.example.com.

9.2.25.4 Sanitizing Client FQDN Names

Some DHCP clients may provide values in the name component of the FQDN option (option code 39) that contain
undesirable characters. It is possible to configure kea-dhcp6 to sanitize these values. The most typical use case
is ensuring that only characters that are permitted by RFC 1035 be included: A-Z, a-z, 0-9, and "-". This may be
accomplished with the following two parameters:

* hostname-char-set - a regular expression describing the invalid character set. This can be any valid, regular
expression using POSIX extended expression syntax. Embedded nulls (0x00) are always considered an invalid
character to be replaced (or omitted). The defaultis " [*A-Za-z0-9.-]". This matches any character that is not
a letter, digit, dot, hyphen, or null.

* hostname-char-replacement - a string of zero or more characters with which to replace each invalid character
in the host name. An empty string causes invalid characters to be OMITTED rather than replaced. The default
iS nn 3

The following configuration replaces anything other than a letter, digit, dot, or hyphen with the letter "x":

"Dhcp6": {
"hostname-char-set": "[*A-Za-z0-9.-1",
"hostname-char-replacement": "x",

}

Thus, a client-supplied value of "myhost-$[123.org" would become "myhost-xx123.org". Sanitizing is performed only
on the portion of the name supplied by the client, and it is performed before applying a qualifying suffix (if one is
defined and needed).

Note: Name sanitizing is meant to catch the more common cases of invalid characters through a relatively simple
character-replacement scheme. It is difficult to devise a scheme that works well in all cases. Administrators who find
they have clients with odd corner cases of character combinations that cannot be readily handled with this mechanism
should consider writing a hook that can carry out sufficiently complex logic to address their needs.

Make sure that the dot, ".", is considered a valid character by the hostname-char-set expression, such as this:
"[AA-Za-z0-9.-]1". When scrubbing FQDNs, dots are treated as delimiters and used to separate the option value
into individual domain labels that are scrubbed and then re-assembled.

If clients are sending values that differ only by characters considered as invalid by the hostname-char-set, be aware
that scrubbing them will yield identical values. In such cases, DDNS conflict rules will permit only one of them to
register the name.

Finally, given the latitude clients have in the values they send, it is virtually impossible to guarantee that a combination
of these two parameters will always yield a name that is valid for use in DNS. For example, using an empty value for
hostname-char-replacement could yield an empty domain label within a name, if that label consists only of invalid
characters.

Note: It is possible to specify hostname-char-set and/or hostname-char-replacement at the global scope.

The Kea hook library 1ibdhcp_ddns_tuning. so provides the ability for both kea-dhcp4 and kea-dhcp6 to gener-
ate host names procedurally based on an expression, to skip DDNS updates on a per-client basis, or to fine-tune various
DNS update aspects. Please refer to the libdhcp_ddns_tuning.so: DDNS Tuning documentation for the configuration
options.

9.2. DHCPv6 Server Configuration 233

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.2.26 DHCPv4-over-DHCPv6: DHCPv6 Side

The support of DHCPv4-over-DHCPvV6 transport is described in RFC 7341 and is implemented using cooperating
DHCPv4 and DHCPv6 servers. This section is about the configuration of the DHCPv6 side (the DHCPv4 side is
described in DHCPv4-over-DHCPv6: DHCPv4 Side).

Note: DHCPv4-over-DHCPv6 support is experimental and the details of the inter-process communication may change;
for instance, the support of port relay (RFC 8357) introduced an incompatible change. Both the DHCPv4 and DHCPv6
sides should be running the same version of Kea.

There is only one specific parameter for the DHCPv6 side: dhcp4o6-port, which specifies the first of the two consec-
utive ports of the UDP sockets used for the communication between the DHCPv6 and DHCPv4 servers. The DHCPv6
server is bound to ::1 on port and connected to ::1 on port + 1.

Two other configuration entries are generally required: unicast traffic support (see Unicast Traffic Support) and the
DHCP 406 server address option (name "dhcp4o6-server-addr”, code 88).

ISC tested the following configuration:

{

DHCPv6 conf
"Dhcp6": {

"interfaces-config": {
"interfaces": ["eno33554984/2001:db8:1:1::1"]
1,

"lease-database": {
"type": "memfile",
"name": "leases6"

3,

"preferred-lifetime": 3000,
"valid-lifetime": 4000,
"renew-timer": 1000,
"rebind-timer": 2000,

"subnet6": [{

"id": 1,

"subnet": "2001:db8:1:1::/64",

"interface": "eno33554984",

"pools": [{ "pool": "2001:db8:1:1::1:0/112" } 1]
1,

"dhcp4o06-port": 6767,

"option-data": [{
"name": "dhcp4o6-server-addr",
"code": 88,
"space": "dhcp6",
"csv-format": true,
"data": "2001:db8:1:1::1"

(continues on next page)

234 Chapter 9. The DHCPv6 Server

https://tools.ietf.org/html/rfc7341

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

P

"loggers": [{
"name": "kea-dhcp6",
"output-options": [{
"output": "/tmp/kea-dhcp6.log"
P
"severity": "DEBUG",
"debuglevel™: 0
1

Note: Relayed DHCPv4-QUERY DHCPv6 messages are not supported.

9.2.27 Sanity Checks in DHCPv6

An important aspect of a well-running DHCP system is an assurance that the data remains consistent; however, in some
cases it may be convenient to tolerate certain inconsistent data. For example, a network administrator who temporarily
removes a subnet from a configuration would not want all the leases associated with it to disappear from the lease
database. Kea has a mechanism to implement sanity checks for situations like this.

Kea supports a configuration scope called sanity-checks. A parameter, called 1lease-checks, governs the veri-
fication carried out when a new lease is loaded from a lease file. This mechanism permits Kea to attempt to correct
inconsistent data.

Every subnet has a subnet-id value; this is how Kea internally identifies subnets. Each lease has a subnet-id
parameter as well, which identifies the subnet it belongs to. However, if the configuration has changed, it is possible
that a lease could exist with a subnet-id but without any subnet that matches it. Also, it is possible that the subnet's
configuration has changed and the subnet-id now belongs to a subnet that does not match the lease.

Kea's corrective algorithm first checks to see if there is a subnet with the subnet-id specified by the lease. If there
is, it verifies whether the lease belongs to that subnet. If not, depending on the lease-checks setting, the lease is
discarded, a warning is displayed, or a new subnet is selected for the lease that matches it topologically.

Since delegated prefixes do not have to belong to a subnet in which they are offered, there is no way to implement such
a mechanism for IPv6 prefixes. As such, the mechanism works for IPv6 addresses only.

There are five levels which are supported:
* none - do no special checks; accept the lease as is.
* warn - if problems are detected display a warning, but accept the lease data anyway. This is the default value.

» fix-if a datainconsistency is discovered, try to correct it. If the correction is not successful, insert the incorrect
data anyway.

e fix-del - if a data inconsistency is discovered, try to correct it. If the correction is not successful, reject the
lease. This setting ensures the data's correctness, but some incorrect data may be lost. Use with care.

 del - if any inconsistency is detected, reject the lease. This is the strictest mode; use with care.

9.2. DHCPv6 Server Configuration 235

Kea Administrator Reference Manual Documentation, Release 2.7.5

This feature is currently implemented for the memfile backend. The sanity check applies to the lease database in
memory, not to the lease file, i.e. inconsistent leases will stay in the lease file.

An example configuration that sets this parameter looks as follows:

"Dhcp6": {
"sanity-checks": {
"lease-checks": "fix-del"
}1
}

9.2.28 Storing Extended Lease Information

To support such features as DHCPv6 Reconfigure (RFC 3315) and Leasequery (RFC 5007), additional information
must be stored with each lease. Because the amount of information stored for each lease has ramifications in terms
of performance and system resource consumption, storage of this additional information is configurable through the
store-extended-info parameter. It defaults to false and may be set at the global, shared-network, and subnet
levels.

"Dhcp6": {
"store-extended-info": true,

When set to true, information relevant to the DHCPv6 query (e.g. REQUEST, RENEW, or REBIND) asking for the
lease is added into the lease's user-context as a map element labeled "ISC". Currently, the information contained in
the map is a list of relays, one for each relay message layer that encloses the client query. The lease's user-context
for a two-hop query might look something like this (shown pretty-printed for clarity):

{
"ISC": {
"relay-info": [
{
"hop": 3,
"link": "2001:db8::1",
"peer": "2001:db8::2"

i
{
"hop": 2,
"link": "2001:db8::3",
"options": "0x00C800080102030405060708",
"peer": "2001:db8::4"
be
{
"hop": 1,
"link": "2001:db8::5",
"options": "0x00250006010203040506003500086464646464646464",
"remote-id": "010203040506",
"relay-id": "6464646464646464"
}
1

(continues on next page)

236 Chapter 9. The DHCPv6 Server

https://tools.ietf.org/html/rfc3315
https://tools.ietf.org/html/rfc5007

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

Note: Prior to Kea version 2.3.2, this entry was named relays; remote and relay identifier options were not decoded.

Note: It is possible that other hook libraries are already using user-context. Enabling store-extended-info
should not interfere with any other user-context content, as long as it does not also use an element labeled "ISC".
In other words, user-context is intended to be a flexible container serving multiple purposes. As long as no other
purpose also writes an "ISC" element to user-context there should not be a conflict.

Extended lease information is also subject to configurable sanity checking. The parameter in the sanity-checks
scope is named extended-info-checks and supports these levels:

* none - do no check nor upgrade. This level should be used only when extended info is not used at all or when
no badly formatted extended info, including using the old format, is expected.

e fix - fix some common inconsistencies and upgrade extended info using the old format to the new one. It is the
default level and is convenient when the Leasequery hook library is not loaded.

e strict - fix all inconsistencies which have an impact on the (Bulk) Leasequery hook library.

¢ pedantic - enforce full conformance to the format produced by the Kea code; for instance, no extra entries are
allowed with the exception of comment.

Note: This feature is currently implemented only for the memfile backend. The sanity check applies to the lease
database in memory, not to the lease file, i.e. inconsistent leases stay in the lease file.

9.2.29 Multi-Threading Settings

The Kea server can be configured to process packets in parallel using multiple threads. These settings can be found
under the multi-threading structure and are represented by:

* enable-multi-threading - use multiple threads to process packets in parallel. The default is true.

e thread-pool-size - specify the number of threads to process packets in parallel. It may be set to ® (auto-
detect), or any positive number that explicitly sets the thread count. The default is 0.

» packet-queue-size - specify the size of the queue used by the thread pool to process packets. It may be set to
0 (unlimited), or any positive number that explicitly sets the queue size. The default is 64.

An example configuration that sets these parameters looks as follows:

"Dhcp6": {

"multi-threading": {
"enable-multi-threading": true,
"thread-pool-size": 4,
"packet-queue-size": 16

b,

9.2. DHCPv6 Server Configuration 237

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.2.30 Multi-Threading Settings With Different Database Backends

The Kea DHCPvV6 server is benchmarked by ISC to determine which settings give the best performance. Although
this section describes our results, they are merely recommendations and are very dependent on the particular hardware
used for benchmarking. We strongly advise that administrators run their own performance benchmarks.

A full report of performance results for the latest stable Kea version can be found here. This includes hardware and
benchmark scenario descriptions, as well as current results.

After enabling multi-threading, the number of threads is set by the thread-pool-size parameter. Results from our
experiments show that the best settings for kea-dhcp6 are:

e thread-pool-size: 4 when using memfile for storing leases.
* thread-pool-size: 12 or more when using mysql for storing leases.
* thread-pool-size: 6 when using postgresql.

Another very important parameter is packet-queue-size; in our benchmarks we used it as a multiplier of
thread-pool-size. The actual setting strongly depends on thread-pool-size.

We saw the best results in our benchmarks with the following settings:

¢ packet-queue-size: 150 * thread-pool-size when using memfile for storing leases; in our case it was
150 * 4 = 600. This means that at any given time, up to 600 packets could be queued.

* packet-queue-size: 200 * thread-pool-size when using mysql for storing leases; in our case it was 200
* 12 = 2400. This means that up to 2400 packets could be queued.

* packet-queue-size: 11 * thread-pool-size when using postgresql for storing leases; in our case it was
11 * 6 =66.

9.2.31 Lease Caching

Clients that attempt multiple renewals in a short period can cause the server to update and write to the database fre-
quently, resulting in a performance impact on the server. The cache parameters instruct the DHCP server to avoid
updating leases too frequently, thus avoiding this behavior. Instead, the server assigns the same lease (i.e. reuses it)
with no modifications except for CLTT (Client Last Transmission Time), which does not require disk operations.

The two parameters are the cache-threshold double and the cache-max-age integer; they have no default setting,
i.e. the lease caching feature must be explicitly enabled. These parameters can be configured at the global, shared-
network, and subnet levels. The subnet level has the precedence over the shared-network level, while the global level
is used as a last resort. For example:

{
"subnet6": [
{
"subnet": "2001:db8:1:1::/64",
"pools": [{ "pool": "2001:db8:1:1::1:0/112" } 1,
"cache-threshold": .25,
"cache-max-age": 600,
"valid-lifetime": 2000,
}
1,
}

When an already-assigned lease can fulfill a client query:

238 Chapter 9. The DHCPv6 Server

https://reports.kea.isc.org/

Kea Administrator Reference Manual Documentation, Release 2.7.5

* any important change, e.g. for DDNS parameter, hostname, or preferred or valid lifetime reduction, makes the
lease not reusable.

* lease age, i.e. the difference between the creation or last modification time and the current time, is computed
(elapsed duration).

* if cache-max-age is explicitly configured, it is compared with the lease age; leases that are too old are not
reusable. This means that the value O for cache-max-age disables the lease cache feature.

* if cache-threshold is explicitly configured and is between 0.0 and 1.0, it expresses the percentage of the lease
valid lifetime which is allowed for the lease age. Values below and including 0.0 and values greater than 1.0
disable the lease cache feature.

In our example, a lease with a valid lifetime of 2000 seconds can be reused if it was committed less than 500 seconds
ago. With a lifetime of 3000 seconds, a maximum age of 600 seconds applies.

In outbound client responses (e.g. DHCPV6_REPLY messages), the used preferred and valid lifetimes are the reusable
values, i.e. the expiration dates do not change.

9.3 Host Reservations in DHCPv6

There are many cases where it is useful to provide a configuration on a per-host basis. The most obvious one is
to reserve a specific, static [Pv6 address or/and prefix for exclusive use by a given client (host); the returning client
receives the same address and/or prefix every time, and other clients will never get that address. Host reservations are
also convenient when a host has specific requirements, e.g. a printer that needs additional DHCP options or a cable
modem that needs specific parameters. Yet another possible use case is to define unique names for hosts.

There may be cases when a new reservation has been made for a client for an address or prefix currently in use by
another client. We call this situation a "conflict." These conflicts get resolved automatically over time, as described
in subsequent sections. Once a conflict is resolved, the correct client will receive the reserved configuration when it
renews.

Host reservations are defined as parameters for each subnet. Each host must be identified by either DUID or its hard-
ware/MAC address; see MAC/Hardware Addresses in DHCPv6 for details. There is an optional reservations array
in the subnet6 structure; each element in that array is a structure that holds information about reservations for a single
host. In particular, the structure has an identifier that uniquely identifies a host. In the DHCPv6 context, the identifier
is usually a DUID, but it can also be a hardware or MAC address. One or more addresses or prefixes may also be
specified, and it is possible to specify a hostname and DHCPv6 options for a given host.

Note: The reserved address must be within the subnet. This does not apply to reserved prefixes.

The following example shows how to reserve addresses and prefixes for specific hosts:

{
"subnet6": [
{
"id": 1,
"subnet": "2001:db8:1::/48",
"pools": [{ "pool": "2001:db8:1::/80" } 1,
"pd-pools": [
{
"prefix": "2001:db8:1:8000::",
"prefix-len": 56,
"delegated-len": 64

(continues on next page)

9.3. Host Reservations in DHCPv6 239

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

}
ie
"reservations": [
{
"duid": "01:02:03:04:05:0A:0B:0C:0D:0E",
"ip-addresses": ["2001:db8:1::100"]
e
{
"hw-address": "00:01:02:03:04:05",
"ip-addresses": ["2001:db8:1::101", "2001:db8:1::102"]
e
{
"duid": "01:02:03:04:05:06:07:08:09:0A",
"ip-addresses": ["2001:db8:1::103"],
"prefixes": ["2001:db8:2:abcd::/64"],
"hostname": "foo.example.com"
}
]
}
1,
}

This example includes reservations for three different clients. = The first reservation is for the address
2001:db8:1::100, for a client using DUID 01:02:03:04:05:0A:0B:0C:0D:0E. The second reservation is for two ad-
dresses, 2001:db8:1::101 and 2001:db8:1::102, for a client using MAC address 00:01:02:03:04:05. Lastly, address
2001:db8:1::103 and prefix 2001:db8:2:abcd::/64 are reserved for a client using DUID 01:02:03:04:05:06:07:08:09:0A.
The last reservation also assigns a hostname to this client.

DHCPv6 allows a single client to lease multiple addresses and multiple prefixes at the same time. Therefore
ip-addresses and prefixes are plural and are actually arrays. When the client sends multiple IA options (IA_NA
or IA_PD), each reserved address or prefix is assigned to an individual IA of the appropriate type. If the number of IAs
of a specific type is lower than the number of reservations of that type, the number of reserved addresses or prefixes
assigned to the client is equal to the number of IA_NAs or IA_PDs sent by the client; that is, some reserved addresses
or prefixes are not assigned. However, they still remain reserved for this client and the server will not assign them to any
other client. If the number of [As of a specific type sent by the client is greater than the number of reserved addresses
or prefixes, the server will try to assign all reserved addresses or prefixes to the individual IAs and dynamically allocate
addresses or prefixes to the remaining [As. If the server cannot assign a reserved address or prefix because it is in use,
the server will select the next reserved address or prefix and try to assign it to the client. If the server subsequently
finds that there are no more reservations that can be assigned to the client at that moment, the server will try to assign
leases dynamically.

Making a reservation for a mobile host that may visit multiple subnets requires a separate host definition in each subnet
that host is expected to visit. It is not possible to define multiple host definitions with the same hardware address in a
single subnet. Multiple host definitions with the same hardware address are valid if each is in a different subnet. The
reservation for a given host should include only one identifier, either DUID or hardware address; defining both for the
same host is considered a configuration error.

Adding host reservations incurs a performance penalty. In principle, when a server that does not support host reservation
responds to a query, it needs to check whether there is a lease for a given address being considered for allocation or
renewal. The server that does support host reservation has to perform additional checks: not only whether the address
is currently used (i.e., if there is a lease for it), but also whether the address could be used by someone else (i.e., if there
is a reservation for it). That additional check incurs extra overhead.

240 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.3.1 Address/Prefix Reservation Types

In a typical Kea scenario there is an IPv6 subnet defined, with a certain part of it dedicated for dynamic address
allocation by the DHCPv6 server. There may be an additional address space defined for prefix delegation. Those
dynamic parts are referred to as dynamic pools, address and prefix pools, or simply pools. In principle, a host reservation
can reserve any address or prefix that belongs to the subnet. The reservations that specify addresses that belong to
configured pools are called "in-pool reservations." In contrast, those that do not belong to dynamic pools are called
"out-of-pool reservations." There is no formal difference in the reservation syntax and both reservation types are handled
uniformly.

Kea supports global host reservations. These are reservations that are specified at the global level within the configu-
ration and that do not belong to any specific subnet. Kea still matches inbound client packets to a subnet as before, but
when the subnet's reservation mode is set to "global", Kea looks for host reservations only among the global reserva-
tions defined. Typically, such reservations would be used to reserve hostnames for clients which may move from one
subnet to another.

Note: Global reservations, while useful in certain circumstances, have aspects that must be given due consideration
when using them. Please see Conflicts in DHCPv6 Reservations for more details.

Note: Since Kea 1.9.1, reservation mode has been replaced by three boolean flags, reservations-global,
reservations-in-subnet and reservations-out-of-pool, which allow the configuration of host reservations
both globally and in a subnet. In such cases a subnet host reservation has preference over a global reservation when
both exist for the same client.

Note: Beginning with Kea 2.7.3, the host reservation syntax supports a new entry, excluded-prefixes. It can
be used to specify prefixes the client should exclude from delegated prefixes. When present it must have the same
number of elements as the prefixes entry. Both entries contain strings representing IPv6 prefixes. Each element
of the excluded-prefixes must be either an empty string or match the prefix at the same position in prefixes.
An empty excluded-prefixes list or a list with only empty strings can be omitted. An example which excludes
2001:db8:0:1::/64 from 2001:db8: : /48 is shown below:

{
"reservations": [
{
"duid": "01:02:03:04:05:06:07:08:09:0A",
"ip-addresses": ["2001:db8:1::103"],
"prefixes": ["2001:db8::/48"],
"excluded-prefixes": ["2001:db8:0:1::/64" 1],
"hostname": "foo.example.com"
}
1,
}

Note: Since host reservations have precedence over prefix pools, a reserved prefix without an excluded prefix will not
add a pd-exclude option to the prefix option even if the delegated prefix is in a configured prefix pool that does specify
an excluded prefix (different from previous behavior).

9.3. Host Reservations in DHCPv6 241

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.3.2 Conflicts in DHCPv6 Reservations

As reservations and lease information are stored separately, conflicts may arise. Consider the following series of events:
the server has configured the dynamic pool of addresses from the range of 2001:db8::10 to 2001:db8::20. Host A
requests an address and gets 2001:db8::10. Now the system administrator decides to reserve address 2001:db8::10 for
Host B. In general, reserving an address that is currently assigned to someone else is not recommended, but there are
valid use cases where such an operation is warranted.

The server now has a conflict to resolve. If Host B boots up and requests an address, the server cannot immediately
assign the reserved address 2001:db8::10. A naive approach would to be immediately remove the lease for Host A and
create a new one for Host B. That would not solve the problem, though, because as soon as Host B gets the address, it
will detect that the address is already in use (by Host A) and will send a DHCPDECLINE message. Therefore, in this
situation, the server has to temporarily assign a different address from the dynamic pool (not matching what has been
reserved) to Host B.

When Host A renews its address, the server will discover that the address being renewed is now reserved for someone
else - Host B. The server will remove the lease for 2001:db8::10, select a new address, and create a new lease for it. It
will send two addresses in its response: the old address, with the lifetime set to O to explicitly indicate that it is no longer
valid; and the new address, with a non-zero lifetime. When Host B tries to renew its temporarily assigned address, the
server will detect that the existing lease does not match the reservation, so it will release the current address Host B has
and will create a new lease matching the reservation. As before, the server will send two addresses: the temporarily
assigned one with a zero lifetime, and the new one that matches the reservation with the proper lifetime set.

This recovery will succeed, even if other hosts attempt to get the reserved address. If Host C requests the address
2001:db8::10 after the reservation is made, the server will propose a different address.

This recovery mechanism allows the server to fully recover from a case where reservations conflict with existing leases;
however, this procedure takes roughly as long as the value set for renew-timer. The best way to avoid such a recovery
is not to define new reservations that conflict with existing leases. Another recommendation is to use out-of-pool
reservations; if the reserved address does not belong to a pool, there is no way that other clients can get it.

Note: The conflict-resolution mechanism does not work for global reservations. Although the global address reserva-
tions feature may be useful in certain settings, it is generally recommended not to use global reservations for addresses.
Administrators who do choose to use global reservations must manually ensure that the reserved addresses are not in
dynamic pools.

9.3.3 Reserving a Hosthame

When the reservation for a client includes the hostname, the server assigns this hostname to the client and sends it back
in the Client FQDN option, if the client included the Client FQDN option in its message to the server. The reserved
hostname always takes precedence over the hostname supplied by the client (via the FQDN option) or the autogenerated
(from the IPv6 address) hostname.

The server qualifies the reserved hostname with the value of the ddns-qualifying-suffix parameter. For example,
the following subnet configuration:

{
"subnet6": [
{
"id": 1,
"subnet": "2001:db8:1::/48",
"pools": [{ "pool": "2001:db8:1::/80" } 1,
"ddns-qualifying-suffix": "example.isc.org.",

(continues on next page)

242 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"reservations": [

{
"duid": "01:02:03:04:05:0A:0B:0C:0D:0E",
"ip-addresses": ["2001:db8:1::100"],
"hostname": "alice-laptop"
}
]
}
P
"dhcp-ddns": {
"enable-updates": true
3,
}

will result the "alice-laptop.example.isc.org." hostname being assigned to the client using the DUID
"01:02:03:04:05:0A:0B:0C:0D:0E". If the ddns-qualifying-suffix is not specified, the default (empty)
value will be used, and in this case the value specified as a hostname will be treated as a fully qualified name. Thus,
by leaving the ddns-qualifying-suffix empty itis possible to qualify hostnames for different clients with different
domain names:

{
"subnet6": [
{
"id": 1,
"subnet": "2001:db8:1::/48",
"pools": [{ "pool": "2001:db8:1::/80" } 1],
"reservations": [
{
"duid": "01:02:03:04:05:0A:0B:0C:0D:0E",
"ip-addresses": ["2001:db8:1::100"],
"hostname": "mark-desktop.example.org."
}
]
}
1
"dhcp-ddns": {
"enable-updates": true
}
}

The above example results in the assignment of the "mark-desktop.example.org." hostname to the client using the DUID
"01:02:03:04:05:0A:0B:0C:0D:0E".

9.3. Host Reservations in DHCPv6 243

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.3.4 Including Specific DHCPv6 Options in Reservations

Kea offers the ability to specify options on a per-host basis. These options follow the same rules as any other options.
These can be standard options (see Standard DHCPv6 Options), custom options (see Custom DHCPv6 Options), or
vendor-specific options (see DHCPv6 Vendor-Specific Options). The following example demonstrates how standard
options can be defined.

{
"reservations": [
{
"duid": "01:02:03:05:06:07:08",
"ip-addresses": ["2001:db8:1::2" 1],
"option-data": [
{
"name": "dns-servers",
"data": "3000:1::234"
o
{
"name": "nis-servers",
"data": "3000:1::234"
1,
i
1,
1,
}

Vendor-specific options can be reserved in a similar manner:

{
"reservations": [
{
"duid": "aa:bb:cc:dd:ee:ff",
"ip-addresses": ["2001:db8::1"],
"option-data": [
{
"name": "vendor-opts",
"data": 4491
I
{
"name": "tftp-servers",
"space": "vendor-4491",
"data": "3000:1::234"
I
1,
1,
1,

(continues on next page)

244 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

3

Options defined at the host level have the highest priority. In other words, if there are options defined with the same
type on global, subnet, class, and host levels, the host-specific values are used.

9.3.5 Reserving Client Classes in DHCPv6

Using Expressions in Classification explains how to configure the server to assign classes to a client, based on the
content of the options that this client sends to the server. Host reservation mechanisms also allow for the static as-
signment of classes to clients. The definitions of these classes are placed in the Kea configuration file or a database.
The following configuration snippet shows how to specify that a client belongs to the classes reserved-classl and
reserved-class2. Those classes are associated with specific options sent to the clients which belong to them.

{

"client-classes": [

{
"name": "reserved-classl",
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8:1::50"
}
]
I
{
"name": "reserved-class2",
"option-data": [
{
"name": "nis-servers",
"data": "2001:db8:1::100"
}
]
}
1,
"subnet6": [
{
"id": 1,
"pools": [{ "pool": "2001:db8:1::/64" } 1],
"subnet": "2001:db8:1::/48",
"reservations": [
{
"duid": "01:02:03:04:05:06:07:08",
"client-classes": ["reserved-classl", "reserved-class2"]
}
]
11

In some cases the host reservations can be used in conjunction with client classes specified within the Kea configuration.
In particular, when a host reservation exists for a client within a given subnet, the "KNOWN" built-in class is assigned

9.3. Host Reservations in DHCPv6 245

Kea Administrator Reference Manual Documentation, Release 2.7.5

to the client. Conversely, when there is no static assignment for the client, the "UNKNOWN" class is assigned to the
client. Class expressions within the Kea configuration file can refer to "KNOWN" or "UNKNOWN" classes using the
"member" operator. For example:

{
"client-classes": [
{
"name": "dependent-class",
"test": "member ('KNOWN')",
"only-in-additional-list": true
}
]
}

The only-in-additional-1list parameter is needed here to force evaluation of the class after the lease has been
allocated and thus the reserved class has been also assigned.

Note: The classes specified in non-global host reservations are assigned to the processed packet after all classes
with the only-in-additional-1ist parameter set to false have been evaluated. This means that these classes
must not depend on the statically assigned classes from the host reservations. If such a dependency is needed, the
only-in-additional-list parameter must be set to true for the dependent classes. Such classes are evaluated
after the static classes have been assigned to the packet. This, however, imposes additional configuration overhead,
because all classes marked as only-in-additional-1ist must be listed in the evaluate-additional-classes
list for every subnet where they are used.

Note: Client classes specified within the Kea configuration file may depend on the classes specified within the global
host reservations. In such a case the only-in-additional-1ist parameter is not needed. Refer to the Pool Selection
with Client Class Reservations and Subnet Selection with Client Class Reservations for specific use cases.

9.3.6 Storing Host Reservations in MySQL or PostgreSQL

Kea can store host reservations in MySQL or PostgreSQL. See Hosts Storage for information on how to configure Kea
to use reservations stored in MySQL or PostgreSQL. Kea provides a dedicated hook for managing reservations in a
database; section libdhcp_host_cmds.so: Host Commands provides detailed information. The Kea wiki provides some
examples of how to conduct common host reservation operations.

Note: In Kea, the maximum length of an option specified per-host is arbitrarily set to 4096 bytes.

9.3.7 Fine-Tuning DHCPv6 Host Reservation

The host reservation capability introduces additional restrictions for the allocation engine (the component of Kea that
selects an address for a client) during lease selection and renewal. In particular, three major checks are necessary. First,
when selecting a new lease, it is not sufficient for a candidate lease to simply not be in use by another DHCP client; it
also must not be reserved for another client. Similarly, when renewing a lease, an additional check must be performed
to see whether the address being renewed is reserved for another client. Finally, when a host renews an address or a
prefix, the server must check whether there is a reservation for this host, which would mean the existing (dynamically
allocated) address should be revoked and the reserved one be used instead.

246 Chapter 9. The DHCPv6 Server

https://gitlab.isc.org/isc-projects/kea/wikis/designs/commands#23-host-reservations-hr-management

Kea Administrator Reference Manual Documentation, Release 2.7.5

Some of those checks may be unnecessary in certain deployments, and not performing them may im-
prove performance. The Kea server provides the reservations-global, reservations-in-subnet and
reservations-out-of-pool configuration parameters to select the types of reservations allowed for a particular
subnet. Each reservation type has different constraints for the checks to be performed by the server when allocating or
renewing a lease for the client.

Configuration flags are:

* reservations-in-subnet - when set to true, it enables in-pool host reservation types. This setting is the
default value, and is the safest and most flexible. However, as all checks are conducted, it is also the slowest. It
does not check against global reservations. This flag defaults to true.

* reservations-out-of-pool - when set to true, it allows only out-of-pool host reservations. In this case the
server assumes that all host reservations are for addresses that do not belong to the dynamic pool. Therefore, it
can skip the reservation checks when dealing with in-pool addresses, thus improving performance. Do not use
this mode if any reservations use in-pool addresses. Caution is advised when using this setting; Kea does not
sanity-check the reservations against reservations-out-of-pool and misconfiguration may cause problems.
This flag defaults to false.

* reservations-global - allows global host reservations. With this setting in place, the server searches for
reservations for a client among the defined global reservations. If an address is specified, the server skips the
reservation checks carried out in other modes, thus improving performance. Caution is advised when using this
setting; Kea does not sanity-check the reservations when reservations-global is set to true, and miscon-
figuration may cause problems. This flag defaults to false.

Note: setting all flags to false disables host reservation support.
As there are no reservations, the server skips all checks. Any reservations defined are completely ignored. As
checks are skipped, the server may operate faster in this mode.

Since Kea 1.9.1 the reservations-global, reservations-in-subnet and reservations-out-of-pool flags
are suported.

The reservations-global, reservations-in-subnet and reservations-out-of-pool parameters can be
specified at:

* global level: .Dhcp6["reservations-global™] (lowest priority: gets overridden by all others)
* subnet level: .Dhcp6.subnet6[]["reservations-in-subnet"] (low priority)
* shared-network level: .Dhcp6["shared-networks"][]["reservations-out-of-pool"] (high priority)

¢ shared-network subnet-level: .Dhcp6["shared-networks"][].subnet6[]["reservations-out-of-pool"]
(highest priority: overrides all others)

To decide which flags to use, the following decision diagram may be useful:

B T B e +
| Is per-host configuration needed, such as

| reserving specific addresses,

| assigning specific options or

| assigning packets to specific classes on per-device basis?
+

| | For all given hosts, |

(continues on next page)

9.3. Host Reservations in DHCPv6 247

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

+--> "disabled" +-=>+ can the reserved resources |
| be used in all configured subnets? |
o ———— T +-+
I I
e L e E e e e + [no |yes
| Is | | I
| at least one reservation +<--+ "global" <--+

| used to reserve addresses |
| or prefixes? |
B e +—+
I I
no| yes| B e +
| | | Is high leases-per-second |
+--> "out-of-pool” +-->+ performance or efficient |
2 | resource usage |
| (CPU ticks, RAM usage, |
database roundtrips) |
important to your setup? |

+-->+ that the reserved |
| addresses/prefixes |
aren't part of the |
pools configured |
in the respective |
subnet? |
e +-+
I I
yes| no|
I I

o + +--> "in-subnet"

4+ — —_— — —

I
I
I
|
I
I
I
I
|
|
[| | Can it be guaranteed |
I
I
I
|
I
I
I
I
|
I

An example configuration that disables reservations looks as follows:

{
"Dhcp6": {
"subnet6": [
{
"id": 1,
"pools": [
{
"pool": "2001:db8:1::-2001:db8:1::100"
}
Ay
"reservations-global": false,
"reservations-in-subnet": false,

(continues on next page)

248 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"subnet": "2001:db8:1::/64"

An example configuration using global reservations is shown below:

{
"Dhcp6": {
"reservations-global": true,
"reservations": [
{
"duid": "00:03:00:01:11:22:33:44:55:66",
"hostname": "host-one"
1,
{
"duid": "00:03:00:01:99:88:77:66:55:44",
"hostname": "host-two"
}
i
"subnet6": [
{
"id": 1,
"pools": [
{
"pool": "2001:db8:1::-2001:db8:1::100"
}
ie
"subnet": "2001:db8:1::/64"
}
]
}
}

The meaning of the reservation flags are:
* reservations-global: fetch global reservations.

e reservations-in-subnet: fetch subnet reservations. For a shared network this includes all subnet members
of the shared network.

* reservations-out-of-pool: this makes sense only when the reservations-in-subnet flag is true.
When reservations-out-of-pool is true, the server assumes that all host reservations are for addresses
that do not belong to the dynamic pool. Therefore, it can skip the reservation checks when dealing with in-pool
addresses, thus improving performance. The server will not assign reserved addresses that are inside the dy-
namic pools to the respective clients. This also means that the addresses matching the respective reservations
from inside the dynamic pools (if any) can be dynamically assigned to any client.

The disabled configuration corresponds to:

{
"Dhcp6": {
"reservations-global": false,

(continues on next page)

9.3. Host Reservations in DHCPv6 249

Kea Administrator Reference Manual Documentation, Release 2.7.5

"reservations-in-subnet": false

(continued from previous page)

The global” "configuration using " "reservations-global corresponds to:

{
"Dhcp6": {
"reservations-global": true,
"reservations-in-subnet": false
}
}

The out-of-pool configuration using reservations-out-of-pool corresponds to:

{
"Dhcp6": {
"reservations-global": false,
"reservations-in-subnet": true,
"reservations-out-of-pool": true
}
}

And the in-subnet configuration using reservations-in-subnet corresponds to

{
"Dhcp6": {
"reservations-global": false,
"reservations-in-subnet": true,
"reservations-out-of-pool": false
}
}

To activate both global and in-subnet, the following combination can be used:

{
"Dhcp6": {
"reservations-global": true,
"reservations-in-subnet": true,
"reservations-out-of-pool": false
}
}

To activate both global and out-of-pool, the following combination can be used

{
"Dhcp6": {
"reservations-global": true,
"reservations-in-subnet": true,
"reservations-out-of-pool": true
}
}

250 Chapter 9

. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

Enabling out-of-pool and disabling in-subnet at the same time is not recommended because out-of-pool applies
to host reservations in a subnet, which are fetched only when the in-subnet flag is true.

The parameter can be specified at the global, subnet, and shared-network levels.

An example configuration that disables reservations looks as follows:

{
"Dhcp6": {
"subnet6": [
{
"reservations-global": false,
"reservations-in-subnet": false,
"subnet": "2001:db8:1::/64",
"id": 1
}
]
}
}

An example configuration using global reservations is shown below:

{
"Dhcp6": {
"reservations": [
{
"duid": "00:03:00:01:11:22:33:44:55:66",
"hostname": "host-one"
e
{
"duid": "00:03:00:01:99:88:77:66:55:44",
"hostname": "host-two"
}
1,
"reservations-global": true,
"reservations-in-subnet": false,
"subnet6": [
{
"pools": [
{
"pool": "2001:db8:1::-2001:db8:1::100"
}
Ay
"subnet": "2001:db8:1::/64",
"id": 1
}
]
}
}

For more details regarding global reservations, see Global Reservations in DHCPv6.

Another aspect of host reservations is the different types of identifiers. Kea currently supports two types of identifiers
in DHCPv6: hardware address and DUID. This is beneficial from a usability perspective; however, there is one draw-
back. For each incoming packet Kea has to extract each identifier type and then query the database to see if there is a
reservation by this particular identifier. If nothing is found, the next identifier is extracted and the next query is issued.

9.3. Host Reservations in DHCPv6 251

Kea Administrator Reference Manual Documentation, Release 2.7.5

This process continues until either a reservation is found or all identifier types have been checked. Over time, with an
increasing number of supported identifier types, Kea would become slower and slower.

To address this problem, a parameter called host-reservation-identifiers is available. It takes a list of identifier
types as a parameter. Kea checks only those identifier types enumerated in host-reservation-identifiers. From
a performance perspective, the number of identifier types should be kept to a minimum, ideally one. If the deploy-
ment uses several reservation types, please enumerate them from most- to least-frequently used, as this increases the
chances of Kea finding the reservation using the fewest queries. An example of a host-reservation-identifiers
configuration looks as follows:

{
"host-reservation-identifiers": ["duid", "hw-address"],
"subnet6": [

{

"subnet": "2001:db8:1::/64",

}
1,
}

If not specified, the default value is:

["host—reservation—identifiers": ["hw-address", "duid"]

Note: As soon as a host reservation is found, the search is stopped; when a client has two host reservations using
different enabled identifier types, the first is always returned and the second ignored. This is usually a configuration
error. In those rare cases when having two reservations for the same host makes sense, the one to be used can be
specified by ordering the list of identifier types in host-reservation-identifiers.

9.3.8 Global Reservations in DHCPv6

In some deployments, such as mobile networks, clients can roam within the network and certain parameters must be
specified regardless of the client's current location. To meet such a need, Kea offers a global reservation mechanism.
The idea behind it is that regular host reservations are tied to specific subnets, by using a specific subnet ID. Kea can
specify a global reservation that can be used in every subnet that has global reservations enabled.

This feature can be used to assign certain parameters, such as hostname or other dedicated, host-specific options. It
can also be used to assign addresses or prefixes.

An address assigned via global host reservation must be feasible for the subnet the server selects for the client. In
other words, the address must lie within the subnet; otherwise, it is ignored and the server will attempt to dynamically
allocate an address. If the selected subnet belongs to a shared network, the server checks for feasibility against the
subnet's siblings, selecting the first in-range subnet. If no such subnet exists, the server falls back to dynamically
allocating the address. This does not apply to globally reserved prefixes.

Note: Prior torelease 2.3.5, the server did not perform feasibility checks on globally reserved addresses, which allowed
the server to be configured to hand out nonsensical leases for arbitrary address values. Later versions of Kea perform
these checks.

To use global host reservations, a configuration similar to the following can be used:

252 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcp6": {
This specifies global reservations.
They will apply to all subnets that
have global reservations enabled.

"reservations": [

{
"hw-address": "aa:bb:cc:dd:ee:ff",
"hostname": "hw-host-dynamic"
},
{
"hw-address": "01:02:03:04:05:06",
"hostname": "hw-host-fixed",
Use of IP addresses in global reservations is risky.
If used outside of matching subnet, such as 3001::/64,
it will result in a broken configuration being handed
to the client.
"ip-address": "2001:db8:ff::77"
3
{
"duid": "01:02:03:04:05",
"hostname": "duid-host"
}
1,

"valid-lifetime": 600,

"subnet4": [{
"subnet": "2001:db8:1::/64",
Specify if the server should look up global reservations.
"reservations-global": true,
Specify if the server should look up in-subnet reservations.
"reservations-in-subnet": false,
Specify if the server can assume that all reserved addresses
are out-of-pool. It can be ignored because '"reservations-in-subnet"
is false.
"reservations-out-of-pool": false,
"pools": [{ "pool": "2001:db8:1::-2001:db8:1::100" }]

]

When using database backends, the global host reservations are distinguished from regular reservations by using a
subnet-id value of 0

9.3. Host Reservations in DHCPv6 253

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.3.9 Pool Selection with Client Class Reservations

Client classes can be specified both in the Kea configuration file and/or via host reservations. The classes specified
in the Kea configuration file are evaluated immediately after receiving the DHCP packet and therefore can be used to
influence subnet selection using the client-classes parameter specified in the subnet scope. The classes specified
within the host reservations are fetched and assigned to the packet after the server has already selected a subnet for the
client. This means that the client class specified within a host reservation cannot be used to influence subnet assignment
for this client, unless the subnet belongs to a shared network. If the subnet belongs to a shared network, the server may
dynamically change the subnet assignment while trying to allocate a lease. If the subnet does not belong to a shared
network, once selected, the subnet is not changed once selected.

If the subnet does not belong to a shared network, it is possible to use host-reservation-based client classification to
select a pool within the subnet as follows:

{
"Dhcp6": {
"client-classes": [
{
"name": "reserved_class"
o
{
"name": "unreserved_class",
"test": "not member('reserved_class')"
}
Ay
"subnet6": [
{
"id": 1,
"subnet": "2001:db8:1::/64",
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:fe",
"client-classes": ["reserved_class"]
}
1,
"pools": [
{
"pool"”: "2001:db8:1::10 - 2001:db8:1::20",
"client-classes": ["unreserved_class"]
1,
{
"pool": "2001:db8:1::30 - 2001:db8:1::40",
"client-classes": ["reserved_class"]
},
{
"pool”: "2001:db8:1::50 - 2001:db8:1::60"
}
]
}
]
3
}

reserved_class is declared without the test parameter because it may be only assigned to a client via host
reservation mechanism. The second class, unreserved_class, is assigned to clients which do not belong to

254 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

reserved_class.

The first pool with the subnet is used for clients not having such a reservation. The second pool is only used for clients
having a reservation for reserved_class. The third pool is an unrestricted pool for any clients, comprising of both
reserved_class clients and unreserved_class.

The configuration snippet includes one host reservation which causes the client with the MAC address
aa:bb:cc:dd:ee:fe to be assigned to reserved_class. Thus, this client will be given an IP address from the
second address pool.

Reservations defined on a subnet that belongs to a shared network are not visible to an otherwise matching client, so
they cannot be used to select pools, nor subnets for that matter.

9.3.10 Subnet Selection with Client Class Reservations

There is one specific use case when subnet selection may be influenced by client classes specified within host reserva-
tions: when the client belongs to a shared network. In such a case it is possible to use classification to select a subnet
within this shared network. Consider the following example:

{
"Dhcp6": {
"client-classes": [
{
"name": "reserved_class"
e
{
"name": "unreserved_class",
"test": "not member('reserved_class')"
}
Ay
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:fe",
"client-classes": ["reserved_class"]
}
ie

"reservations-global": true,
"reservations-in-subnet": false,
"shared-networks": [

{
"name": "net",
"subnet6": [
{
"id": 1,
"subnet": "2001:db8:1::/64",
"pools": [
{
"pool": "2001:db8:1::10 - 2001:db8:1::20",
"client-classes": ["unreserved_class"]
o
{
"pool": "2001:db8:1::30 - 2001:db8:1::40",
"client-classes": ["unreserved_class"]
}

(continues on next page)

9.3. Host Reservations in DHCPv6 255

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

]
3,
{
"id": 2,
"subnet": "2001:db8:2::/64",
"pools": [
{
"pool": "2001:db8:2::10 - 2001:db8:2::20",
"client-classes": ["reserved_class"]
1,
{
"pool": "2001:db8:2::30 - 2001:db8:2::40",
"client-classes": ['"reserved_class"]
}
]
1,
{
"id": 3,
"subnet": "2001:db8:3::/64",
"pools": [
{
"pool": "2001:db8:3::10 - 2001:db8:3::20"
o
{
"pool": "2001:db8:3::30 - 2001:db8:3::40"
}
]
3

This is similar to the example described in the Pool Selection with Client Class Reservations. This time, however, there
are three subnets, of which the first two have a pool associated with a different class each.

The clients that do not have a reservation for reserved_class are assigned an address from the first subnet and when
that is filled from the third subnet. Clients with a reservation for reserved_class are assigned an address from the
second subnet and when that is filled from the third subnet.

The subnets must belong to the same shared network.

For a subnet to be restricted to a certain class, or skipped, all of the pools inside that subnet must be guarded by
reserved_class or unreserved_class respectively.

In addition, the reservation for the client class must be specified at the global scope (global reservation) and
reservations-global must be set to true.

In the example above, the client-classes configuration parameter could also be specified at the subnet level rather
than the pool level, and would yield the same effect.

If the subnets were defined outside shared networks, and client-classes were specified at the subnet level, then
early-global-reservations-lookup would also need to be enabled in order for subnet selection to work.

256 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.3.11 Multiple Reservations for the Same IP

Host reservations were designed to preclude the creation of multiple reservations for the same IP address or delegated
prefix within a particular subnet, to avoid having two different clients compete for the same lease. When using the
default settings, the server returns a configuration error when it finds two or more reservations for the same lease within
a subnet in the Kea configuration file. 1ibdhcp_host_cmds. so returns an error in response to the reservation-add
command when it detects that the reservation exists in the database for the lease for which the new reservation is being
added.

Similar to DHCPv4 (see Multiple Reservations for the Same IP), the DHCPvG6 server can also be configured to allow
the creation of multiple reservations for the same IPv6 address and/or delegated prefix in a given subnet. This is
supported since Kea release 1.9.1 as an optional mode of operation enabled with the ip-reservations-unique
global parameter.

ip-reservations-unique is a boolean parameter that defaults to true, which forbids the specification of more than
one reservation for the same lease in a given subnet. Setting this parameter to false allows such reservations to be
created both in the Kea configuration file and in the host database backend, via 1ibdhcp_host_cmds. so.

Setting ip-reservations-unique to false when using memfile, MySQL, or PostgreSQL is supported. This setting
is not supported when using Host Cache (see /ibdhcp_host_cache.so: Host Cache Reservations for Improved Perfor-
mance) or the RADIUS backend (see libdhcp_radius.so: RADIUS Server Support). These reservation backends do not
support multiple reservations for the same IP; if either of these hooks is loaded and ip-reservations-unique is set
to false, then a configuration error is emitted and the server fails to start.

Note: When ip-reservations-unique is set to true (the default value), the server ensures that IP reservations are
unique for a subnet within a single host backend and/or Kea configuration file. It does not guarantee that the reservations
are unique across multiple backends. On server startup, only IP reservations defined in the Kea configuration file are
checked for uniqueness.

The following is an example configuration with two reservations for the same IPv6 address but different MAC addresses:

"Dhcp6": {
"ip-reservations-unique": false,
"subnet6": [

{
"id": 1,
"subnet": "2001:db8:1::/64",
"reservations": [
{
"hw-address": "la:1b:1c:1d:1le:1f",
"ip-address": "2001:db8:1::11"
B
{
"hw-address": "2a:2b:2c:2d:2e:2f",
"ip-address": "2001:db8:1::11"
}
1
}

It is possible to control the ip-reservations-unique parameter via the Configuration Backend in DHCPv6. If the
new setting of this parameter conflicts with the currently used backends (i.e. backends do not support the new setting),
the new setting is ignored and a warning log message is generated. The backends continue to use the default setting,

9.3. Host Reservations in DHCPv6 257

Kea Administrator Reference Manual Documentation, Release 2.7.5

expecting that IP reservations are unique within each subnet. To allow the creation of non-unique IP reservations, the
administrator must remove the backends which lack support for them from the configuration file.

Administrators must be careful when they have been using multiple reservations for the same IP address and/or dele-
gated prefix and later decide to return to the default mode in which this is no longer allowed. They must make sure that
at most one reservation for a given IP address or delegated prefix exists within a subnet, prior to switching back to the
default mode. If such duplicates are left in the configuration file, the server reports a configuration error. Leaving such
reservations in the host databases does not cause configuration errors but may lead to lease allocation errors during the
server's operation, when it unexpectedly finds multiple reservations for the same IP address or delegated prefix.

Note: Currently, the Kea server does not verify whether multiple reservations for the same IP address and/or delegated
prefix exist in MySQL and/or PostgreSQL) host databases when ip-reservations-unique is updated from false to
true. This may cause issues with lease allocations. The administrator must ensure that there is at most one reservation
for each IP address and/or delegated prefix within each subnet, prior to the configuration update.

reservations-lookup-first is a boolean parameter which controls whether host reservations lookup should be
performed before lease lookup. This parameter has effect only when multi-threading is disabled. When multi-
threading is enabled, host reservations lookup is always performed first to avoid lease-lookup resource locking. The
reservations-lookup-first parameter defaults to false when multi-threading is disabled.

9.3.12 Host Reservations as Basic Access Control

It is possible to define a host reservation that contains just an identifier, without any address, options, or values. In
some deployments this is useful, as the hosts that have a reservation belong to the KNOWN class while others do not.
This can be used as a basic access control mechanism.

The following example demonstrates this concept. It indicates a single IPv6 subnet and all clients will get an address
from it. However, only known clients (those that have reservations) will get their default DNS server configured. Empty
reservations, i.e. reservations that only have the identification criterion, can be useful as a way of making the clients
known.

"Dhcp6": {
"client-classes": [
{
"name": "KNOWN",
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8::1"
}
]
}
1,

"reservations": [
// Clients on this list will be added to the KNOWN class.
{ "duid": "01:02:03:04:05:0A:0B:0C:0D:0E" 1},
{ "duid": "02:03:04:05:0A:0B:0C:0D:0E:0F" }

1,

"reservations-in-subnet": true,

"subnet6": [

{

(continues on next page)

258 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"id": 1,
"subnet": "2001:db8:1::/48",
"pools": [
{
"pool": "2001:db8:1:1::/64"
}
1

This concept can be extended further. A good real-life scenario might be a situation where some customers of an ISP
have not paid their bills. A new class can be defined to use an alternative default DNS server that, instead of giving
access to the Internet, redirects those customers to a captive portal urging them to bring their accounts up to date.

"Dhcp6": {
"client-classes": [
{
"name": "blocked",
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8::2"
}
1
}
1,

"reservations": [
// Clients on this list will be added to the KNOWN class. Some
// will also be added to the blocked class.
{ "duid": "01:02:03:04:05:0A:0B:0C:0D:0E",
"client-classes": ["blocked"] 1},
{ "duid": "02:03:04:05:0A:0B:0C:0D:0E:0F" }
1,

"reservations-in-subnet": true,

"subnet6": [

{
"id": 1,
"subnet": "2001:db8:1::/48",
"pools": [
{
"pool": "2001:db8:1:1::/64"
}
ie
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8::1"
}
]
}

(continues on next page)

9.3. Host Reservations in DHCPv6 259

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

9.4 Shared Networks in DHCPv6

DHCEP servers use subnet information in two ways. It is used to both determine the point of attachment, i.e. where the
client is connected to the network, and to group information pertaining to a specific location in the network. Sometimes
it is useful to have more than one logical IP subnet being deployed on the same physical link. Understanding that two or
more subnets are used on the same link requires additional logic in the DHCP server. This capability is called "shared
networks" in Kea, and sometimes also "shared subnets"; in Microsoft's nomenclature it is called "multinet."

There are many cases where the shared networks feature is useful; here we explain just a handful of the most common
ones. The first and by far most common use case is an existing IPv4 network that has grown and is running out of
available address space. This is less common in IPv6, but shared networks are still useful: for example, with the
exhaustion of IPv6- delegated prefixes within a subnet, or the desire to experiment with an addressing scheme. With
the advent of IPv6 deployment and a vast address space, many organizations split the address space into subnets, deploy
it, and then after a while discover that they want to split it differently. In the transition period, they want both the old
and new addressing to be available: thus the need for more than one subnet on the same physical link.

Finally, the case of cable networks is directly applicable in IPv6. There are two types of devices in cable networks:
cable modems and the end-user devices behind them. It is a common practice to use different subnets for cable modems
to prevent users from tinkering with them. In this case, the distinction is based on the type of device, rather than on
address-space exhaustion.

A client connected to a shared network may be assigned a lease (address or prefix) from any of the pools defined within
the subnets belonging to the shared network. Internally, the server selects one of the subnets belonging to a shared
network and tries to allocate a lease from this subnet. If the server is unable to allocate a lease from the selected subnet
(e.g., due to pool exhaustion), it uses another subnet from the same shared network and tries to allocate a lease from
this subnet. The server typically allocates all leases available in a given subnet before it starts allocating leases from
other subnets belonging to the same shared network. However, in certain situations the client can be allocated a lease
from another subnet before the pools in the first subnet get exhausted; this sometimes occurs when the client provides
a hint that belongs to another subnet, or the client has reservations in a subnet other than the default.

Note: Deployments should not assume that Kea waits until it has allocated all the addresses from the first subnet in a
shared network before allocating addresses from other subnets.

To define a shared network, an additional configuration scope is introduced:

{
"Dhcp6": {
"shared-networks": [
{
Name of the shared network. It may be an arbitrary string
and it must be unique among all shared networks.
"name": "ipv6-lab-1",

The subnet selector can be specified on the shared network
level. Subnets from this shared network will be selected
for clients communicating via relay agent having

the specified IP address.

(continues on next page)

260 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)
"relay": {
"ip-addresses": ["2001:db8:2:34::1"]
e

This starts a list of subnets in this shared network.
There are two subnets in this example.
"subnet6": [

{
"id": 1,
"subnet": "2001:db8::/48",
"pools": [{ "pool": "2001:db8::1 - 2001:db8::ffff" } 1]
e
{
"id": 2,
"subnet": "3ffe:ffe::/64",
"pools": [{ "pool": "3ffe:ffe::/64" }]
}
]
}

end of shared-networks

¥

It is likely that in the network there will be a mix of regular,
"plain" subnets and shared networks. It is perfectly valid
to mix them in the same configuration file.
#
This is a regular subnet. It is not part of any shared-network.
"subnet6": [
{
"id": 3,
"subnet": "2001:db9::/48",
"pools": [{ "pool": "2001:db9::/64" } 1],
"relay": {
"ip-addresses": ["2001:db8:1:2::1"]
}
}
]
3
3

As demonstrated in the example, it is possible to mix shared and regular ("plain") subnets. Each shared network must
have a unique name. This is similar to the ID for subnets, but gives administrators more flexibility. It is used for logging,
but also internally for identifying shared networks.

In principle it makes sense to define only shared networks that consist of two or more subnets. However, for testing
purposes, an empty subnet or a network with just a single subnet is allowed. This is not a recommended practice in
production networks, as the shared network logic requires additional processing and thus lowers the server's perfor-
mance. To avoid unnecessary performance degradation, shared subnets should only be defined when required by the
deployment.

Shared networks provide an ability to specify many parameters in the shared network scope that apply to all subnets
within it. If necessary, it is possible to specify a parameter in the shared-network scope and then override its value in
the subnet scope. For example:

9.4. Shared Networks in DHCPv6 261

Kea Administrator Reference Manual Documentation, Release 2.7.5

{
"shared-networks": [
{
"name": "lab-network3",
"relay": {
"ip-addresses": ["2001:db8:2:34::1"]
B

This applies to all subnets in this shared network, unless
values are overridden on subnet scope.
"valid-lifetime": 600,

This option is made available to all subnets in this shared
network.
"option-data": [{
"name": "dns-servers",
"data": "2001:db8::8888"
1,

"subnet6": [
{
"id": 1,
"subnet": "2001:db8:1::/48",
"pools": [{ "pool": "2001:db8:1::1 - 2001:db8:1::£ffff" }],

This particular subnet uses different values.
"valid-lifetime": 1200,
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8::1:2"
}l
{
"name": "unicast",
"data": "2001:abcd::1"
1
}!
{
"id": 2,
"subnet": "2001:db8:2::/48",
"pools": [{ "pool": "2001:db8:2::1 - 2001:db8:2::ffff" }],

This subnet does not specify its own valid-lifetime value,
so it is inherited from shared network scope.
"option-data": [
{

"name": "dns-servers",

"data": "2001:db8:cafe::1"
11

(continues on next page)

262 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

In this example, there is a dns-servers option defined that is available to clients in both subnets in this shared network.
Also, the valid lifetime is set to 10 minutes (600s). However, the first subnet overrides some of the values (the valid
lifetime is 20 minutes, there is a different IP address for dns-servers), but also adds its own option (the unicast
address). Assuming a client asking for server unicast and dns-servers options is assigned a lease from this subnet, it
will get a lease for 20 minutes and dns-servers, and be allowed to use server unicast at address 2001:abcd::1. If the
same client is assigned to the second subnet, it will get a 10-minute lease, a dns-servers value of 2001:db8:cafe::1,
and no server unicast.

Some parameters must be the same in all subnets in the same shared network. This restriction applies to the interface
and rapid-commit settings. The most convenient way is to define them on the shared-network scope, but they can be
specified for each subnet. However, each subnet must have the same value.

Note: There is an inherent ambiguity when using clients that send multiple A options in a single request, and shared-
networks whose subnets have different values for options and configuration parameters. The server sequentially pro-
cesses IA options in the order that they occur in the client's query; if the leases requested in the IA options end up being
fulfilled from different subnets, which parameters and options should apply? Currently, the code uses the values from
the last subnet of the last IA option fulfilled.

We view this largely as a site configuration issue. A shared network generally means the same physical link, so services
configured by options from subnet A should be as easily reachable from subnet B and vice versa. There are a number
of ways to avoid this situation:

* Use the same values for options and parameters for subnets within the shared network.

» Use subnet selectors or client class guards that ensure that for a single client's query, the same subnet is used for
all IA options in that query.

* Avoid using shared networks with clients that send multiple IA options per query.

9.4.1 Local and Relayed Traffic in Shared Networks

It is possible to specify an interface name at the shared-network level, to tell the server that this specific shared network
is reachable directly (not via relays) using the local network interface. As all subnets in a shared network are expected
to be used on the same physical link, it is a configuration error to attempt to define a shared network using subnets that
are reachable over different interfaces. In other words, all subnets within the shared network must have the same value
for the interface parameter. The following configuration is an example of what NOT to do:

{

"shared-networks": [

{
"name": "office-floor-2",
"subnet6": [
{
"id": 1,
"subnet": "2001:db8::/64",
"pools": [{ "pool": "2001:db8::1 - 2001:db8::ffff" }],
"interface": "eth®"
e
{

(continues on next page)

9.4. Shared Networks in DHCPv6 263

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"id": 2,
"subnet": "3ffe:abcd::/64",
"pools": [{ "pool": "3ffe:abcd::1 - 3ffe:abcd::ffff" } 1,

Specifying a different interface name is a configuration
error. This value should rather be "eth0®" or the interface
name in the other subnet should be "ethl".

"interface": "ethl"

To minimize the chance of configuration errors, it is often more convenient to simply specify the interface name once,
at the shared-network level, as shown in the example below.

{
"shared-networks": [
{
"name": "office-floor-2",
This tells Kea that the whole shared network is reachable over a
local interface. This applies to all subnets in this network.
"interface": "eth0",
"subnet6": [
{
"id": 1,
"subnet": "2001:db8::/64",
"pools": [{ "pool": "2001:db8::1 - 2001:db8::ffff" } 1]
e
{
"id": 2,
"subnet": "3ffe:abcd::/64",
"pools": [{ "pool": "3ffe:abcd::1 - 3ffe:abcd::£ffff" } 1]
}
]
}
1,
}

With relayed traffic, subnets are typically selected using the relay agents' addresses. If the subnets are used indepen-
dently (not grouped within a shared network), a different relay address can be specified for each of these subnets. When
multiple subnets belong to a shared network they must be selected via the same relay address and, similarly to the case
of the local traffic described above, it is a configuration error to specify different relay addresses for the respective
subnets in the shared network. The following configuration is another example of what NOT to do:

{
"shared-networks": [
(continues on next page)

264 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

{
"name": "kakapo",
"subnet6": [
{
"id": 1,
"subnet": "2001:db8::/64",
"relay": {
"ip-addresses": ["2001:db8::1234"]
e
"pools": [{ "pool": "2001:db8::1 - 2001:db8::ffff" }]
}!
{
"id": 2,
"subnet": "3ffe:abcd::/64",
"pools": [{ "pool": "3ffe:abcd::1 - 3ffe:abcd::ff£ff" } 1,
"relay": {
Specifying a different relay address for this
subnet is a configuration error. In this case
it should be 2001:db8::1234 or the relay address
in the previous subnet should be 3ffe:abcd::cafe.
"ip-addresses": ["3ffe:abcd::cafe"]
}
}
]
}
1,
}

Again, it is better to specify the relay address at the shared-network level; this value will be inherited by all subnets
belonging to the shared network.

{
"shared-networks": [
{
"name": "kakapo",
"relay": {

This relay address is inherited by both subnets.
"ip-addresses": ["2001:db8::1234"]

e
"subnet6": [
{
"id": 1,
"subnet": "2001:db8::/64",
"pools": [{ "pool": "2001:db8::1 - 2001:db8::ffff" } 1]
e
{
"id": 2,
"subnet": "3ffe:abcd::/64",
"pools": [{ "pool": "3ffe:abcd::1 - 3ffe:abcd::ffff" } 1]
}
]

(continues on next page)

9.4. Shared Networks in DHCPv6 265

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

Even though it is technically possible to configure two (or more) subnets within the shared network to use different
relay addresses, this will almost always lead to a different behavior than what the user would expect. In this case, the
Kea server will initially select one of the subnets by matching the relay address in the client's packet with the subnet's
configuration. However, it MAY end up using the other subnet (even though it does not match the relay address) if the
client already has a lease in this subnet or has a host reservation in this subnet, or simply if the initially selected subnet
has no more addresses available. Therefore, it is strongly recommended to always specify subnet selectors (interface
or relay address) at the shared-network level if the subnets belong to a shared network, as it is rarely useful to specify
them at the subnet level and may lead to the configuration errors described above.

9.4.2 Client Classification in Shared Networks

Sometimes it is desirable to segregate clients into specific subnets based on certain properties. This mechanism is called
client classification and is described in Client Classification. Client classification can be applied to subnets belonging
to shared networks in the same way as it is used for subnets specified outside of shared networks. It is important to
understand how the server selects subnets for clients when client classification is in use, to ensure that the appropriate
subnet is selected for a given client type.

If a subnet is associated with a class, only the clients belonging to this class can use this subnet. If there are no classes
specified for a subnet, any client connected to a given shared network can use this subnet. A common mistake is to
assume that the subnet that includes a client class is preferred over subnets without client classes.

The client-classes parameter may be specified at the shared network, subnet, and/or pool scopes. If specified for a
shared network, clients must belong to at least one of the classes specified for that network to be considered for subnets
within that network. If specified for a subnet, clients must belong to at least one of the classes specified for that subnet
to be considered for any of that subnet's pools or host reservations. If specified for a pool, clients must belong to at
least one of the classes specified for that pool to be given a lease from that pool.

Consider the following example:

{
"client-classes": [
{
"name": "b-devices",
"test": "option[1234].hex == 0x0002"
}
1,
"shared-networks": [
{
"name": "galah",
"relay": {
"ip-address": ["2001:db8:2:34::1"]
Fg
"subnet6": [
{
"id": 1,
"subnet": "2001:db8:1::/64",
"pools": [{ "pool": "2001:db8:1::20 - 2001:db8:1::ff" }]
Fg

(continues on next page)

266 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

{
"id": 2,
"subnet": "2001:db8:3::/64",
"pools": [{ "pool": "2001:db8:3::20 - 2001:db8:3::ff" } 1],
"client-classes": "b-devices"
}

}

If the client belongs to the "b-devices" class (because it includes option 1234 with a value of 0x0002), that does not
guarantee that the subnet 2001:db8:3::/64 will be used (or preferred) for this client. The server can use either of the two
subnets, because the subnet 2001:db8:1::/64 is also allowed for this client. The client classification used in this case
should be perceived as a way to restrict access to certain subnets, rather than as a way to express subnet preference.
For example, if the client does not belong to the "b-devices" class, it may only use the subnet 2001:db8:1::/64 and will
never use the subnet 2001:db8:3::/64.

A typical use case for client classification is in a cable network, where cable modems should use one subnet and other
devices should use another subnet within the same shared network. In this case it is necessary to apply classification
on all subnets. The following example defines two classes of devices, and the subnet selection is made based on option
1234 values.

{
"client-classes": [
{
"name": "a-devices",
"test": "option[1234].hex == 0x0001"
B
{
"name": "b-devices",
"test": "option[1234].hex == 0x0002"
}
1,
"shared-networks": [
{
"name": "galah",
"relay": {
"ip-addresses": ["2001:db8:2:34::1"]
e
"subnet6": [
{
"id": 1,
"subnet": "2001:db8:1::/64",
"pools": [{ "pool": "2001:db8:1::20 - 2001:db8:1::£ff" } 1,
"client-classes": ["a-devices"]
B
{

"id": 2,
"subnet": "2001:db8:3::/64",
"pools": [{ "pool": "2001:db8:3::20 - 2001:db8:3::£ff" } 1,

"client-classes": ["b-devices"]
(continues on next page)

9.4. Shared Networks in DHCPv6 267

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

In this example each class has its own restriction. Only clients that belong to class "a-devices" are able to use subnet
2001:db8:1::/64 and only clients belonging to "b-devices" are able to use subnet 2001:db8:3::/64. Care should be taken
not to define too-restrictive classification rules, as clients that are unable to use any subnets will be refused service.
However, this may be a desired outcome if one wishes to provide service only to clients with known properties (e.g.
only VoIP phones allowed on a given link).

It is possible to achieve an effect similar to the one presented in this section without the use of shared networks. If the
subnets are placed in the global subnets scope, rather than in the shared network, the server will still use classification
rules to pick the right subnet for a given class of devices. The major benefit of placing subnets within the shared network
is that common parameters for the logically grouped subnets can be specified once, in the shared network scope, e.g.
the interface or relay parameter. All subnets belonging to this shared network will inherit those parameters.

9.4.3 Host Reservations in Shared Networks

Subnets that are part of a shared network allow host reservations, similar to regular subnets:

{

"shared-networks": [

{
"name": "frog",
"relay": {
"ip-addresses": ["2001:db8:2:34::1"]
if
"subnet6": [
{
"subnet": "2001:db8:1::/64",
"id": 100,
"pools": [{ "pool": "2001:db8:1::1 - 2001:db8:1::64" } 1,
"reservations": [
{
"duid": "00:03:00:01:11:22:33:44:55:66",
"ip-addresses": ["2001:db8:1::28"]
}
]
e
{
"subnet": "2001:db8:3::/64",
"id": 101,
"pools": [{ "pool": "2001:db8:3::1 - 2001:db8:3::64" } 1],
"reservations": [
{
"duid": "00:03:00:01:aa:bb:cc:dd:ee:ff",
"ip-addresses": ["2001:db8:2::28"]
}
]
}

(continues on next page)

268 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

It is worth noting that Kea conducts additional checks when processing a packet if shared networks are defined. First,
instead of simply checking whether there is a reservation for a given client in its initially selected subnet, Kea looks
through all subnets in a shared network for a reservation. This is one of the reasons why defining a shared network may
impact performance. If there is a reservation for a client in any subnet, that particular subnet is picked for the client.
Although it is technically not an error, it is considered bad practice to define reservations for the same host in multiple
subnets belonging to the same shared network.

While not strictly mandatory, it is strongly recommended to use explicit "id" values for subnets if database storage will
be used for host reservations. If an ID is not specified, the values for it are auto generated, i.e. Kea assigns increasing
integer values starting from 1. Thus, the auto-generated IDs are not stable across configuration changes.

9.5 Server Identifier in DHCPv6

The DHCPvV6 protocol uses a "server identifier" (also known as a DUID) to allow clients to discriminate between several
servers present on the same link. RFC 8415 currently defines four DUID types: DUID-LLT, DUID-EN, DUID-LL,
and DUID-UUID.

The Kea DHCPv6 server generates a server identifier once, upon the first startup, and stores it in a file. This identifier
is not modified across restarts of the server and so is a stable identifier.

Kea follows the recommendation from RFC 8415 to use DUID-LLT as the default server identifier. However, ISC has
received reports that some deployments require different DUID types, and that there is a need to administratively select
both the DUID type and/or its contents.

The server identifier can be configured using parameters within the server-id map element in the global scope of the
Kea configuration file. The following example demonstrates how to select DUID-EN as a server identifier:

"Dhcp6": {
"server-id": {
"type": "EN"
1
}

Currently supported values for the type parameter are: "LLT", "EN", and "LL", for DUID-LLT, DUID-EN, and DUID-
LL respectively.

When a new DUID type is selected, the server generates its value and replaces any existing DUID in the file. The server
then uses the new server identifier in all future interactions with clients.

Note: If the new server identifier is created after some clients have obtained their leases, the clients using the old
identifier are not able to renew their leases; the server will ignore messages containing the old server identifier. Clients
will continue sending RENEW until they transition to the rebinding state. In this state, they will start sending REBIND
messages to the multicast address without a server identifier. The server will respond to the REBIND messages with a
new server identifier, and the clients will associate the new server identifier with their leases. Although the clients will
be able to keep their leases and will eventually learn the new server identifier, this will be at the cost of an increased

9.5. Server Identifier in DHCPv6 269

https://tools.ietf.org/html/rfc8415
https://tools.ietf.org/html/rfc8415

Kea Administrator Reference Manual Documentation, Release 2.7.5

number of renewals and multicast traffic due to a need to rebind. Therefore, it is recommended that modification of the
server-identifier type and value be avoided if the server has already assigned leases and these leases are still valid.

There are cases when an administrator needs to explicitly specify a DUID value rather than allow the server to generate
it. The following example demonstrates how to explicitly set all components of a DUID-LLT.

"Dhcp6": {
"server-id": {
"type": "LLT",
"htype": 8,

"identifier": "A65DC7410FQ5",
"time": 2518920166

}

where:
* htype is a 16-bit unsigned value specifying hardware type,
* identifier is a link-layer address, specified as a string of hexadecimal digits, and
e time is a 32-bit unsigned time value.

The hexadecimal representation of the DUID generated as a result of the configuration specified above is:

00:01:00:08:96:23:AB:E6:A6:5D:C7:41:0F:05
|type |htype| time | identifier |

A special value of "0" for htype and time is allowed, which indicates that the server should use ANY value for these
components. If the server already uses a DUID-LLT, it will use the values from this DUID; if the server uses a DUID
of a different type or does not yet use any DUID, it will generate these values. Similarly, if the identifier is assigned
an empty string, the value of the identifier will be generated. Omitting any of these parameters is equivalent to
setting them to those special values.

For example, the following configuration:

"Dhcp6": {

"server-id": {
”type”: IILLTII’
"htype": O,
"identifier": "",

"time": 2518920166
i

}

indicates that the server should use ANY link-layer address and hardware type. If the server is already using DUID-
LLT, it will use the link-layer address and hardware type from the existing DUID. If the server is not yet using any
DUID, it will use the link-layer address and hardware type from one of the available network interfaces. The server
will use an explicit value of time; if it is different than a time value present in the currently used DUID, that value will
be replaced, effectively modifying the current server identifier.

The following example demonstrates an explicit configuration of a DUID-EN:

270 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

"Dhcp6": {
"server-id": {
"type": "EN",

"enterprise-id": 2495,
"identifier": "87ABEF7A5BB545"
3,

}

where:
e enterprise-id is a 32-bit unsigned value holding an enterprise number, and
* identifier is a variable- length identifier within DUID-EN.

The hexadecimal representation of the DUID-EN created according to the configuration above is:

00:02:00:00:09:BF:87:AB:EF:7A:5B:B5:45
[type | ent-id | identifier |

As in the case of the DUID-LLT, special values can be used for the configuration of the DUID-EN. If the
enterprise-id is "0", the server will use a value from the existing DUID-EN. If the server is not using any DUID
or the existing DUID has a different type, the ISC enterprise ID will be used. When an empty string is entered for
identifier, the identifier from the existing DUID-EN will be used. If the server is not using any DUID-EN, a new
6-byte-long identifier will be generated.

DUID-LL is configured in the same way as DUID-LLT except that the time parameter has no effect for DUID-LL,
because this DUID type only comprises a hardware type and link-layer address. The following example demonstrates
how to configure DUID-LL:

"Dhcp6": {
"server-id": {
”type”: IILLII’
"htype": 8,

"identifier": "A65DC7410F05"
},

which will result in the following server identifier:

00:03:00:08:A6:5D:C7:41:0F:05
| type |htype]| identifier |

The server stores the generated server identifier in the following location: [kea-install-dir]/var/lib/kea/
kea-dhcp6-serverid.

In some uncommon deployments where no stable storage is available, the server should be configured not to try to store
the server identifier. This choice is controlled by the value of the persist boolean parameter:

"Dhcp6": {
"server-id": {
"type": "EN",

"enterprise-id": 2495,
"identifier": "87ABEF7A5BB545",

"persist": false
(continues on next page)

9.5. Server Identifier in DHCPv6 271

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

b,
}

The default value of the persist parameter is true, which configures the server to store the server identifier on a disk.

In the example above, the server is configured not to store the generated server identifier on a disk. But if the server
identifier is not modified in the configuration, the same value is used after server restart, because the entire server
identifier is explicitly specified in the configuration.

9.6 DHCPv6 Data Directory

The Kea DHCPv6 server puts the server identifier file and the default memory lease file into its data directory. By
default this directory is prefix/var/lib/kea but this location can be changed using the data-directory global
parameter, as in:

"Dhcp6": {
"data-directory": "/var/tmp/kea-server6",

9.7 Stateless DHCPv6 (INFORMATION-REQUEST Message)

Typically DHCPV6 is used to assign both addresses and options. These assignments (leases) have a state that changes
over time, hence their description as "stateful." DHCPv6 also supports a "stateless" mode, where clients request only
configuration options. This mode is considered lightweight from the server perspective, as it does not require any state
tracking.

The Kea server supports stateless mode. When clients send INFORMATION-REQUEST messages, the server sends
back answers with the requested options, if they are available in the server configuration. The server attempts to use
per-subnet options first; if that fails, it then tries to provide options defined in the global scope.

Stateless and stateful mode can be used together. No special configuration directives are required to handle this; simply
use the configuration for stateful clients and the stateless clients will get only the options they requested.

It is possible to run a server that provides only options and no addresses or prefixes. If the options have the same
value in each subnet, the configuration can define the required options in the global scope and skip subnet definitions
altogether. Here's a simple example of such a configuration:

"Dhcp6": {
"interfaces-config": {
"interfaces": ["ethX"]

1
"option-data": [{

"name": "dns-servers",

"data": "2001:db8::1, 2001:db8::2"
1,

"lease-database": {
"type": "memfile"

272 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

This very simple configuration provides DNS server information to all clients in the network, regardless of their loca-
tion. The memfile lease database must be specified, as Kea requires a lease database to be specified even if it is not
used.

9.8 Support for RFC 7550 (now part of RFC 8415)

RFC 7550 introduced some changes to the previous DHCPv6 specifications, RFC 3315 and RFC 3633, to resolve issues
with the coexistence of multiple stateful options in the messages sent between clients and servers. Those changes were
later included in the most recent DHCPv6 protocol specification, RFC 8415, which obsoleted RFC 7550. Kea supports
RFC 8415 along with these protocol changes, which are briefly described below.

When a client, such as a requesting router, requests an allocation of both addresses and prefixes during the 4-way
(SARR) exchange with the server, and the server is not configured to allocate any prefixes but can allocate some ad-
dresses, it will respond with the IA_NA(s) containing allocated addresses and the IA_PD(s) containing the NoPrefix-
Auvail status code. According to the updated specifications, if the client can operate without prefixes it should accept
allocated addresses and transition to the "bound" state. When the client subsequently sends RENEW/REBIND mes-
sages to the server to extend the lifetimes of the allocated addresses, according to the T1 and T2 times, and if the client
is still interested in obtaining prefixes from the server, it may also include an IA_PD in the RENEW/REBIND to request
allocation of the prefixes. If the server still cannot allocate the prefixes, it will respond with the IA_PD(s) containing the
NoPrefixAvail status code. However, if the server can allocate the prefixes, it allocates and sends them in the IA_PD(s)
to the client. A similar situation occurs when the server is unable to allocate addresses for the client but can delegate
prefixes: the client may request allocation of the addresses while renewing the delegated prefixes. Allocating leases
for other IA types while renewing existing leases is by default supported by the Kea DHCPv6 server, and the server
provides no configuration mechanisms to disable this behavior.

The following are the other behaviors first introduced in RFC 7550 (now part of RFC 8415) and supported by the Kea
DHCPV6 server:

e Set T1/T2 timers to the same value for all stateful (IA_NA and IA_PD) options to facilitate renewal of all of a
client's leases at the same time (in a single message exchange).

* Place NoAddrsAvail and NoPrefixAvail status codes in the IA_NA and IA_PD options in the ADVERTISE
message, rather than as the top-level options.

9.9 Using a Specific Relay Agent for a Subnet

The DHCPv6 server follows the same principles as the DHCPv4 server to select a subnet for the client, with noticeable
differences mainly for relays.

Note: When the selected subnet is a member of a shared network, the whole shared network is selected.

A relay must have an interface connected to the link on which the clients are being configured. Typically the relay has a
global IPv6 address configured on that interface, which belongs to the subnet from which the server assigns addresses.
Normally, the server is able to use the IPv6 address inserted by the relay (in the 1ink-addr field in the RELAY-FORW
message) to select the appropriate subnet.

However, that is not always the case; the relay address may not match the subnet in certain deployments. This usu-
ally means that there is more than one subnet allocated for a given link. The two most common examples of this are
long-lasting network renumbering (where both the old and new address spaces are still being used) and a cable net-
work. In a cable network, both cable modems and the devices behind them are physically connected to the same link,
yet they use distinct addressing. In such a case, the DHCPv6 server needs additional information (the value of the

9.8. Support for RFC 7550 (how part of RFC 8415) 273

https://tools.ietf.org/html/rfc7550
https://tools.ietf.org/html/rfc3315
https://tools.ietf.org/html/rfc3633
https://tools.ietf.org/html/rfc8415
https://tools.ietf.org/html/rfc7550
https://tools.ietf.org/html/rfc8415
https://tools.ietf.org/html/rfc7550
https://tools.ietf.org/html/rfc8415

Kea Administrator Reference Manual Documentation, Release 2.7.5

interface-id option or the IPv6 address inserted in the 1ink-addr field in the RELAY-FORW message) to properly
select an appropriate subnet.

The following example assumes that there is a subnet 2001:db8:1::/64 that is accessible via a relay that uses 3000::1
as its IPv6 address. The server is able to select this subnet for any incoming packets that come from a relay that has an
address in the 2001:db8:1::/64 subnet. It also selects that subnet for a relay with address 3000::1.

"Dhcp6": {
"subnet6": [
{
"id": 1,
"subnet": "2001:db8:1::/64",
"pools": [
{
"pool": "2001:db8:1::1-2001:db8:1::ffff"
}
ie
"relay": {
"ip-addresses": ["3000::1"]
}
}
]
}

If relay is specified, the ip-addresses parameter within it is mandatory. The ip-addresses parameter supports
specifying a list of addresses.

9.10 Segregating IPv6 Clients in a Cable Network

In certain cases, it is useful to mix relay address information (introduced in Using a Specific Relay Agent for a Subnet)
with client classification (explained in Client Classification). One specific example is in a cable network, where modems
typically get addresses from a different subnet than all the devices connected behind them.

Let us assume that there is one Cable Modem Termination System (CMTS) with one CM MAC (a physical link that
modems are connected to). We want the modems to get addresses from the 3000::/64 subnet, while everything con-
nected behind the modems should get addresses from the 2001:db8:1::/64 subnet. The CMTS that acts as a relay uses
address 3000::1. The following configuration can serve that situation:

"Dhcp6": {
"subnet6": [
{
"id": 1,
"subnet": "3000::/64",
"pools": [
{ "pool": "3000::2 - 3000::ffff" }
g
"client-classes": ["VENDOR_CLASS_docsis3.0"],
"relay": {
"ip-addresses": ["3000::1"]
}
e
{
"id": 2,

(continues on next page)

274 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"subnet": "2001:db8:1::/64",

"pools": [

{

"pool": "2001:db8:1::1-2001:db8:1::ffff"

}
]1
"relay": {

"ip-addresses": ["3000::1"]

}

9.11 MAC/Hardware Addresses in DHCPv6

MAC/hardware addresses are available in DHCPv4 messages from clients, and administrators frequently use that in-
formation to perform certain tasks like per-host configuration and address reservation for specific MAC addresses.
Unfortunately, the DHCPv6 protocol does not provide any completely reliable way to retrieve that information. To mit-
igate that issue, a number of mechanisms have been implemented in Kea. Each of these mechanisms works in certain
cases, but may not in others. Whether the mechanism works in a particular deployment is somewhat dependent on the
network topology and the technologies used.

Kea allows specification of which of the supported methods should be used and in what order, via the mac-sources
parameter. This configuration may be considered a fine tuning of the DHCP deployment.

Here is an example:

"Dhcp6": {
"mac-sources": [
"methodl",
"method2",
"method3",
1o
"subnet6": [
{
Bo

}

When not specified, a value of "any" is used, which instructs the server to attempt to try all the methods in sequence
and use the value returned by the first one that succeeds. In a typical deployment the default value of "any" is sufficient
and there is no need to select specific methods. Changing the value of this parameter is most useful in cases when an
administrator wants to disable certain methods; for example, if the administrator trusts the network infrastructure more
than the information provided by the clients themselves, they may prefer information provided by the relays over that
provided by clients.

If specified, mac-sources must have at least one value.

9.11. MAC/Hardware Addresses in DHCPv6 275

Kea Administrator Reference Manual Documentation, Release 2.7.5

Supported methods are:

* any - this is not an actual method, just a keyword that instructs Kea to try all other methods and use the first one
that succeeds. This is the default operation if no mac-sources are defined.

* raw - in principle, a DHCPv6 server could use raw sockets to receive incoming traffic and extract MAC/hardware
address information. This is currently not implemented for DHCPv6 and this value has no effect.

e duid - DHCPv6 uses DUID identifiers instead of MAC addresses. There are currently four DUID types defined,
and two of them (DUID-LLT, which is the default, and DUID-LL) convey MAC address information. Although
RFC 8415 forbids it, it is possible to parse those DUIDs and extract necessary information from them. This
method is not completely reliable, as clients may use other DUID types, namely DUID-EN or DUID-UUID.

e ipv6-link-local - another possible acquisition method comes from the source IPv6 address. In typical usage,
clients are sending their packets from IPv6 link-local addresses. There is a good chance that those addresses are
based on EUI-64, which contains a MAC address. This method is not completely reliable, as clients may use
other link-local address types. In particular, privacy extensions, defined in RFC 4941, do not use MAC addresses.
Also note that successful extraction requires that the address's u-bit must be set to "1" and its g-bit set to "0",
indicating that it is an interface identifier as per RFC 2373, section 2.5.1.

e client-link-addr-option - one extension defined to alleviate missing MAC issues is the client link-layer
address option, defined in RFC 6939. This is an option that is inserted by a relay and contains informa-
tion about a client's MAC address. This method requires a relay agent that supports the option and is con-
figured to insert it. This method is useless for directly connected clients. The value r£c6939 is an alias for
client-link-addr-option.

* remote-id - RFC 4649 defines a remote-id option that is inserted by a relay agent. Depending on the relay
agent configuration, the inserted option may convey the client's MAC address information. The value rfc4649
is an alias for remote-id.

e subscriber-id - Defined in RFC 4580, subscriber-id is somewhat similar to remote-id; it is also inserted
by arelay agent. The value r£c45880 is an alias for subscriber-id. This method is currently not implemented.

* docsis-cmts - Yet another possible source of MAC address information are the DOCSIS options inserted by
a CMTS that acts as a DHCPv6 relay agent in cable networks. This method attempts to extract MAC address
information from sub-option 1026 (cm mac) of the vendor-specific option with vendor-id=4491. This vendor
option is extracted from the Relay-forward message, not the original client's message.

* docsis-modem - The final possible source of MAC address information are the DOCSIS options inserted by the
cable modem itself. This method attempts to extract MAC address information from sub-option 36 (device-id)
of the vendor-specific option with vendor-id=4491. This vendor option is extracted from the original client's
message, not from any relay options.

An empty mac-sources parameter is not allowed. Administrators who do not want to specify it should either simply
omit the mac-sources definition or specify it with the "any" value, which is the default.

9.12 Duplicate Addresses (DHCPDECLINE Support)

The DHCPV6 server is configured with a certain pool of addresses that it is expected to hand out to DHCPv6 clients.
It is assumed that the server is authoritative and has complete jurisdiction over those addresses. However, for various
reasons such as misconfiguration or a faulty client implementation that retains its address beyond the valid lifetime,
there may be devices connected that use those addresses without the server's approval or knowledge.

Such an unwelcome event can be detected by legitimate clients (using Duplicate Address Detection) and reported to the
DHCPv6 server using a DHCPDECLINE message. The server does a sanity check (to see whether the client declining
an address really was supposed to use it), then conducts a clean-up operation, and confirms the DHCPDECLINE by
sending back a REPLY message. Any DNS entries related to that address are removed, the event is logged, and hooks are
triggered. After that is complete, the address is marked as declined (which indicates that it is used by an unknown entity

276 Chapter 9. The DHCPv6 Server

https://tools.ietf.org/html/rfc8415
https://tools.ietf.org/html/rfc4941
https://tools.ietf.org/html/rfc2373#section-2.5.1
https://tools.ietf.org/html/rfc6939
https://tools.ietf.org/html/rfc4649
https://tools.ietf.org/html/rfc4580

Kea Administrator Reference Manual Documentation, Release 2.7.5

and thus not available for assignment) and a probation time is set on it. Unless otherwise configured, the probation
period lasts 24 hours; after that time, the server will recover the lease (i.e. put it back into the available state) and
the address will be available for assignment again. It should be noted that if the underlying issue of a misconfigured
device is not resolved, the duplicate-address scenario will repeat. If reconfigured correctly, this mechanism provides
an opportunity to recover from such an event automatically, without any system administrator intervention.

To configure the decline probation period to a value other than the default, the following syntax can be used:

"Dhcp6": {
"decline-probation-period": 3600,
"subnet6": [

{

}1

The parameter is expressed in seconds, so the example above instructs the server to recycle declined leases after one
hour.

There are several statistics and hook points associated with the decline handling procedure. The lease6_decline
hook point is triggered after the incoming DHCPDECLINE message has been sanitized and the server is about to
decline the lease. The declined-addresses statistic is increased after the hook returns (both the global and subnet-
specific variants). (See Statistics in the DHCPv6 Server and Hook Libraries for more details on DHCPv6 statistics and
Kea hook points.)

Once the probation time elapses, the declined lease is recovered using the standard expired-lease reclamation procedure,
with several additional steps. In particular, both declined-addresses statistics (global and subnet-specific) are
decreased. At the same time, reclaimed-declined-addresses statistics (again in two variants, global and subnet-
specific) are increased.

A note about statistics: The Kea server does not decrease the assigned-nas statistics when a DHCPDECLINE
message is received and processed successfully. While technically a declined address is no longer assigned, the
primary usage of the assigned-nas statistic is to monitor pool utilization. Most people would forget to include
declined-addresses in the calculation, and would simply use assigned-nas/total-nas. This would cause a bias
towards under-representing pool utilization. As this has a potential to cause serious confusion, ISC decided not to de-
crease assigned-nas immediately after receiving DHCPDECLINE, but to do it later when Kea recovers the address
back to the available pool.

9.13 Statistics in the DHCPv6 Server

The DHCPv6 server supports the following statistics:

Table 5: DHCPv6 statistics

| Statistic Data Type | Description

pkt6-received integer Number of DHCPv6 packets received. This includes all packets: valid, bogus, cor-
rupted, rejected, etc. This statistic is expected to grow rapidly.

continues on next page

9.13. Statistics in the DHCPv6 Server 277

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 5 - continued from previous page

Statistic

Data Type |

Description

pkt6-receive-drop

pkt6-parse-failed

pkt6-solicit-received

pkt6-advertise-

received

pkt6-request-received

pkt6-reply-received

pkt6-renew-received

pkt6-rebind-received

pkt6-release-received

pkt6-decline-received

pkt6-infrequest-
received

pkt6-dhcpv4-query-
received

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

Number of incoming packets that were dropped. The exact reason for dropping
packets is logged, but the most common reasons may be that an unacceptable or
not-supported packet type is received, direct responses are forbidden, the server ID
sent by the client does not match the server's server ID, or the packet is malformed.
Number of incoming packets that could not be parsed. A non-zero value of this
statistic indicates that the server received a malformed or truncated packet. This
may indicate problems in the network, faulty clients, faulty relay agents, or a bug
in the server.

Number of SOLICIT packets received. This statistic is expected to grow; its in-
crease means that clients that just booted started their configuration process and
their initial packets reached the Kea server.

Number of ADVERTISE packets received. ADVERTISE packets are sent by the
server and the server is never expected to receive them; a non-zero value of this
statistic indicates an error occurring in the network. One likely cause would be a
misbehaving relay agent that incorrectly forwards ADVERTISE messages towards
the server, rather than back to the clients.

Number of DHCPREQUEST packets received. This statistic is expected to grow.
Its increase means that clients that just booted received the server's response (DHC-
PADVERTISE) and accepted it, and are now requesting an address (DHCPRE-
QUEST).

Number of REPLY packets received. This statistic is expected to remain zero at
all times, as REPLY packets are sent by the server and the server is never expected
to receive them. A non-zero value indicates an error. One likely cause would be
a misbehaving relay agent that incorrectly forwards REPLY messages towards the
server, rather than back to the clients.

Number of RENEW packets received. This statistic is expected to grow; its increase
means that clients received their addresses and prefixes and are trying to renew
them.

Number of REBIND packets received. A non-zero value indicates that clients did
not receive responses to their RENEW messages (through the regular lease-renewal
mechanism) and are attempting to find any server that is able to take over their
leases. It may mean that some servers' REPLY messages never reached the clients.
Number of RELEASE packets received. This statistic is expected to grow when
a device is being shut down in the network; it indicates that the address or prefix
assigned is reported as no longer needed. Note that many devices, especially wire-
less, do not send RELEASE packets either because of design choices or due to the
client moving out of range.

Number of DECLINE packets received. This statistic is expected to remain close
to zero. Its increase means that a client leased an address, but discovered that the
address is currently used by an unknown device in the network. If this statistic
is growing, it may indicate a misconfigured server or devices that have statically
assigned conflicting addresses.

Number of INFORMATION-REQUEST packets received. This statistic is expected
to grow if there are devices that are using stateless DHCPv6. INFORMATION-
REQUEST messages are used by clients that request stateless configuration, i.e.
options and parameters other than addresses or prefixes.

Number of DHCPv4-QUERY packets received. This statistic is expected to grow if
there are devices that are using DHCPv4-over-DHCPv6. DHCPv4-QUERY mes-
sages are used by DHCPv4 clients on an IPv6-only line which encapsulates the
requests over DHCPv6.

continues on next page

278

Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 5 - continued from previous page

Statistic

Data Type |

Description

pkt6-dhcpv4-response-
received

pkt6-unknown-
received

pkt6-sent

pkt6-advertise-sent

pkt6-reply-sent

pkt6-dhcpv4-response-
sent

subnet[id].total-nas

subnet[id].pool[pid].total
nas

cumulative-assigned-
nas

subnet[id].cumulative-
assigned-nas

subnet[id].pool[pid].cum
assigned-nas

integer

integer

integer

integer

integer

integer

big integer

big integer

integer

integer

integer

Number of DHCPv4-RESPONSE packets received. This statistic is expected to
remain zero at all times, as DHCPv4-RESPONSE packets are sent by the server
and the server is never expected to receive them. A non-zero value indicates an
error. One likely cause would be a misbehaving relay agent that incorrectly forwards
DHCPv4-RESPONSE message towards the server rather than back to the clients.
Number of packets received of an unknown type. A non-zero value of this statistic
indicates that the server received a packet that it was unable to recognize; either it
had an unsupported type or was possibly malformed.

Number of DHCPv6 packets sent. This statistic is expected to grow every time the
server transmits a packet. In general, it should roughly match pkt6-received, as
most incoming packets cause the server to respond. There are exceptions (e.g. a
server receiving a REQUEST with server ID matching another server), so do not
worry if it is less than pkt6-received.

Number of ADVERTISE packets sent. This statistic is expected to grow in most
cases after a SOLICIT is processed. There are certain uncommon but valid cases
where incoming SOLICIT packets are dropped, but in general this statistic is ex-
pected to be close to pkt6-solicit-received.

Number of REPLY packets sent. This statistic is expected to grow in most cases
after a SOLICIT (with rapid-commit), REQUEST, RENEW, REBIND, RELEASE,
DECLINE, or INFORMATION-REQUEST is processed. There are certain cases
where there is no response.

Number of DHCPv4-RESPONSE packets sent. This statistic is expected to grow
in most cases after a DHCPv4-QUERY is processed. There are certain cases where
there is no response.

Total number of NA addresses available for DHCPv6 management for a given sub-
net; in other words, this is the count of all addresses in all configured pools. This
statistic changes only during configuration changes. It does not take into account
any addresses that may be reserved due to host reservation. The id is the subnet ID
of a given subnet. This statistic is exposed for each subnet separately, and is reset
during a reconfiguration event.

Total number of NA addresses available for DHCPv6 management for a given sub-
net pool; in other words, this is the count of all addresses in configured subnet pool.
This statistic changes only during configuration changes. It does not take into ac-
count any addresses that may be reserved due to host reservation. The id is the
subnet ID of a given subnet. The pid is the pool ID of a given pool. This statistic is
exposed for each subnet pool separately, and is reset during a reconfiguration event.
Cumulative number of NA addresses that have been assigned since server startup. It
is incremented each time a NA address is assigned and is not reset when the server
is reconfigured.

Cumulative number of NA addresses in a given subnet that were assigned. It in-
creases every time a new lease is allocated (as a result of receiving a REQUEST
message) and is never decreased. The id is the subnet ID of a given subnet. This
statistic is exposed for each subnet separately, and is reset during a reconfiguration
event.

Cumulative number of NA addresses in a given subnet pool that were assigned. It
increases every time a new lease is allocated (as a result of receiving a REQUEST
message) and is never decreased. The id is the subnet ID of a given subnet. The
pid is the pool ID of a given pool. This statistic is exposed for each subnet pool
separately, and is reset during a reconfiguration event.

continues on next page

9.13. Statistics in the DHCPv6 Server

279

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 5 - continued from previous page

| Statistic Data Type | Description
subnet[id].assigned- integer Number of NA addresses in a given subnet that are assigned. It increases every
nas time a new lease is allocated (as a result of receiving a REQUEST message) and
is decreased every time a lease is released (a RELEASE message is received) or
expires. The id is the subnet ID of a given subnet. This statistic is exposed for each
subnet separately, and is reset during a reconfiguration event.
subnet[id].pool[pid].assig integer Number of NA addresses in a given subnet pool that are assigned. It increases every

nas

subnet[id].total-pds

subnet[id].pd-
pool[pid].total-pds

cumulative-assigned-
pds

subnet[id].cumulative-
assigned-pds

subnet[id].pd-
pool[pid].cumulative-
assigned-pds

subnet[id].assigned-
pds

subnet[id].pd-
pool[pid].assigned-pds

big integer

big integer

integer

integer

integer

integer

integer

time a new lease is allocated (as a result of receiving a REQUEST message) and
is decreased every time a lease is released (a RELEASE message is received) or
expires. The id is the subnet ID of a given subnet. The pid is the pool ID of the
pool. This statistic is exposed for each subnet pool separately, and is reset during a
reconfiguration event.

Total number of PD prefixes available for DHCPv6 management for a given subnet;
in other words, this is the count of all prefixes in all configured pools. This statistic
changes only during configuration changes. Note that it does not take into account
any prefixes that may be reserved due to host reservation. The id is the subnet ID
of a given subnet. This statistic is exposed for each subnet separately, and is reset
during a reconfiguration event.

Total number of PD prefixes available for DHCPv6 management for a given subnet
pool; in other words, this is the count of all prefixes in a configured subnet PD
pool. This statistic changes only during configuration changes. It does not take into
account any prefixes that may be reserved due to host reservation. The id is the
subnet ID of a given subnet. The pid is the pool ID of a given pool. This statistic
is exposed for each subnet PD pool separately, and is reset during a reconfiguration
event.

Cumulative number of PD prefixes that have been assigned since server startup. It
is incremented each time a PD prefix is assigned and is not reset when the server is
reconfigured.

Cumulative number of PD prefixes in a given subnet that were assigned. It increases
every time a new lease is allocated (as a result of receiving a REQUEST message)
and is never decreased. The id is the subnet ID of a given subnet. This statistic is
exposed for each subnet separately, and is reset during a reconfiguration event.
Cumulative number of PD prefixes in a given subnet PD pool that were assigned. It
increases every time a new lease is allocated (as a result of receiving a REQUEST
message) and is never decreased. The id is the subnet ID of a given subnet. The
pid is the pool ID of a given PD pool. This statistic is exposed for each subnet PD
pool separately, and is reset during a reconfiguration event.

Number of PD prefixes in a given subnet that are assigned. It increases every time
a new lease is allocated (as a result of receiving a REQUEST message) and is de-
creased every time a lease is released (a RELEASE message is received) or expires.
The id is the subnet ID of a given subnet. This statistic is exposed for each subnet
separately, and is reset during a reconfiguration event.

Number of PD prefixes in a given subnet pd-pool that are assigned. It increases
every time a new lease is allocated (as a result of receiving a REQUEST message)
and is decreased every time a lease is released (a RELEASE message is received)
or expires. The id is the subnet ID of a given subnet. The pid is the pool ID of the
PD pool. This statistic is exposed for each subnet PD pool separately, and is reset
during a reconfiguration event.

continues on next page

280

Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 5 - continued from previous page

Statistic

Data Type

Description

reclaimed-leases

subnet[id].reclaimed-

leases

subnet[id].pool[pid].recl:
leases

subnet[id].pd-
pool[pid].reclaimed-
leases

declined-addresses

subnet[id].declined-
addresses

subnet[id].pool[pid].decl
addresses

reclaimed-declined-
addresses

subnet[id].reclaimed-
declined-addresses

integer

integer

integer

integer

integer

integer

integer

integer

integer

Number of expired leases that have been reclaimed since server startup. It is incre-
mented each time an expired lease is reclaimed (counting both NA and PD recla-
mations). This statistic never decreases. It can be used as a long-term indicator of
how many actual leases have been reclaimed. This is a global statistic that covers
all subnets.

Number of expired leases associated with a given subnet that have been reclaimed
since server startup. It is incremented each time an expired lease is reclaimed
(counting both NA and PD reclamations). The id is the subnet ID of a given subnet.
This statistic is exposed for each subnet separately.

Number of expired NA addresses associated with a given subnet pool that have
been reclaimed since server startup. It is incremented each time an expired lease is
reclaimed. The id is the subnet ID of a given subnet. The pid is the pool ID of the
pool. This statistic is exposed for each subnet pool separately, and is reset during a
reconfiguration event.

Number of expired PD prefixes associated with a given subnet PD pool that have
been reclaimed since server startup. It is incremented each time an expired lease is
reclaimed. The id is the subnet ID of a given subnet. The pid is the pool ID of the
PD pool. This statistic is exposed for each subnet PD pool separately, and is reset
during a reconfiguration event.

Number of IPv6 addresses that are currently declined; a count of the number of
leases currently unavailable. Once a lease is recovered, this statistic is decreased;
ideally, this statistic should be zero. If this statistic is non-zero or increasing, a
network administrator should investigate whether there is a misbehaving device in
the network. This is a global statistic that covers all subnets.

Number of IPv6 addresses that are currently declined in a given subnet; a count of
the number of leases currently unavailable. Once a lease is recovered, this statistic
is decreased; ideally, this statistic should be zero. If this statistic is non-zero or in-
creasing, a network administrator should investigate whether there is a misbehaving
device in the network. The id is the subnet ID of a given subnet. This statistic is
exposed for each subnet separately.

Number of IPv6 addresses that are currently declined in a given subnet pool; a
count of the number of leases currently unavailable. Once a lease is recovered,
this statistic is decreased; ideally, this statistic should be zero. If this statistic is
non-zero or increasing, a network administrator should investigate whether there is
a misbehaving device in the network. The id is the subnet ID of a given subnet.
The pid is the pool ID of the pool. This statistic is exposed for each subnet pool
separately.

Number of IPv6 addresses that were declined, but have now been recovered. Unlike
declined-addresses, this statistic never decreases. It can be used as a long-term
indicator of how many actual valid declines were processed and recovered from.
This is a global statistic that covers all subnets.

Number of IPv6 addresses that were declined, but have now been recovered. Unlike
declined-addresses, this statistic never decreases. It can be used as a long-term
indicator of how many actual valid declines were processed and recovered from.
The id is the subnet ID of a given subnet. This statistic is exposed for each subnet
separately.

continues on next page

9.13. Statistics in the DHCPv6 Server

281

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 5 - continued from previous page

Statistic

Data Type

Description

subnet[id].pool[pid].recl:

declined-addresses

v6-allocation-fail

subnet[id].v6-
allocation-fail

v6-allocation-fail-
shared-network
subnet[id].v6-
allocation-fail-shared-
network
v6-allocation-fail-
subnet

subnet[id].v6-
allocation-fail-subnet

v6-allocation-fail-no-
pools

subnet[id].v6-
allocation-fail-no-
pools

v6-allocation-fail-
classes

subnet[id].vO-
allocation-fail-classes

v6-ia-na-lease-reuses

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

Number of IPv6 addresses that were declined, but have now been recovered. Unlike
declined-addresses, this statistic never decreases. It can be used as a long-term
indicator of how many actual valid declines were processed and recovered from.
The id is the subnet ID of a given subnet. The pid is the pool ID of the pool. This
statistic is exposed for each subnet pool separately.

Number of total address allocation failures for a particular client. This consists of
the number of lease allocation attempts that the server made before giving up, if it
was unable to use any of the address pools. This is a global statistic that covers all
subnets.

Number of total address allocation failures for a particular client. This consists of
the number of lease allocation attempts that the server made before giving up, if
it was unable to use any of the address pools. The id is the subnet ID of a given
subnet. This statistic is exposed for each subnet separately.

Number of address allocation failures for a particular client connected to a shared
network. This is a global statistic that covers all subnets.

Number of address allocation failures for a particular client connected to a shared
network. The id is the subnet ID of a given subnet. This statistic is exposed for each
subnet separately.

Number of address allocation failures for a particular client connected to a subnet
that does not belong to a shared network. This is a global statistic that covers all
subnets.

Number of address allocation failures for a particular client connected to a subnet
that does not belong to a shared network. The id is the subnet ID of a given subnet.
This statistic is exposed for each subnet separately.

Number of address allocation failures because the server could not use any config-
ured pools for a particular client. Itis also possible that all of the subnets from which
the server attempted to assign an address lack address pools. In this case, it should
be considered misconfiguration if an operator expects that some clients should be
assigned dynamic addresses. This is a global statistic that covers all subnets.
Number of address allocation failures because the server could not use any con-
figured pools for a particular client. It is also possible that all of the subnets from
which the server attempted to assign an address lack address pools. In this case,
it should be considered misconfiguration if an operator expects that some clients
should be assigned dynamic addresses. The id is the subnet ID of a given subnet.
This statistic is exposed for each subnet separately.

Number of address allocation failures when the client's packet belongs to one or
more classes. There may be several reasons why a lease was not assigned: for
example, if all pools require packets to belong to certain classes and the incoming
packet does not belong to any. Another case where this information may be useful
is to indicate that the pool reserved for a given class has run out of addresses. This
is a global statistic that covers all subnets.

Number of address allocation failures when the client's packet belongs to one or
more classes. There may be several reasons why a lease was not assigned: for
example, if all pools require packets to belong to certain classes and the incoming
packet does not belong to any Another case where this information may be useful is
to indicate that the pool reserved for a given class has run out of addresses. The id is
the subnet ID of a given subnet. This statistic is exposed for each subnet separately.
Number of times an IA_NA lease had its CLTT increased in memory and its expi-
ration time left unchanged in persistent storage, as part of the lease caching feature.
This is referred to as a lease reuse. This statistic is global.

continues on next page

282

Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 5 - continued from previous page

| Statistic Data Type | Description

subnet[id].v6-ia-na- integer Number of times an IA_NA lease had its CLTT increased in memory and its expi-

lease-reuses ration time left unchanged in persistent storage, as part of the lease caching feature.
This is referred to as a lease reuse. This statistic is on a per-subnet basis. The id is
the subnet ID of a given subnet.

v6-ia-pd-lease-reuses integer Number of times an IA_PD lease had its CLTT increased in memory and its expi-
ration time left unchanged in persistent storage, as part of the lease caching feature.
This is referred to as a lease reuse. This statistic is global.

subnet[id].v6-ia-pd- integer Number of times an IA_PD lease had its CLTT increased in memory and its expi-

lease-reuses ration time left unchanged in persistent storage, as part of the lease caching feature.
This is referred to as a lease reuse. This statistic is on a per-subnet basis. The id is
the subnet ID of a given subnet.

Note: The pool ID can be configured on each pool by explicitly setting the pool-id parameter in the pool parameter
map. If not configured, pool-id defaults to 0. The statistics related to pool ID O refer to all the statistics of all the
pools that have an unconfigured pool-id. The pool ID does not need to be unique within the subnet or across subnets.
The statistics regarding a specific pool ID within a subnet are combined with the other statistics of all other pools with
the same pool ID in the respective subnet.

Note: This section describes DHCPv6-specific statistics. For a general overview and usage of statistics, see Statistics.

The DHCPv6 server provides two global parameters to control the default sample limits of statistics:

* statistic-default-sample-count - determines the default maximum number of samples to be kept. The
special value of 0 indicates that a default maximum age should be used.

e statistic-default-sample-age - determines the default maximum age, in seconds, of samples to be kept.

For instance, to reduce the statistic-keeping overhead, set the default maximum sample count to 1 so only one sample
is kept:

"Dhcp6": {
"statistic-default-sample-count": 1,
"subnet6": [

{

3,

Statistics can be retrieved periodically to gain more insight into Kea operations. One tool that leverages that capability
is ISC Stork. See Monitoring Kea With Stork for details.

9.13. Statistics in the DHCPv6 Server 283

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.14 Management API for the DHCPv6 Server

The management API allows the issuing of specific management commands, such as statistics retrieval, reconfiguration,
or shutdown. For more details, see Management API. By default there are no sockets open; to instruct Kea to open a
socket, the following entry in the configuration file can be used:

"Dhcp6": {
"control-sockets": [
{
"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket"
}
1,
"subnet6": [
{
e

9.14.1 UNIX Control Socket
Until Kea server 2.7.2 the only supported communication channel type was the UNIX stream socket with socket-type
set to unix and socket-name to the file path of the UNIX/LOCAL socket.

The length of the path specified by the socket-name parameter is restricted by the maximum length for the UNIX
socket name on the administrator's operating system, i.e. the size of the sun_path field in the sockaddr_un structure,
decreased by 1. This value varies on different operating systems, between 91 and 107 characters. Typical values are
107 on Linux and 103 on FreeBSD.

Communication over the control channel is conducted using JSON structures. See the Control Channel section in the
Kea Developer's Guide for more details.

The DHCPv6 server supports the following operational commands:
e build-report
e config-get
e config-hash-get
e config-reload
e config-set
e config-test
e config-write
e dhcp-disable
e dhcp-enable
* leases-reclaim

e]list-commands

284 Chapter 9. The DHCPv6 Server

https://reports.kea.isc.org/dev_guide/d2/d96/ctrlSocket.html
https://reports.kea.isc.org/dev_guide/d2/d96/ctrlSocket.html

Kea Administrator Reference Manual Documentation, Release 2.7.5

e shutdown
e status-get
e version-get

as described in Commands Supported by Both the DHCPv4 and DHCPv6 Servers. In addition, it supports the following
statistics-related commands:

e statistic-get

e statistic-reset

* statistic-remove

e statistic-get-all

e statistic-reset-all

* statistic-remove-all

* statistic-sample-age-set

e statistic-sample-age-set-all

e statistic-sample-count-set

e statistic-sample-count-set-all

as described in Commands for Manipulating Statistics.

9.14.2 HTTP/HTTPS Control Socket

The socket-type must be http or https (when the type is https TLS is required). The socket-address (default
::1) and socket-port (default 8000) specify an IP address and port to which the HTTP service will be bound.

Since Kea 2.7.5 the http-headers parameter specifies a list of extra HTTP headers to add to HTTP responses.

The trust-anchor, cert-file, key-file, and cert-required parameters specify the TLS setup for HTTP,
i.e. HTTPS. If these parameters are not specified, HTTP is used. The TLS/HTTPS support in Kea is described in
TLS/HTTPS Support.

Basic HTTP authentication protects against unauthorized uses of the control agent by local users. For protection against
remote attackers, HTTPS and reverse proxy of Secure Connections provide stronger security.

The authentication is described in the authentication block with the mandatory type parameter, which selects the
authentication. Currently only the basic HTTP authentication (type basic) is supported.

The realm authentication parameter (default kea-dhcpv6-server is used for error messages when the basic HTTP
authentication is required but the client is not authorized.

When the clients authentication list is configured and not empty, basic HTTP authentication is required. Each element
of the list specifies a user ID and a password. The user ID is mandatory, must not be empty, and must not contain the
colon (:) character. The password is optional; when it is not specified an empty password is used.

Note: The basic HTTP authentication user ID and password are encoded in UTF-8, but the current Kea JSON syntax
only supports the Latin-1 (i.e. 0x00..0xff) Unicode subset.

To avoid exposing the user ID and/or the associated password, these values can be read from files. The syntax is
extended by:

* The directory authentication parameter, which handles the common part of file paths. The default value is the
empty string.

9.14. Management API for the DHCPv6 Server 285

Kea Administrator Reference Manual Documentation, Release 2.7.5

* The password-file client parameter, which, alongside the directory parameter, specifies the path of a file
that can contain the password, or when no user ID is given, the whole basic HTTP authentication secret.

* The user-file client parameter, which, with the directory parameter, specifies the path of a file where the
user ID can be read.

When files are used, they are read when the configuration is loaded, to detect configuration errors as soon as possible.

"Dhcp6": {
"control-sockets": [
{
"socket-type": "https",
"socket-address": "2010:30:40::50",
"socket-port": 8005,
"http-headers": [
{
"name": "Strict-Transport-Security",
"value": "max-age=31536000"
}
g
"trust-anchor": "/path/to/the/ca-cert.pem",
"cert-file": "/path/to/the/agent-cert.pem",
"key-file": "/path/to/the/agent-key.pem",
"cert-required": true,
"authentication": {
"type": "basic",
"realm": "kea-control-agent",
"clients": [
{
"user": "admin",
"password": "1234"
31
}
}
1,
"subnet6": [
{
e

286 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.15 User Contexts in IPv6

Kea allows the loading of hook libraries that can sometimes benefit from additional parameters. If such a parameter is
specific to the whole library, it is typically defined as a parameter for the hook library. However, sometimes there is a
need to specify parameters that are different for each pool.

See Comments and User Context for additional background regarding the user-context idea. See User Contexts in
Hooks for a discussion from the hooks perspective.

User contexts can be specified at global scope; at the shared-network, subnet, pool, client-class, option-data, or defini-
tion level; and via host reservation. One other useful feature is the ability to store comments or descriptions.

Let's consider an example deployment of lightweight 4over6, an IPv6 transition technology that allows mapping IPv6
prefixes into full or partial [Pv4 addresses. In the DHCP context, these are specific parameters that are supposed to be
delivered to clients in the form of additional options. Values of these options are correlated to delegated prefixes, so it
is reasonable to keep these parameters together with the prefix delegation (PD) pool. On the other hand, lightweight
4over6 is not a commonly used feature, so it is not a part of the base Kea code. The solution to this problem is to specify
auser context. For each PD pool that is expected to be used for lightweight 4over6, a user context with extra parameters
is defined. Those extra parameters will be used by a hook library and loaded only when dynamic calculation of the
lightweight 4over6 option is actually needed. An example configuration looks as follows:

"Dhcp6": {
"subnet6": [{
"pd-pools": [
{
"prefix": "2001:db8::",
"prefix-len": 56,
"delegated-len": 64,

This is a pool-specific context.
"user-context": {
"threshold-percent": 85,
"v4-network": "192.168.0.0/16",
"v4-overflow": "10.0.0.0/16",
"lw4over6-sharing-ratio": 64,
"lw4over6-v4-pool": "192.0.2.0/24",
"lwdover6-sysports-exclude": true,
"lwd4over6-bind-prefix-len": 56
}
1,
"id": 1,
"subnet": "2001:db8::/32",

This is a subnet-specific context. Any type of
information can be entered here as long as it is valid JSON.
"user-context": {
"comment": "Those v4-v6 migration technologies are tricky.",
"experimental": true,
"billing-department": 42,
"contacts": ["Alice", "Bob"]
}
]

Kea does not interpret or use the user-context information; it simply stores it and makes it available to the hook libraries.

9.15. User Contexts in IPv6 287

Kea Administrator Reference Manual Documentation, Release 2.7.5

It is up to each hook library to extract that information and use it. The parser translates a comment entry into a user
context with the entry, which allows a comment to be attached inside the configuration itself.

9.16 Supported DHCPv6 Standards

The following standards are currently supported in Kea:

Dynamic Host Configuration Protocol for IPv6, RFC 3315: Supported messages are SOLICIT, ADVERTISE,
REQUEST, RELEASE, RENEW, REBIND, INFORMATION-REQUEST, CONFIRM, DECLINE and REPLY.
The only unsupported message is RECONFIGURE. Almost all options are supported, except AUTHENTICA-
TION and RECONFIGURE-ACCEPT.

Dynamic Host Configuration Protocol (DHCPv6) Options for Session Initiation Protocol (SIP) Servers, REC
3319: All defined options are supported.

IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) version 6, RFC 3633: Supported options
are IA_PD and IA_PREFIX. Also supported is the status code NoPrefixAvail.

DNS Configuration options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6), RFC 3646: All de-
fined options are supported.

Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6, RFC 3736: Server operation in state-
less mode is supported. Kea is currently server-only, so the client side is not implemented.

Simple Network Time Protocol (SNTP) Configuration Option for DHCPv6, REC 4075: The SNTP option is
supported.

Renumbering Requirements for Stateless Dynamic Host Configuration Protocol for IPv6 (DHCPv6), REC 4076:
The server supports all the stateless renumbering requirements.

Information Refresh Time Option for Dynamic Host Configuration Protocol for IPv6 (DHCPv6), REC 4242: The
sole defined option (information-refresh-time) is supported.

Dynamic Host Configuration Protocol (DHCP) Options for Broadcast and Multicast Control Servers, REC 4280:
The DHCPv6 options are supported.

Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Relay Agent Subscriber-ID Option, RFC 4580: The
subscribed-id option is supported and can be used in any expression.

The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Relay Agent Remote-ID Option, RFC 4649: The
Remote-ID option is supported.

A DNS Resource Record (RR) for Encoding Dynamic Host Configuration Protocol (DHCP) Information (DHCID
RR), REC 4701: The DHCPV6 server supports DHCID records. The DHCP-DDNS server must be running to
add, update, and/or delete DHCID records.

Resolution of Fully Qualified Domain Name (FQDN) Conflicts among Dynamic Host Configuration Protocol
(DHCP) Clients, REC 4703: The DHCPv6 server uses the DHCP-DDNS server to resolve conflicts.

The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Client Fully Qualified Domain Name (FQDN)
Option, RFC 4704: The supported option is CLIENT_FQDN.

Timezone Options for DHCP: RFC 4833: Both DHCPv6 options are supported.

DHCPv6 Leasequery: RFC 5007: The server functionality (message types, options) is supported. This requires
the leasequery hook. See libdhcp_lease_query.so: Leasequery Support for details.

DHCP Options for Protocol for Carrying Authentication for Network Access (PANA) Authentication Agents:
RFC 5192: The PANA option is supported.

288

Chapter 9. The DHCPv6 Server

https://tools.ietf.org/html/rfc3315
https://tools.ietf.org/html/rfc3319
https://tools.ietf.org/html/rfc3319
https://tools.ietf.org/html/rfc3633
https://tools.ietf.org/html/rfc3646
https://tools.ietf.org/html/rfc3736
https://tools.ietf.org/html/rfc4075
https://tools.ietf.org/html/rfc4076
https://tools.ietf.org/html/rfc4242
https://tools.ietf.org/html/rfc4280
https://tools.ietf.org/html/rfc4580
https://tools.ietf.org/html/rfc4649
https://tools.ietf.org/html/rfc4701
https://tools.ietf.org/html/rfc4703
https://tools.ietf.org/html/rfc4704
https://tools.ietf.org/html/rfc4833
https://tools.ietf.org/html/rfc5007
https://tools.ietf.org/html/rfc5192

Kea Administrator Reference Manual Documentation, Release 2.7.5

 Discovering Location-to-Service Translation (LoST) Servers Using the Dynamic Host Configuration Protocol
(DHCP): RFC 5223: The LOST option is supported.

» Control And Provisioning of Wireless Access Points (CAPWAP) Access Controller DHCP Option: RFC 5417:
The CAPWAP for IPv6 option is supported.

e DHCPv6 Bulk Leasequery: RFC 5460: The server functionality (TCP connection, new message types and op-
tions, new query types) is supported. This requires the leasequery hook. See libdhcp_lease_query.so: Lease-
query Support for details.

* Network Time Protocol (NTP) Server Option for DHCPv6: RFC 5908: The NTP server option and its suboptions
are supported. See NTP Server Suboptions for details.

* DHCPv6 Options for Network Boot: RFC 5970: The network boot options are supported.

» Lightweight DHCPv6 Relay Agent, REC 6221: Kea can handle lightweight relay messages and use other methods
than link address to perform subnet selection.

e Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Option for Dual-Stack Lite, RFC 6334: The AFTR-
Name DHCPv6 Option is supported.

* Relay-Supplied DHCP Options, REC 6422: The full functionality is supported, including OPTION_RSOO; the
ability of the server to echo back the options; verification of whether an option is RSOO-enabled; and the ability
to mark additional options as RSOO-enabled.

e The EAP Re-authentication Protocol (ERP) Local Domain Name DHCPv6 Option, REC 6440: The option is
supported.

* Prefix Exclude Option for DHCPv6-based Prefix Delegation, REC 6603: The Prefix Exclude option is supported.

* Client Link-Layer Address Option in DHCPv6, REC 6939: The supported option is the client link-layer address
option.

* Modification to Default values of SOL_MAX_RT and INF_MAX_RT, RFC 7083: The new options are supported.

o Issues and Recommendations with Multiple Stateful DHCPv6 Options, REC 7550: All recommendations related
to the DHCPvG6 server operation are supported.

e DHCPv6 Options for Configuration of Softwire Address and Port-Mapped Clients, RFC 7598: All options indi-
cated in this specification are supported by the DHCPv6 server.

» Generalized UDP Source Port for DHCP Relay, RFC 8357: The Kea server is able to handle the Relay Source
Port option in a received Relay-forward message, remembers the UDP port, and sends back Relay-reply with a
copy of the option to the relay agent using this UDP port.

* Dynamic Host Configuration Protocol for IPv6 (DHCPv6), RFC 8415: This new DHCPvG6 protocol specification
obsoletes RFC 3315, RFC 3633, RFC 3736, RFC 4242, RFC 7083, RFC 7283, and RFC 7550. All features,
with the exception of the RECONFIGURE mechanism and the now-deprecated temporary addresses (IA_TA)
mechanism, are supported.

e Captive-Portal Identification in DHCP and Router Advertisements (RAs), RFC 8910: The Kea server can con-
figure both v4 and v6 versions of the captive portal options.

* DHCP and Router Advertisement Options for the Discovery of Network-designated Resolvers (DNR), REC 9463.
The Kea server supports the DNR option.

9.16. Supported DHCPv6 Standards 289

https://tools.ietf.org/html/rfc5223
https://tools.ietf.org/html/rfc5417
https://tools.ietf.org/html/rfc5460
https://tools.ietf.org/html/rfc5908
https://tools.ietf.org/html/rfc5970
https://tools.ietf.org/html/rfc6221
https://tools.ietf.org/html/rfc6334
https://tools.ietf.org/html/rfc6422
https://tools.ietf.org/html/rfc6440
https://tools.ietf.org/html/rfc6603
https://tools.ietf.org/html/rfc6939
https://tools.ietf.org/html/rfc7083
https://tools.ietf.org/html/rfc7550
https://tools.ietf.org/html/rfc7598
https://tools.ietf.org/html/rfc8357
https://tools.ietf.org/html/rfc8415
https://tools.ietf.org/html/rfc8910
https://tools.ietf.org/html/rfc9463

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.17 DHCPv6 Server Limitations

These are the current known limitations of the Kea DHCPv6 server software. Most of them are reflections of the current
stage of development and should be treated as “not yet implemented,” rather than actual limitations.

* The server allocates, renews, or rebinds a maximum of one lease for a particular IA option IA_NA or IA_PD)
sent by a client. RFC 8415 allows for multiple addresses or prefixes to be allocated for a single IA.

» Temporary addresses are not supported. There is no intention to ever implement this feature, as it is deprecated
in RFC 8415.

* Client reconfiguration (RECONFIGURE) is not yet supported.

9.18 Kea DHCPvV6 Server Examples

A collection of simple-to-use examples for the DHCPv6 component of Kea is available with the source files, located
in the doc/examples/keab6 directory.

9.19 Configuration Backend in DHCPv6

In the Kea Configuration Backend section we have described the Configuration Backend (CB) feature, its applicability,
and its limitations. This section focuses on the usage of the CB with the DHCPv6 server. It lists the supported param-
eters, describes limitations, and gives examples of DHCPv6 server configurations to take advantage of the CB. Please
also refer to the corresponding section Configuration Backend in DHCPv4 for DHCPv4-specific usage of the CB.

9.19.1 Supported Parameters

The ultimate goal for the CB is to serve as a central configuration repository for one or multiple Kea servers connected
to a database. In currently supported Kea versions, only a subset of the DHCPv6 server parameters can be configured
in the database. All other parameters must be specified in the JSON configuration file, if required.

All supported parameters can be configured via I1ibdhcp_cb_cmds.so. The general rule is that scalar global
parameters are set using remote-global-parameter6-set; shared-network-specific parameters are set using
remote-network6-set; and subnet-level and pool-level parameters are set using remote-subnet6-set. Whenever
there is an exception to this general rule, it is highlighted in the table. Non-scalar global parameters have dedicated com-
mands; for example, the global DHCPv6 options (option-data) are modified using remote-option6-global-set.
Client classes, together with class-specific option definitions and DHCPv6 options, are configured using the
remote-class6-set command.

The Configuration Sharing and Server Tags section explains the concept of shareable and non-shareable configuration
elements and the limitations for sharing them between multiple servers. In the DHCP configuration (both DHCPv4
and DHCPv6), the shareable configuration elements are subnets and shared networks. Thus, they can be explicitly
associated with multiple server tags. The global parameters, option definitions, and global options are non-shareable
and can be associated with only one server tag. This rule does not apply to the configuration elements associated with
all servers. Any configuration element associated with all servers (using the all keyword as a server tag) is used by
all servers connecting to the configuration database.

The following table lists DHCPv6-specific parameters supported by the configuration backend, with an indication of
the level of the hierarchy at which it is currently supported.

290 Chapter 9. The DHCPv6 Server

https://tools.ietf.org/html/rfc8415
https://tools.ietf.org/html/rfc8415

Kea Administrator Reference Manual Documentation, Release 2.7.5

Table 6: List of DHCPv6 parameters supported by the configuration

backend
Parameter Global Client Class Shared Network Subnet Pool Prefix D
allocator yes n/a yes yes n/a n/a
cache-max-age yes n/a no no n/a n/a
cache-threshold yes n/a no no n/a n/a
calculate-tee-times yes n/a yes yes n/a n/a
client-class n/a n/a yes yes yes yes
ddns-send-update yes n/a yes yes n/a n/a
ddns-override-no-update yes n/a yes yes n/a n/a
ddns-override-client-update yes n/a yes yes n/a n/a
ddns-replace-client-name yes n/a yes yes n/a n/a
ddns-generated-prefix yes n/a yes yes n/a n/a
ddns-qualifying-suffix yes n/a yes yes n/a n/a
decline-probation-period yes n/a n/a n/a n/a n/a
delegated-len n/a n/a n/a n/a n/a yes
dhcp4o6-port yes n/a n/a n/a n/a n/a
excluded-prefix n/a n/a n/a n/a n/a yes
excluded-prefix-len n/a n/a n/a n/a n/a yes
hostname-char-set yes n/a yes yes n/a n/a
hostname-char-replacement yes n/a yes yes n/a n/a
interface n/a n/a yes yes n/a n/a
interface-id n/a n/a yes yes n/a n/a
max-preferred-lifetime yes yes yes yes n/a n/a
max-valid-lifetime yes yes yes yes n/a n/a
min-preferred-lifetime yes yes yes yes n/a n/a
min-valid-lifetime yes yes yes yes n/a n/a
option-data yes (via remote-option6-global-set) yes yes yes yes yes
option-def yes (via remote-option-def6-set) yes n/a n/a n/a n/a
pd-allocator yes n/a yes yes n/a n/a
preferred-lifetime yes yes yes yes n/a n/a
prefix n/a n/a n/a n/a n/a yes
prefix-len n/a n/a n/a n/a n/a yes
rapid-commit yes n/a yes yes n/a n/a
rebind-timer yes n/a yes yes n/a n/a
relay n/a n/a yes yes n/a n/a
renew-timer yes n/a yes yes n/a n/a
require-client-classes no n/a yes yes yes yes
evaluate-additional-classes no n/a yes yes yes yes
reservations-global yes n/a yes yes n/a n/a
reservations-in-subnet yes n/a yes yes n/a n/a
reservations-out-of-pool yes n/a yes yes n/a n/a
t1-percent yes n/a yes yes n/a n/a
t2-percent yes n/a yes yes n/a n/a
valid-lifetime yes yes yes yes n/a n/a

* yes - indicates that the parameter is supported at the given level of the hierarchy and can be configured via the
configuration backend.

* no - indicates that a parameter is supported at the given level of the hierarchy but cannot be configured via the
configuration backend.

* n/a - indicates that a given parameter is not applicable at the particular level of the hierarchy or that the server
does not support the parameter at that level.

9.19. Configuration Backend in DHCPv6 291

Kea Administrator Reference Manual Documentation, Release 2.7.5

Some scalar parameters contained by top level global maps are supported by the configuration backend.

Table 7: List of DHCPv6 map parameters supported by the configuration

backend
Parameter name (flat naming format) Global map Parameter name
compatibility.lenient-option-parsing compatibility lenient-option-parsing
dhcp-ddns.enable-updates dhcp-ddns enable-updates
dhcp-ddns.max-queue-size dhcp-ddns max-queue-size
dhcp-ddns.ner-format dhcp-ddns ncr-format
dhcp-ddns.ner-protocol dhcp-ddns ncr-protocol
dhcp-ddns.sender-ip dhcp-ddns sender-ip
dhcp-ddns.sender-port dhcp-ddns sender-port
dhcp-ddns.server-ip dhcp-ddns server-ip
dhcp-ddns.server-port dhcp-ddns server-port
expired-leases-processing.flush-reclaimed-timer-wait- expired-leases- flush-reclaimed-timer-wait-
time processing time
expired-leases-processing.hold-reclaimed-time expired-leases- hold-reclaimed-time
processing
expired-leases-processing.max-reclaim-leases expired-leases- max-reclaim-leases
processing
expired-leases-processing.max-reclaim-time expired-leases- max-reclaim-time
processing
expired-leases-processing.reclaim-timer-wait-time expired-leases- reclaim-timer-wait-time
processing
expired-leases-processing.unwarned-reclaim-cycles expired-leases- unwarned-reclaim-cycles
processing

multi-threading.enable-multi-threading
multi-threading.thread-pool-size
multi-threading.packet-queue-size
sanity-checks.lease-checks
sanity-checks.extended-info-checks

multi-threading
multi-threading
multi-threading
sanity-checks
sanity-checks

enable-multi-threading
thread-pool-size
packet-queue-size
lease-checks
extended-info-checks

server-id.type server-id type
server-id.enterprise-id server-id enterprise-id
server-id.identifier server-id identifier
server-id.persist server-id persist
dhcp-queue-control.enable-queue dhcp-queue-control enable-queue
dhcp-queue-control.queue-type dhcp-queue-control queue-type
dhcp-queue-control.capacity dhcp-queue-control capacity

9.19.2 Enabling the Configuration Backend

Consider the following configuration snippet, which uses a MySQL configuration database:

{
"Dhcp6": {
"server-tag": "my DHCPv6 server",
"config-control": {
"config-databases": [
{
"type": "mysql",
"name": "kea'",

(continues on next page)

292 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

(continued from previous page)

"user": "kea",
"password": "kea",
"host": "2001:db8:1::1",
"port": 3302
}
i
"config-fetch-wait-time": 20
B
"hooks-libraries": [
{
"library": "/usr/local/lib/kea/hooks/libdhcp_mysqgl.so"
o
{
"library": "/usr/local/lib/kea/hooks/libdhcp_cb_cmds.so"
}
]

¥

The following snippet illustrates the use of a PostgreSQL database:

{
"Dhcp6": {
"server-tag": "my DHCPv6 server",
"config-control": {
"config-databases": [
{
"type": "postgresql",
"name": "kea",
"user": "kea",
"password": "kea",
"host": "2001:db8:1::1",
"port": 3302
}
ip
"config-fetch-wait-time": 20
Fo
"hooks-libraries": [
{
"library": "/usr/local/lib/kea/hooks/libdhcp_pgsql.so"
e
{
"library": "/usr/local/lib/kea/hooks/libdhcp_cb_cmds.so"
}
]
}
}

The configuration structure is almost identical to that of the DHCPv4 server (see Enabling the Configuration Backend

for the detailed description).

9.19. Configuration Backend in DHCPv6 293

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.20 Kea DHCPv6 Compatibility Configuration Parameters

ISC's intention is for Kea to follow the RFC documents to promote better standards compliance. However, many buggy
DHCP implementations already exist that cannot be easily fixed or upgraded. Therefore, Kea provides an easy-to-use
compatibility mode for broken or non-compliant clients. For that purpose, the compatibility option must be enabled to
permit uncommon practices:

{
"Dhcp6": {
"compatibility": {
}
}
}

9.20.1 Lenient Option Parsing

By default, DHCPv6 option 16's vendor-class-data field is parsed as a set of length-value pairs; the same is true
for tuple fields defined in custom options.

With "lenient-option-parsing": true, if alength ever exceeds the rest of the option's buffer, previous versions
of Kea returned a log message unable to parse the opaque data tuple, the buffer length is x, but
the tuple length is y with x < y; this no longer occurs. Instead, the value is considered to be the rest of the
buffer, or in terms of the log message above, the tuple length y becomes x.

Enabling this flag is expected to improve compatibility with devices such as RAD MiNID.

{
"Dhcp6": {
"compatibility": {
"lenient-option-parsing": true
3
}
}

Starting with Kea version 2.5.8, this parsing is extended to silently ignore client-fqdn (39) options with some invalid
domain names.

9.21 Allocation Strategies in DHCPv6

A DHCEP server follows a complicated algorithm to select a DHCPvO6 lease for a client. It prefers assigning specific
addresses or delegated prefixes requested by the client and the ones for which the client has reservations.

When the client requests a specific delegated prefix, kea-dhcp6 follows a series of steps to try to satisfy the request,
in this order:

1. It searches for a lease that matches the requested prefix and prefix length.
2. It searches for a lease that matches the prefix length.
3. It searches for a lease with a larger address space (smaller prefix length).

4. It searches for a lease with a smaller address space (larger prefix length).

294 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

If the client requests no particular lease and has no reservations, or other clients are already using any requested leases,
the server must find another available lease within the configured pools. A server function called an "allocator" is
responsible in Kea for finding an available lease in such a case.

The Kea DHCPvV6 server provides configuration parameters to select different allocators at the global, shared-network,
and subnet levels. It also allows different allocation strategies to be selected for address assignments and prefix dele-
gation.

Consider the following example:

{
"Dhcp6": {
"allocator": "iterative",
"pd-allocator": "random",
"subnet6": [
{
"id": 1,
"subnet": "2001:db8:1::/64",
"allocator": "random"
g
{
"id": 2,
"subnet": "2001:db8:2::/64",
"pd-allocator": "iterative"
}
]
1
}

The iterative allocator is globally selected for address assignments, while the random allocator is globally selected for
prefix delegation. These settings are selectively overridden at the subnet level.

The following sections describe the supported allocators and their recommended uses.

9.21.1 Allocators Comparison

In the table below, we briefly compare the supported allocators, all of which are described in detail in later sections.

Table 8: Comparison of the lease allocators supported by Kea DHCPv6

Allocator Low Utilization High Utilization Lease Ran- Startup/Configurat Memory

Performance Performance domization Usage
Iterative very high low no very fast low
Random high low yes very fast high (vary-
ing)
Free Lease high high yes slow (depends on high (vary-
Queue pool sizes) ing)

9.21. Allocation Strategies in DHCPv6 295

Kea Administrator Reference Manual Documentation, Release 2.7.5

9.21.2 Ilterative Allocator

This is the default allocator used by the Kea DHCPv6 server. It remembers the last offered lease and offers the
following sequential lease to the next client. For example, it may offer addresses in this order: 2001:db8:1::10,
2001:db8:1::11,2001:db8:1::12, and so on. Similarly, it offers the next sequential delegated prefix after the pre-
vious one to the next client. The time to find and offer the next lease or delegated prefix is very short; thus, this is the
most performant allocator when pool utilization is low and there is a high probability that the next selected lease is
available.

The iterative allocation underperforms when multiple DHCP servers share a lease database or are connected to a cluster.
The servers tend to offer and allocate the same blocks of addresses to different clients independently, which causes many
allocation conflicts between the servers and retransmissions by clients. A random allocation addresses this issue by
dispersing the allocation order.

9.21.3 Random Allocator

The random allocator uses a uniform randomization function to select offered addresses and delegated prefixes from
subnet pools. It is suitable in deployments where multiple servers are connected to a shared database or a database
cluster. By dispersing the offered leases, the servers minimize the risk of allocating the same lease to two different
clients at the same or nearly the same time. In addition, it improves the server's resilience against attacks based on
allocation predictability.

The random allocator is, however, slightly slower than the iterative allocator. Moreover, it increases the server's memory
consumption because it must remember randomized leases to avoid offering them repeatedly. Memory consumption
grows with the number of offered leases; in other words, larger pools and more clients increase memory consumption
by random allocation.

9.21.4 Free Lease Queue Allocator (Prefix Delegation Only)

This is a sophisticated allocator whose use should be considered in subnets with highly utilized delegated prefix pools.
In such cases, it can take a considerable amount of time for the iterative or random allocator to find an available prefix,
because they must repeatedly check whether there is a valid lease for a prefix they will offer. The number of checks
can be as high as the number of delegated prefixes in the subnet when the subnet pools are exhausted, which can have
a direct negative impact on the DHCP response time for each request.

The Free Lease Queue (FLQ) allocator tracks lease allocations and de-allocations and maintains a running list of
available delegated prefixes for each pool. It allows an available lease to be selected within a constant time, regardless
of the subnet pools' utilization. The allocator continuously updates the list of free leases by removing any allocated
leases and adding released or reclaimed ones.

The following configuration snippet shows how to select the FLQ allocator for prefix delegation in a subnet:

{

"Dhcp6": {
"subnet6": [
{
"id": 1,
"subnet": "2001:db8:1::/64",
"pd-allocator": "flqg"
}
]
3

296 Chapter 9. The DHCPv6 Server

Kea Administrator Reference Manual Documentation, Release 2.7.5

Note: The Free Lease Queue allocator can only be used for DHCPv6 prefix delegation. An attempt to use this allocator
for address assignment (with the allocator parameter) will cause a configuration error. DHCPv6 address pools are
typically very large and their utilization is low; in this situation, the benefits of using the FLQ allocator diminish. The
amount of time required for the allocator to populate the free lease queue would cause the server to freeze upon startup.

There are several considerations that the administrator should take into account before using this allocator for prefix
delegation. The FLQ allocator can heavily impact the server's startup and reconfiguration time, because the allocator
has to populate the list of free leases for each subnet where it is used. These delays can be observed both during the
configuration reload and when the subnets are created using 1ibdhcp_subnet_cmds. so. This allocator increases
memory consumption to hold the list of free leases, proportional to the total size of the pools for which this allocator is
used. Finally, lease reclamation must be enabled with a low value of the reclaim-timer-wait-time parameter, to
ensure that the server frequently collects expired leases and makes them available for allocation via the free lease queue.
Expired leases are not considered free by the allocator until they are reclaimed by the server. See Lease Reclamation
for more details about the lease reclamation process.

We recommend that the FLQ allocator be selected only after careful consideration. The server puts no restrictions on the
delegated-prefix pool sizes used with the FLQ allocator, so we advise users to test how long it takes for the server to load
the pools before deploying the configuration using the FLQ allocator in production. We also recommend specifying
another allocator type in the global configuration settings and overriding this selection at the subnet or shared-network
level, to use the FLQ allocator only for selected subnets. That way, when a new subnet is added without an allocator
specification, the global setting is used, thus avoiding unnecessary impact on the server's startup time.

Warning: The FLQ allocator is not suitable for use with a shared lease database (i.e., when multiple Kea servers
store leases in the same database). The servers are unaware of the expired leases reclaimed by the sibling servers
and never return them to their local free lease queues. As a result, the servers will not be able to offer some of the
available leases to the clients. Only a server reclaiming a particular lease will be able to offer it.

9.21. Allocation Strategies in DHCPv6 297

Kea Administrator Reference Manual Documentation, Release 2.7.5

298 Chapter 9. The DHCPv6 Server

CHAPTER
TEN

DATABASE CONNECTIVITY

The Kea servers (kea-dhcp4 and kea-dhcp6) can be configured to use a variety of database backends for leases, hosts,
and configuration. They can be configured to support automatic recovery when connectivity is lost, via the on-fail
and retry-on-startup parameters. (The reconnect-wait-time and max-reconnect-tries parameters are de-
scribed in Lease Database Configuration and Lease Database Configuration.)

It is important to understand how and when automatic recovery comes into play. Automatic recovery, when config-
ured, only operates after a successful startup or reconfiguration during which connectivity to all backends has been
successfully established.

During server startup, the inability to connect to any of the configured backends is considered fatal only if
retry-on-startup is set to false (the default). A fatal error is logged and the server exits, based on the idea
that the configuration should be valid at startup. Exiting to the operating system allows nanny scripts to detect the
problem. If retry-on-startup is set to true, the server will start reconnection attempts even at server startup or on
reconfigure events, and will honor the action specified in the on-fail parameter.

During dynamic reconfiguration, all backends are disconnected and then reconnected using the new configuration. If
connectivity to any of the backends cannot be established, the server logs a fatal error but remains up. It is able to
process commands but does not serve clients. This allows the configuration to be corrected via the config-set or
remote-* commands, if required.

During normal operations, if connectivity to any of the backends is lost and automatic recovery for that backend is
enabled, the server disconnects from the respective backend and then attempts to reconnect. During the recovery
process, the server ceases to serve clients according to the on-fail configured option but continues to respond to
commands.

The on-fail parameter configures the actions the server should take when a connection is lost. It can have one of the
following values:

* stop-retry-exit - indicates that the server should stop the service while it tries to recover the connection, and
exit if recovery is not successful after max-reconnect-tries.

* serve-retry-exit - indicates that the server should not stop the service while it tries to recover the connection,
and exit if recovery is not successful after max-reconnect-tries.

e serve-retry-continue - indicates that the server should not stop the service while it tries to recover the
connection, and not exit if recovery is not successful after max-reconnect-tries.

If connectivity to all backends is restored, the server returns to normal operations. If the connection cannot be restored
and the server is configured to exit, it issues a fatal error before shutdown.

For Kea DHCP servers to work with database backends, the database schema must be created and must match the
version of the Kea server. If the version check fails and the database backend is not configured as read-