Stream: Internet Engineering Task Force (IETF)

RFC: 9849
Category: Standards Track
Published: December 2025
ISSN: 2070-1721
Authors:
E. Rescorla K.Oku N. Sullivan C. A. Wood

Knight-Georgetown Institute Fastly Cryptography Consulting LLC Cloudflare

RFC 9849
TLS Encrypted Client Hello

Abstract

This document describes a mechanism in Transport Layer Security (TLS) for encrypting a
ClientHello message under a server public key.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9849.

Copyright Notice

Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Rescorla, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9849
https://www.rfc-editor.org/info/rfc9849
https://trustee.ietf.org/license-info

RFC 9849 TLS Encrypted Client Hello

Table of Contents

1. Introduction
2. Conventions and Definitions
3. Overview
3.1. Topologies
3.2. Encrypted ClientHello (ECH)

4. Encrypted ClientHello Configuration
4.1. Configuration Identifiers

4.2. Configuration Extensions

5. The "encrypted_client_hello" Extension
5.1. Encoding the ClientHelloInner
5.2. Authenticating the ClientHelloOuter

6. Client Behavior
6.1. Offering ECH
6.1.1. Encrypting the ClientHello
6.1.2. GREASE PSK
6.1.3. Recommended Padding Scheme
6.1.4. Determining ECH Acceptance
6.1.5. Handshaking with ClientHelloInner
6.1.6. Handshaking with ClientHelloOuter
6.1.7. Authenticating for the Public Name
6.1.8. Impact of Retry on Future Connections
6.2. GREASE ECH
6.2.1. Client Greasing
6.2.2. Server Greasing
7. Server Behavior
7.1. Client-Facing Server

7.1.1. Sending HelloRetryRequest

Rescorla, et al. Standards Track

December 2025

o U1 U1 U1

~

10
11
13

13
13
15
15
16
17
17
18
19
20
20
20
21
21
22
24

Page 2

RFC 9849 TLS Encrypted Client Hello December 2025

7.2. Backend Server 25
7.2.1. Sending HelloRetryRequest 25

8. Deployment Considerations 26
8.1. Compatibility Issues 26
8.1.1. Misconfiguration and Deployment Concerns 26
8.1.2. Middleboxes 27

8.2. Deployment Impact 27

9. Compliance Requirements 27
10. Security Considerations 28
10.1. Security and Privacy Goals 28
10.2. Unauthenticated and Plaintext DNS 29
10.3. Client Tracking 29
10.4. Ignored Configuration Identifiers and Trial Decryption 30
10.5. Outer ClientHello 30
10.6. Inner ClientHello 31
10.7. Related Privacy Leaks 31
10.8. Cookies 31
10.9. Attacks Exploiting Acceptance Confirmation 32
10.10. Comparison Against Criteria 32
10.10.1. Mitigate Cut-and-Paste Attacks 32
10.10.2. Avoid Widely Shared Secrets 32
10.10.3. SNI-Based Denial-of-Service Attacks 33
10.10.4. Do Not Stick Out 33
10.10.5. Maintain Forward Secrecy 34
10.10.6. Enable Multi-party Security Contexts 34
10.10.7. Support Multiple Protocols 34
10.11. Padding Policy 34
10.12. Active Attack Mitigations 34
10.12.1. Client Reaction Attack Mitigation 35
10.12.2. HelloRetryRequest Hijack Mitigation 35

Rescorla, et al. Standards Track Page 3

RFC 9849 TLS Encrypted Client Hello December 2025

10.12.3. ClientHello Malleability Mitigation 36
10.12.4. ClientHelloInner Packet Amplification Mitigation 37

11. IANA Considerations 38
11.1. Update of the TLS ExtensionType Registry 38
11.2. Update of the TLS Alert Registry 38
11.3. ECH Configuration Extension Registry 38
12. References 39
12.1. Normative References 39
12.2. Informative References 40
Appendix A. Linear-Time Outer Extension Processing 41
Acknowledgements 42
Authors' Addresses 42

1. Introduction

Although TLS 1.3 [RFC8446] encrypts most of the handshake, including the server certificate,
there are several ways in which an on-path attacker can learn private information about the
connection. The plaintext Server Name Indication (SNI) extension in ClientHello messages,
which leaks the target domain for a given connection, is perhaps the most sensitive information
left unencrypted in TLS 1.3.

This document specifies a new TLS extension called Encrypted Client Hello (ECH) that allows
clients to encrypt their ClientHello to the TLS server. This protects the SNI and other
potentially sensitive fields, such as the Application-Layer Protocol Negotiation (ALPN) list
[RFC7301]. Co-located servers with consistent externally visible TLS configurations and
behavior, including supported versions and cipher suites and how they respond to incoming
client connections, form an anonymity set. (Note that implementation-specific choices, such as
extension ordering within TLS messages or division of data into record-layer boundaries, can
result in different externally visible behavior, even for servers with consistent TLS
configurations.) Usage of this mechanism reveals that a client is connecting to a particular
service provider, but does not reveal which server from the anonymity set terminates the
connection. Deployment implications of this feature are discussed in Section 8.

ECH is not in itself sufficient to protect the identity of the server. The target domain may also be
visible through other channels, such as plaintext client DNS queries or visible server IP
addresses. However, encrypted DNS mechanisms such as DNS over HTTPS [RFC8484], DNS over
TLS/DTLS [RFC7858] [RFC8094], and DNS over QUIC [RFC9250] provide mechanisms for clients to

Rescorla, et al. Standards Track Page 4

RFC 9849 TLS Encrypted Client Hello December 2025

conceal DNS lookups from network inspection, and many TLS servers host multiple domains on
the same IP address. Private origins may also be deployed behind a common provider, such as a
reverse proxy. In such environments, the SNI remains the primary explicit signal available to
observers to determine the server's identity.

ECH is supported in TLS 1.3 [RFC8446], DTLS 1.3 [RFC9147], and newer versions of the TLS and
DTLS protocols.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are
to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear
in all capitals, as shown here. All TLS notation comes from [RFC8446], Section 3.

3. Overview

This protocol is designed to operate in one of two topologies illustrated below, which we call
"Shared Mode" and "Split Mode". These modes are described in the following section.

3.1. Topologies

2001:DB8::1111

I I
I I
I I
Client <----- > | private.example.org |
I I
| public.example.com |
I I

Server
(Client-Facing and Backend Combined)

Figure 1: Shared Mode Topology

In shared mode, the provider is the origin server for all the domains whose DNS records point to
it. In this mode, the TLS connection is terminated by the provider.

Rescorla, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc8446#section-3

RFC 9849 TLS Encrypted Client Hello December 2025

2001 :DB8: :EEEE

private.example.org
Client-Facing Server Backend Server

Figure 2: Split Mode Topology

In split mode, the provider is not the origin server for private domains. Rather, the DNS records
for private domains point to the provider, and the provider's server relays the connection back
to the origin server, who terminates the TLS connection with the client. Importantly, the service
provider does not have access to the plaintext of the connection beyond the unencrypted
portions of the handshake.

In the remainder of this document, we will refer to the ECH-service provider as the "client-facing
server" and to the TLS terminator as the "backend server". These are the same entity in shared
mode, but in split mode, the client-facing and backend servers are physically separated.

See Section 10 for more discussion about the ECH threat model and how it relates to the client,
client-facing server, and backend server.

3.2. Encrypted ClientHello (ECH)

A client-facing server enables ECH by publishing an ECH configuration, which is an encryption
public key and associated metadata. Domains which wish to use ECH must publish this
configuration, using the key associated with the client-facing server. This document defines the
ECH configuration's format, but delegates DNS publication details to [RFC9460]. See [RFCYYY1]
for specifics about how ECH configurations are advertised in SVCB and HTTPS records. Other
delivery mechanisms are also possible. For example, the client may have the ECH configuration
preconfigured.

When a client wants to establish a TLS session with some backend server, it constructs a private
ClientHello, referred to as the ClientHelloInner. The client then constructs a public
ClientHello, referred to as the ClientHelloOuter. The ClientHelloOuter contains innocuous
values for sensitive extensions and an "encrypted_client_hello" extension (Section 5), which
carries the encrypted ClientHelloInner. Finally, the client sends ClientHelloOuter to the
server.

The server takes one of the following actions:

1. If it does not support ECH or cannot decrypt the extension, it completes the handshake with
ClientHelloOuter. This is referred to as rejecting ECH.

2. If it successfully decrypts the extension, it forwards the ClientHelloInner to the backend
server, which completes the handshake. This is referred to as accepting ECH.

Rescorla, et al. Standards Track Page 6

RFC 9849 TLS Encrypted Client Hello December 2025

Upon receiving the server's response, the client determines whether or not ECH was accepted
(Section 6.1.4) and proceeds with the handshake accordingly. When ECH is rejected, the resulting
connection is not usable by the client for application data. Instead, ECH rejection allows the
client to retry with up-to-date configuration (Section 6.1.6).

The primary goal of ECH is to ensure that connections to servers in the same anonymity set are
indistinguishable from one another. Moreover, it should achieve this goal without affecting any
existing security properties of TLS 1.3. See Section 10.1 for more details about the ECH security

and privacy goals.

4. Encrypted ClientHello Configuration

ECH uses Hybrid Public Key Encryption (HPKE) for public key encryption [HPKE]. The ECH
configuration is defined by the following ECHConfig structure.

opaque HpkePublicKey<1..2216-1>;

uint16 HpkeKemId; // Defined in RFC 9180
uint16 HpkeKdfId; // Defined in RFC 9186
uint16 HpkeAeadId; // Defined in RFC 9180

uint16 ECHConfigExtensionType; // Defined in Section 11.3

struct {
HpkeKdfId kdf_id;
HpkeAeadId aead_id;

} HpkeSymmetricCipherSuite;

struct {

uint8 config_id;

HpkeKemId kem_id;

HpkePublicKey public_key;

HpkeSymmetricCipherSuite cipher_suites<4..2216-4>;
} HpkeKeyConfig;

struct {
ECHConfigExtensionType type;
opaque data<@..2216-1>;

} ECHConfigExtension;

struct {
HpkeKeyConfig key_config;
uint8 maximum_name_length;
opaque public_name<1..255>;
ECHConfigExtension extensions<@..2216-1>;
} ECHConfigContents;

struct {
uint16 version;
uint16 length;
select (ECHConfig.version) {
case 0xfe@d: ECHConfigContents contents;

}
} ECHConfig;

Rescorla, et al. Standards Track Page 7

RFC 9849 TLS Encrypted Client Hello December 2025

The structure contains the following fields:

version: The version of ECH for which this configuration is used. The version is the same as the
code point for the "encrypted_client_hello" extension. Clients MUST ignore any ECHConfig
structure with a version they do not support.

length: The length, in bytes, of the next field. This length field allows implementations to skip
over the elements in such a list where they cannot parse the specific version of ECHConfig.

contents: An opaque byte string whose contents depend on the version. For this specification,
the contents are an ECHConfigContents structure.

The ECHConfigContents structure contains the following fields:

key_config: A HpkeKeyConfig structure carrying the configuration information associated with
the HPKE public key (an "ECH key"). Note that this structure contains the config_id field,
which applies to the entire ECHConfigContents.

maximum_name_length: The longest name of a backend server, if known. If not known, this
value can be set to zero. It is used to compute padding (Section 6.1.3) and does not constrain
server name lengths. Names may exceed this length if, e.g., the server uses wildcard names or
added new names to the anonymity set.

public_name: The DNS name of the client-facing server, i.e., the entity trusted to update the
ECH configuration. This is used to correct misconfigured clients, as described in Section 6.1.6.

See Section 6.1.7 for how the client interprets and validates the public_name.

extensions: A list of ECHConfigExtension values that the client must take into consideration
when generating a ClientHello message. Each ECHConfigExtension has a 2-octet type and
opaque data value, where the data value is encoded with a 2-octet integer representing the
length of the data, in network byte order. ECHConfigExtension values are described below
(Section 4.2).

The HpkeKeyConfig structure contains the following fields:
config_id: A one-byte identifier for the given HPKE key configuration. This is used by clients

to indicate the key used for ClientHello encryption. Section 4.1 describes how client-facing
servers allocate this value.

kem_id: The HPKE Key Encapsulation Mechanism (KEM) identifier corresponding to
public_key. Clients MUST ignore any ECHConfig structure with a key using a KEM they do
not support.

public_key: The HPKE public key used by the client to encrypt ClientHelloInner.

Rescorla, et al. Standards Track Page 8

RFC 9849 TLS Encrypted Client Hello December 2025

cipher_suites: The list of HPKE Key Derivation Function (KDF) and Authenticated Encryption
with Associated Data (AEAD) identifier pairs clients can use for encrypting
ClientHelloInner. See Section 6.1 for how clients choose from this list.

The client-facing server advertises a sequence of ECH configurations to clients, serialized as
follows.

ECHConfig ECHConfiglList<4..2216-1>;

The ECHConfiglList structure contains one or more ECHConfig structures in decreasing order of
preference. This allows a server to support multiple versions of ECH and multiple sets of ECH
parameters.

4.1. Configuration Identifiers

A client-facing server has a set of known ECHConfig values with corresponding private keys.
This set SHOULD contain the currently published values, as well as previous values that may still
be in use, since clients may cache DNS records up to a TTL or longer.

Section 7.1 describes a trial decryption process for decrypting the ClientHello. This can impact
performance when the client-facing server maintains many known ECHConfig values. To avoid
this, the client-facing server SHOULD allocate distinct config_id values for each ECHConfig in
its known set. The RECOMMENDED strategy is via rejection sampling, i.e., to randomly select
config_id repeatedly until it does not match any known ECHConfig.

It is not necessary for config_id values across different client-facing servers to be distinct. A
backend server may be hosted behind two different client-facing servers with colliding
config_id values without any performance impact. Values may also be reused if the previous
ECHConfig is no longer in the known set.

4.2. Configuration Extensions

ECH configuration extensions are used to provide room for additional functionality as needed.
The format is as defined in Section 4 and mirrors Section 4.2 of [RFC8446]. However, ECH
configuration extension types are maintained by IANA as described in Section 11.3. ECH
configuration extensions follow the same interpretation rules as TLS extensions: extensions MAY
appear in any order, but there MUST NOT be more than one extension of the same type in the
extensions block. Unlike TLS extensions, an extension can be tagged as mandatory by using an
extension type codepoint with the high order bit set to 1.

Clients MUST parse the extension list and check for unsupported mandatory extensions. If an
unsupported mandatory extension is present, clients MUST ignore the ECHConfig.

Rescorla, et al. Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc8446#section-4.2

RFC 9849 TLS Encrypted Client Hello December 2025

Any future information or hints that influence ClientHelloOuter SHOULD be specified as
ECHConfig extensions. This is primarily because the outer ClientHello exists only in support of
ECH. Namely, it is both an envelope for the encrypted inner ClientHello and an enabler for
authenticated key mismatch signals (see Section 7). In contrast, the inner ClientHello is the true
ClientHello used upon ECH negotiation.

5. The "encrypted_client_hello" Extension

To offer ECH, the client sends an "encrypted_client_hello" extension in the ClientHelloOuter.
When it does, it MUST also send the extension in ClientHelloInner.

enum {
encrypted_client_hello(@xfe@d), (65535)
} ExtensionType;

The payload of the extension has the following structure:

enum { outer(®), inner(1) } ECHClientHelloType;

struct {
ECHClientHelloType type;
select (ECHClientHello.type) {
case outer:
HpkeSymmetricCipherSuite cipher_suite;
uint8 config_id;
opaque enc<0..2216-1>;
opaque payload<1..2*16-1>;
case inner:
Empty;
I
} ECHClientHello;

The outer extension uses the outer variant and the inner extension uses the inner variant. The
inner extension has an empty payload, which is included because TLS servers are not allowed to
provide extensions in ServerHello which were not included in ClientHello. The outer
extension has the following fields:

config_id: The ECHConfigContents.key_config.config_id for the chosen ECHConfig.

cipher_suite: The cipher suite used to encrypt ClientHelloInner. This MUST match a value
provided in the corresponding ECHConfigContents.cipher_suites list.

enc: The HPKE encapsulated key used by servers to decrypt the corresponding payload field.
This field is empty in a ClientHelloOuter sent in response to HelloRetryRequest.

payload: The serialized and encrypted EncodedClientHelloInner structure, encrypted using
HPKE as described in Section 6.1.

Rescorla, et al. Standards Track Page 10

RFC 9849 TLS Encrypted Client Hello December 2025

When a client offers the outer version of an "encrypted_client_hello" extension, the server MAY
include an "encrypted_client_hello" extension in its EncryptedExtensions message, as described
in Section 7.1, with the following payload:

struct {
ECHConfiglList retry_configs;
} ECHEncryptedExtensions;

The response is valid only when the server used the ClientHelloOuter. If the server sent this
extension in response to the inner variant, then the client MUST abort with an
"unsupported_extension" alert.

retry_configs: An ECHConfigList structure containing one or more ECHConfig structures, in
decreasing order of preference, to be used by the client as described in Section 6.1.6. These
are known as the server's "retry configurations".

Finally, when the client offers the "encrypted_client_hello", if the payload is the inner variant
and the server responds with HelloRetryRequest, it MUST include an "encrypted_client_hello"
extension with the following payload:

struct {
opaque confirmation[8];
} ECHHelloRetryRequest;

The value of ECHHelloRetryRequest.confirmation is set to hrr_accept_confirmation as
described in Section 7.2.1.

This document also defines the "ech_required" alert, which the client MUST send when it offered
an "encrypted_client_hello" extension that was not accepted by the server. (See Section 11.2.)

5.1. Encoding the ClientHelloInner

Before encrypting, the client pads and optionally compresses ClientHelloInner into an
EncodedClientHelloInner structure, defined below:

struct {

ClientHello client_hello;

uint8 zeros[length_of_padding];
} EncodedClientHelloInner;

The client_hello field is computed by first making a copy of ClientHelloInner and setting the
legacy_session_id field to the empty string. In TLS, this field uses the ClientHello structure
defined in Section 4.1.2 of [RFC8446]. In DTLS, it uses the ClientHello structure defined in

Rescorla, et al. Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc8446#section-4.1.2

RFC 9849 TLS Encrypted Client Hello December 2025

Section 5.3 of [RFC9147]. This does not include Handshake structure's four-byte header in TLS,
nor twelve-byte header in DTLS. The zeros field MUST be all zeroes of length
length_of_padding (see Section 6.1.3).

Repeating large extensions, such as "key_share" with post-quantum algorithms, between
ClientHelloInner and ClientHelloOuter can lead to excessive size. To reduce the size impact,
the client MAY substitute extensions which it knows will be duplicated in ClientHelloOuter. It
does so by removing and replacing extensions from EncodedClientHelloInner with a single
"ech_outer_extensions" extension, defined as follows:

enum {
ech_outer_extensions(0xfdeo), (65535)
} ExtensionType;

ExtensionType OuterExtensions<2..254>;

OuterExtensions contains the removed ExtensionType values. Each value references the
matching extension in ClientHelloOuter. The values MUST be ordered contiguously in
ClientHelloInner, and the "ech_outer_extensions" extension MUST be inserted in the
corresponding position in EncodedClientHelloInner. Additionally, the extensions MUST appear
in ClientHelloOuter in the same relative order. However, there is no requirement that they be
contiguous. For example, OuterExtensions may contain extensions A, B, and C, while
ClientHelloOuter contains extensions A, D, B, C, E, and F.

The "ech_outer_extensions" extension can only be included in EncodedClientHelloInner and
MUST NOT appear in either ClientHelloOuter or ClientHelloInner.

Finally, the client pads the message by setting the zeros field to a byte string whose contents are
all zeros and whose length is the amount of padding to add. Section 6.1.3 describes a
recommended padding scheme.

The client-facing server computes ClientHelloInner by reversing this process. First, it parses
EncodedClientHelloInner, interpreting all bytes after client_hello as padding. If any
padding byte is non-zero, the server MUST abort the connection with an "illegal_parameter"
alert.

Next, it makes a copy of the client_hello field and copies the legacy_session_id field from
ClientHelloOuter. It then looks for an "ech_outer_extensions" extension. If found, it replaces
the extension with the corresponding sequence of extensions in the ClientHelloOuter. The
server MUST abort the connection with an "illegal_parameter"” alert if any of the following are
true:

* Any referenced extension is missing in ClientHelloOuter.
* Any extension is referenced in OuterExtensions more than once.
* "encrypted_client_hello" is referenced in OuterExtensions.

* The extensions in ClientHelloOuter corresponding to those in OuterExtensions do not
occur in the same order.

Rescorla, et al. Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc9147#section-5.3

RFC 9849 TLS Encrypted Client Hello December 2025

These requirements prevent an attacker from performing a packet amplification attack by
crafting a ClientHelloOuter which decompresses to a much larger ClientHelloInner. This is
discussed further in Section 10.12.4.

Implementations SHOULD construct the ClientHelloInner in linear time. Quadratic time
implementations (such as may happen via naive copying) create a denial-of-service risk.
Appendix A describes a linear-time procedure that may be used for this purpose.

5.2. Authenticating the ClientHelloOuter

To prevent a network attacker from modifying the ClientHelloOuter while keeping the same
encrypted ClientHelloInner (see Section 10.12.3), ECH authenticates ClientHelloOuter by
passing ClientHelloOuterAAD as the associated data for HPKE sealing and opening operations.
The ClientHelloOuterAAD is a serialized ClientHello structure, defined in Section 4.1.2 of
[RFC8446] for TLS and Section 5.3 of [RFC9147] for DTLS, which matches the ClientHelloOuter
except that the payload field of the "encrypted_client_hello" is replaced with a byte string of the
same length but whose contents are zeros. This value does not include Handshake structure's
four-byte header in TLS nor twelve-byte header in DTLS.

6. Client Behavior

Clients that implement the ECH extension behave in one of two ways: either they offer a real
ECH extension, as described in Section 6.1, or they send a Generate Random Extensions And
Sustain Extensibility (GREASE) [RFC8701] ECH extension, as described in Section 6.2. Clients of
the latter type do not negotiate ECH. Instead, they generate a dummy ECH extension that is
ignored by the server. (See Section 10.10.4 for an explanation.) The client offers ECH if it is in
possession of a compatible ECH configuration and sends GREASE ECH (see Section 6.2) otherwise.

6.1. Offering ECH

To offer ECH, the client first chooses a suitable ECHConfig from the server's ECHConfigList. To
determine if a given ECHConfig is suitable, it checks that it supports the KEM algorithm
identified by ECHConfig.contents.kem_id, at least one KDF/AEAD algorithm identified by
ECHConfig.contents.cipher_suites, and the version of ECH indicated by
ECHConfig.contents.version. Once a suitable configuration is found, the client selects the
cipher suite it will use for encryption. It MUST NOT choose a cipher suite or version not
advertised by the configuration. If no compatible configuration is found, then the client SHOULD
proceed as described in Section 6.2.

Next, the client constructs the ClientHelloInner message just as it does a standard
ClientHello, with the exception of the following rules:

1. It MUST NOT offer to negotiate TLS 1.2 or below. This is necessary to ensure the backend
server does not negotiate a TLS version that is incompatible with ECH.

2. It MUST NOT offer to resume any session for TLS 1.2 and below.

Rescorla, et al. Standards Track Page 13

https://www.rfc-editor.org/rfc/rfc8446#section-4.1.2
https://www.rfc-editor.org/rfc/rfc9147#section-5.3

RFC 9849 TLS Encrypted Client Hello December 2025

3. If it intends to compress any extensions (see Section 5.1), it MUST order those extensions
consecutively.

4. It MUST include the "encrypted_client_hello" extension of type inner as described in Section
5. (This requirement is not applicable when the "encrypted_client_hello" extension is
generated as described in Section 6.2.)

The client then constructs EncodedClientHelloInner as described in Section 5.1. It also
computes an HPKE encryption context and enc value as:

pkR = DeserializePublicKey(ECHConfig.contents.public_key)
enc, context = SetupBaseS(pkR,
"tls ech" || ©0x00 || ECHConfig)

Next, it constructs a partial ClientHelloOuterAAD as it does a standard ClientHello, with the
exception of the following rules:

1. It MUST offer to negotiate TLS 1.3 or above.

2. If it compressed any extensions in EncodedClientHelloInner, it MUST copy the
corresponding extensions from ClientHelloInner. The copied extensions additionally
MUST be in the same relative order as in ClientHelloInner.

3. It MUST copy the legacy_session_id field from ClientHelloInner. This allows the server to
echo the correct session ID for TLS 1.3's compatibility mode (see Appendix D.4 of [RFC8446])
when ECH is negotiated. Note that compatibility mode is not used in DTLS 1.3, but following
this rule will produce the correct results for both TLS 1.3 and DTLS 1.3.

4. It MAY copy any other field from the ClientHelloInner except ClientHelloInner.random.
Instead, it MUST generate a fresh ClientHelloOuter.random using a secure random
number generator. (See Section 10.12.1.)

5.1t SHOULD place the value of ECHConfig.contents.public_name in the "server_name"
extension. Clients that do not follow this step, or place a different value in the "server_name"
extension, risk breaking the retry mechanism described in Section 6.1.6 or failing to
interoperate with servers that require this step to be done; see Section 7.1.

6. When the client offers the "pre_shared_key" extension in ClientHelloInner, it SHOULD
also include a GREASE "pre_shared_key" extension in ClientHelloOuter, generated in the
manner described in Section 6.1.2. The client MUST NOT use this extension to advertise a
PSK to the client-facing server. (See Section 10.12.3.) When the client includes a GREASE
"pre_shared_key" extension, it MUST also copy the "psk_key_exchange_modes" from the
ClientHelloInner into the ClientHelloOuter.

7. When the client offers the "early_data" extension in ClientHelloInner, it MUST also include
the "early_data" extension in ClientHelloOuter. This allows servers that reject ECH and use
ClientHelloOuter to safely ignore any early data sent by the client per [RFC8446], Section
4.2.10.

The client might duplicate non-sensitive extensions in both messages. However,
implementations need to take care to ensure that sensitive extensions are not offered in the
ClientHelloOuter. See Section 10.5 for additional guidance.

Rescorla, et al. Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc8446#appendix-D.4
https://www.rfc-editor.org/rfc/rfc8446#section-4.2.10
https://www.rfc-editor.org/rfc/rfc8446#section-4.2.10

RFC 9849 TLS Encrypted Client Hello December 2025

Finally, the client encrypts the EncodedClientHelloInner with the above values, as described in
Section 6.1.1, to construct a ClientHelloOuter. It sends this to the server and processes the
response as described in Section 6.1.4.

6.1.1. Encrypting the ClientHello

Given an EncodedClientHelloInner, an HPKE encryption context and enc value, and a partial
ClientHelloOuterAAD, the client constructs a ClientHelloOuter as follows.

First, the client determines the length L of encrypting EncodedClientHelloInner with the
selected HPKE AEAD. This is typically the sum of the plaintext length and the AEAD tag length.
The client then completes the ClientHelloOuterAAD with an "encrypted_client_hello" extension.
This extension value contains the outer variant of ECHClientHello with the following fields:

» config_id, the identifier corresponding to the chosen ECHConfig structure;
* cipher_suite, the client's chosen cipher suite;

* enc, as given above; and

* payload, a placeholder byte string containing L zeros.

If configuration identifiers (see Section 10.4) are to be ignored, config_id SHOULD be set to a
randomly generated byte in the first ClientHelloOuter and, in the event of a HelloRetryRequest
(HRR), MUST be left unchanged for the second ClientHelloOuter.

The client serializes this structure to construct the ClientHelloOuterAAD. It then computes the
final payload as:

final_payload = context.Seal(ClientHelloOuterAAD,
EncodedClientHelloInner)

Including ClientHelloOuterAAD as the HPKE AAD binds the ClientHelloOuter to the
ClientHelloInner, thus preventing attackers from modifying ClientHelloOuter while keeping
the same ClientHelloInner, as described in Section 10.12.3.

Finally, the client replaces payload with final_payload to obtain ClientHelloOuter. The two
values have the same length, so it is not necessary to recompute length prefixes in the serialized
structure.

Note this construction requires the "encrypted_client_hello" be computed after all other
extensions. This is possible because the ClientHelloOuter's "pre_shared_key" extension is
either omitted or uses a random binder (Section 6.1.2).

6.1.2. GREASE PSK

When offering ECH, the client is not permitted to advertise PSK identities in the
ClientHelloOuter. However, the client can send a "pre_shared_key" extension in the
ClientHelloInner. In this case, when resuming a session with the client, the backend server
sends a "pre_shared_key" extension in its ServerHello. This would appear to a network observer
as if the server were sending this extension without solicitation, which would violate the

Rescorla, et al. Standards Track Page 15

RFC 9849 TLS Encrypted Client Hello December 2025

extension rules described in [RFC8446]. When offering a PSK in ClientHelloInner, clients
SHOULD send a GREASE "pre_shared_key" extension in the ClientHelloOuter to make it appear
to the network as if the extension were negotiated properly.

The client generates the extension payload by constructing an 0fferedPsks structure (see
[RFC8446], Section 4.2.11) as follows. For each PSK identity advertised in the ClientHelloInner,
the client generates a random PSK identity with the same length. It also generates a random, 32-
bit, unsigned integer to use as the obfuscated_ticket_age. Likewise, for each inner PSK binder,
the client generates a random string of the same length.

Per the rules of Section 6.1, the server is not permitted to resume a connection in the outer
handshake. If ECH is rejected and the client-facing server replies with a "pre_shared_key"
extension in its ServerHello, then the client MUST abort the handshake with an
"illegal_parameter" alert.

6.1.3. Recommended Padding Scheme

If the ClientHelloInner is encrypted without padding, then the length of the
ClientHelloOuter .payload can leak information about ClientHelloInner. In order to prevent
this, the EncodedClientHelloInner structure has a padding field. This section describes a
deterministic mechanism for computing the required amount of padding based on the following
observation: individual extensions can reveal sensitive information through their length. Thus,
each extension in the inner ClientHello may require different amounts of padding. This
padding may be fully determined by the client's configuration or may require server input.

By way of example, clients typically support a small number of application profiles. For instance,
a browser might support HTTP with ALPN values ["http/1.1", "h2"] and WebRTC media with
ALPNs ["webrtc", "c-webrtc"]. Clients SHOULD pad this extension by rounding up to the total size
of the longest ALPN extension across all application profiles. The target padding length of most
ClientHello extensions can be computed in this way.

In contrast, clients do not know the longest SNI value in the client-facing server's anonymity set
without server input. Clients SHOULD use the ECHConfig's maximum_name_length field as
follows, where L is the maximum_name_length value.

1. If the ClientHelloInner contained a "server_name" extension with a name of length D, add
max(0, L - D) bytes of padding.

2.If the ClientHelloInner did not contain a "server_name" extension (e.g., if the client is
connecting to an IP address), add L + 9 bytes of padding. This is the length of a
"server_name" extension with an L-byte name.

Finally, the client SHOULD pad the entire message as follows:

1. Let L be the length of the EncodedClientHelloInner with all the padding computed so far.
2.LetN=31-((L-1) % 32) and add N bytes of padding.

This rounds the length of EncodedClientHelloInner up to a multiple of 32 bytes, reducing the
set of possible lengths across all clients.

Rescorla, et al. Standards Track Page 16

https://www.rfc-editor.org/rfc/rfc8446#section-4.2.11

RFC 9849 TLS Encrypted Client Hello December 2025

In addition to padding ClientHelloInner, clients and servers will also need to pad all other
handshake messages that have sensitive-length fields. For example, if a client proposes ALPN
values in ClientHelloInner, the server-selected value will be returned in an
EncryptedExtension, so that handshake message also needs to be padded using TLS record layer
padding.

6.1.4. Determining ECH Acceptance

As described in Section 7, the server may either accept ECH and use ClientHelloInner or reject
it and use ClientHelloOuter. This is determined by the server's initial message.

If the message does not negotiate TLS 1.3 or higher, the server has rejected ECH. Otherwise, it is
either a ServerHello or HelloRetryRequest.

If the message is a ServerHello, the client computes accept_confirmation as described in
Section 7.2. If this value matches the last 8 bytes of ServerHello.random, the server has
accepted ECH. Otherwise, it has rejected ECH.

If the message is a HelloRetryRequest, the client checks for the "encrypted_client_hello"
extension. If none is found, the server has rejected ECH. Otherwise, if it has a length other than
8, the client aborts the handshake with a "decode_error" alert. Otherwise, the client computes
hrr_accept_confirmation as described in Section 7.2.1. If this value matches the extension
payload, the server has accepted ECH. Otherwise, it has rejected ECH.

If the server accepts ECH, the client handshakes with ClientHelloInner as described in Section
6.1.5. Otherwise, the client handshakes with ClientHelloOuter as described in Section 6.1.6.

6.1.5. Handshaking with ClientHelloInner

If the server accepts ECH, the client proceeds with the connection as in [RFC8446], with the
following modifications:

The client behaves as if it had sent ClientHelloInner as the ClientHello. That is, it evaluates
the handshake using the ClientHelloInner's preferences, and, when computing the transcript
hash (Section 4.4.1 of [RFC8446]), it uses ClientHelloInner as the first ClientHello.

If the server responds with a HelloRetryRequest, the client computes the updated ClientHello
message as follows:

1. It computes a second ClientHelloInner based on the first ClientHelloInner, as in Section
4.1.4 of [RFC8446]. The ClientHelloInner's "encrypted_client_hello" extension is left
unmodified.

2. It constructs EncodedClientHelloInner as described in Section 5.1.

3. It constructs a second partial ClientHelloOuterAAD message. This message MUST be
syntactically valid. The extensions MAY be copied from the original ClientHelloOuter
unmodified or omitted. If not sensitive, the client MAY copy updated extensions from the
second ClientHelloInner for compression.

Rescorla, et al. Standards Track Page 17

https://www.rfc-editor.org/rfc/rfc8446#section-4.4.1
https://www.rfc-editor.org/rfc/rfc8446#section-4.1.4
https://www.rfc-editor.org/rfc/rfc8446#section-4.1.4

RFC 9849 TLS Encrypted Client Hello December 2025

4. It encrypts EncodedClientHelloInner as described in Section 6.1.1, using the second partial
ClientHelloOuterAAD, to obtain a second ClientHelloOuter. It reuses the original HPKE
encryption context computed in Section 6.1 and uses the empty string for enc.

The HPKE context maintains a sequence number, so this operation internally uses a fresh
nonce for each AEAD operation. Reusing the HPKE context avoids an attack described in
Section 10.12.2.

The client then sends the second ClientHelloOuter to the server. However, as above, it uses the
second ClientHelloInner for preferences, and both the ClientHelloInner messages for the
transcript hash. Additionally, it checks the resulting ServerHello for ECH acceptance as in Section
6.1.4. If the ServerHello does not also indicate ECH acceptance, the client MUST terminate the
connection with an "illegal_parameter" alert.

6.1.6. Handshaking with ClientHelloOuter

If the server rejects ECH, the client proceeds with the handshake, authenticating for
ECHConfig.contents.public_name as described in Section 6.1.7. If authentication or the
handshake fails, the client MUST return a failure to the calling application. It MUST NOT use the
retry configurations. It MUST NOT treat this as a secure signal to disable ECH.

If the server supplied an "encrypted_client_hello" extension in its EncryptedExtensions message,
the client MUST check that it is syntactically valid and the client MUST abort the connection with
a "decode_error" alert otherwise. If an earlier TLS version was negotiated, the client MUST NOT
enable the False Start optimization [RFC7918] for this handshake. If both authentication and the
handshake complete successfully, the client MUST perform the processing described below and
then abort the connection with an "ech_required" alert before sending any application data to
the server.

If the server provided "retry_configs" and if at least one of the values contains a version
supported by the client, the client can regard the ECH configuration as securely replaced by the
server. It SHOULD retry the handshake with a new transport connection using the retry
configurations supplied by the server.

Clients can implement a new transport connection in a way that best suits their deployment. For
example, clients can reuse the same server IP address when establishing the new transport
connection or they can choose to use a different IP address if provided with options from DNS.
ECH does not mandate any specific implementation choices when establishing this new
connection.

The retry configurations are meant to be used for retried connections. Further use of retry
configurations could yield a tracking vector. In settings where the client will otherwise already
let the server track the client, e.g., because the client will send cookies to the server in parallel
connections, using the retry configurations for these parallel connections does not introduce a
new tracking vector.

Rescorla, et al. Standards Track Page 18

RFC 9849 TLS Encrypted Client Hello December 2025

If none of the values provided in "retry_configs" contains a supported version, the server did not
supply an "encrypted_client_hello" extension in its EncryptedExtensions message, or an earlier
TLS version was negotiated, the client can regard ECH as securely disabled by the server, and it
SHOULD retry the handshake with a new transport connection and ECH disabled.

Clients SHOULD NOT accept "retry_config" in response to a connection initiated in response to a
"retry_config". Sending a "retry_config" in this situation is a signal that the server is
misconfigured, e.g., the server might have multiple inconsistent configurations so that the client
reached a node with configuration A in the first connection and a node with configuration B in
the second. Note that this guidance does not apply to the cases in the previous paragraph where
the server has securely disabled ECH.

If a client does not retry, it MUST report an error to the calling application.

6.1.7. Authenticating for the Public Name

When the server rejects ECH, it continues with the handshake using the plaintext "server_name"
extension instead (see Section 7). Clients that offer ECH then authenticate the connection with
the public name as follows:

* The client MUST verify that the certificate is valid for ECHConfig.contents.public_name. If
invalid, it MUST abort the connection with the appropriate alert.

o If the server requests a client certificate, the client MUST respond with an empty Certificate
message, denoting no client certificate.

In verifying the client-facing server certificate, the client MUST interpret the public name as a
DNS-based reference identity [RFC9525]. Clients that incorporate DNS names and IP addresses
into the same syntax (e.g. Section 7.4 of [RFC3986] and [WHATWG-IPV4]) MUST reject names that
would be interpreted as IPv4 addresses. Clients that enforce this by checking
ECHConfig.contents.public_name do not need to repeat the check when processing ECH
rejection.

Note that authenticating a connection for the public name does not authenticate it for the origin.
The TLS implementation MUST NOT report such connections as successful to the application. It
additionally MUST ignore all session tickets and session IDs presented by the server. These
connections are only used to trigger retries, as described in Section 6.1.6. This may be
implemented, for instance, by reporting a failed connection with a dedicated error code.

Prior to attempting a connection, a client SHOULD validate the ECHConfig. Clients SHOULD
ignore any ECHConfig structure with a public_name that is not a valid host name in preferred
name syntax (see Section 2 of [DNS-TERMS]). That is, to be valid, the public_name needs to be a
dot-separated sequence of LDH labels, as defined in Section 2.3.1 of [RFC5890], where:

* the sequence does not begin or end with an ASCII dot, and
« all labels are at most 63 octets.

Rescorla, et al. Standards Track Page 19

https://www.rfc-editor.org/rfc/rfc3986#section-7.4
https://www.rfc-editor.org/rfc/rfc9499#section-2
https://www.rfc-editor.org/rfc/rfc5890#section-2.3.1

RFC 9849 TLS Encrypted Client Hello December 2025

Clients additionally SHOULD ignore the structure if the final LDH label either consists of all
ASCII digits (i.e., '0' through '9") or is "0x" or "0X" followed by some, possibly empty, sequence of
ASCII hexadecimal digits (i.e., '0' through '9', 'a’' through 'f', and 'A’ through 'F'). This avoids
public_name values that may be interpreted as IPv4 literals.

6.1.8. Impact of Retry on Future Connections

Clients MAY use information learned from a rejected ECH for future connections to avoid
repeatedly connecting to the same server and being forced to retry. However, they MUST handle
ECH rejection for those connections as if it were a fresh connection, rather than enforcing the
single retry limit from Section 6.1.6. The reason for this requirement is that if the server sends a
"retry_config" and then immediately rejects the resulting connection, it is most likely
misconfigured. However, if the server sends a "retry_config" and then the client tries to use that
to connect some time later, it is possible that the server has changed its configuration again and
is now trying to recover.

Any persisted information MUST be associated with the ECHConfig source used to bootstrap the
connection, such as a DNS SVCB ServiceMode record [RECYYY1]. Clients MUST limit any sharing
of persisted ECH-related state to connections that use the same ECHConfig source. Otherwise, it
might become possible for the client to have the wrong public name for the server, making
recovery impossible.

ECHConfigs learned from ECH rejection can be used as a tracking vector. Clients SHOULD
impose the same lifetime and scope restrictions that they apply to other server-based tracking
vectors such as PSKs.

In general, the safest way for clients to minimize ECH retries is to comply with any freshness
rules (e.g., DNS TTLs) imposed by the ECH configuration.

6.2. GREASE ECH

The GREASE ECH mechanism allows a connection between an ECH-capable client and a non-ECH
server to appear to use ECH, thus reducing the extent to which ECH connections stick out (see
Section 10.10.4).

6.2.1. Client Greasing

If the client attempts to connect to a server and does not have an ECHConfig structure available
for the server, it SHOULD send a GREASE [RFC8701] "encrypted_client_hello" extension in the
first ClientHello as follows:

* Set the config_id field to a random byte.

o Set the cipher_suite field to a supported HpkeSymmetricCipherSuite. The selection
SHOULD vary to exercise all supported configurations, but MAY be held constant for
successive connections to the same server in the same session.

* Set the enc field to a randomly generated valid encapsulated public key output by the HPKE
KEM.

Rescorla, et al. Standards Track Page 20

RFC 9849 TLS Encrypted Client Hello December 2025

* Set the payload field to a randomly generated string of L.+C bytes, where C is the ciphertext
expansion of the selected AEAD scheme and L is the size of the EncodedClientHelloInner
the client would compute when offering ECH, padded according to Section 6.1.3.

If sending a second ClientHello in response to a HelloRetryRequest, the client copies the entire
"encrypted_client_hello" extension from the first ClientHello. The identical value will reveal to
an observer that the value of "encrypted_client_hello" was fake, but this only occurs if there is a
HelloRetryRequest.

If the server sends an "encrypted_client_hello" extension in either HelloRetryRequest or
EncryptedExtensions, the client MUST check the extension syntactically and abort the
connection with a "decode_error" alert if it is invalid. It otherwise ignores the extension. It MUST
NOT save the "retry_configs" value in EncryptedExtensions.

Offering a GREASE extension is not considered offering an encrypted ClientHello for purposes
of requirements in Section 6.1. In particular, the client MAY offer to resume sessions established
without ECH.

6.2.2. Server Greasing

Section 11.3 describes a set of Reserved extensions which will never be registered. These can be
used by servers to "grease" the contents of the ECH configuration, as inspired by [RFC8701]. This
helps ensure clients process ECH extensions correctly. When constructing ECH configurations,
servers SHOULD randomly select from reserved values with the high-order bit clear. Correctly
implemented clients will ignore those extensions.

The reserved values with the high-order bit set are mandatory, as defined in Section 4.2. Servers
SHOULD randomly select from these values and include them in extraneous ECH configurations.
Correctly implemented clients will ignore these configurations because they do not recognize the
mandatory extension. Servers SHOULD ensure that any client using these configurations
encounters a warning or error message. This can be accomplished in several ways, including:

* By giving the extraneous configurations distinctive config IDs or public names, and rejecting
the TLS connection or inserting an application-level warning message when these are
observed.

* By giving the extraneous configurations an invalid public key and a public name not
associated with the server so that the initial ClientHelloOuter will not be decryptable and
the server cannot perform the recovery flow described in Section 6.1.6.

7. Server Behavior

As described in Section 3.1, servers can play two roles, either as the client-facing server or as the
backend server. Depending on the server role, the ECHC1lientHello will be different:

* A client-facing server expects an ECHClientHello.type of outer, and proceeds as described
in Section 7.1 to extract a ClientHelloInner, if available.

Rescorla, et al. Standards Track Page 21

RFC 9849 TLS Encrypted Client Hello December 2025

* A backend server expects an ECHClientHello.type of inner, and proceeds as described in
Section 7.2.

In split mode, a client-facing server which receives a ClientHello with ECHClientHello. type of
inner MUST abort with an "illegal_parameter" alert. Similarly, in split mode, a backend server
which receives a ClientHello with ECHClientHello.type of outer MUST abort with an
"illegal_parameter" alert.

In shared mode, a server plays both roles, first decrypting the ClientHelloOuter and then using
the contents of the ClientHelloInner. A shared mode server which receives a ClientHello with
ECHClientHello.type of inner MUST abort with an "illegal_parameter" alert, because such a
ClientHello should never be received directly from the network.

If ECHClientHello. type is not a valid ECHClientHelloType, then the server MUST abort with
an "illegal_parameter" alert.

If the "encrypted_client_hello" is not present, then the server completes the handshake normally,
as described in [RFC8446].

7.1. Client-Facing Server

Upon receiving an "encrypted_client_hello" extension in an initial ClientHello, the client-facing
server determines if it will accept ECH prior to negotiating any other TLS parameters. Note that
successfully decrypting the extension will result in a new ClientHello to process, so even the
client's TLS version preferences may have changed.

First, the server collects a set of candidate ECHConfig values. This list is determined by one of
the two following methods:

1. Compare ECHClientHello.config_id against identifiers of each known ECHConfig and
select the ones that match, if any, as candidates.

2. Collect all known ECHConfig values as candidates, with trial decryption below determining
the final selection.

Some uses of ECH, such as local discovery mode, may randomize the
ECHClientHello.config_id since it can be used as a tracking vector. In such cases, the second
method SHOULD be used for matching the ECHClientHello to a known ECHConfig. See Section
10.4. Unless specified by the application profile or otherwise externally configured,
implementations MUST use the first method.

The server then iterates over the candidate ECHConfig values, attempting to decrypt the
"encrypted_client_hello" extension as follows.

The server verifies that the ECHConfig supports the cipher suite indicated by the
ECHClientHello.cipher_suite and that the version of ECH indicated by the client matches the
ECHConfig.version. If not, the server continues to the next candidate ECHConfig.

Rescorla, et al. Standards Track Page 22

RFC 9849 TLS Encrypted Client Hello December 2025

Next, the server decrypts ECHClientHello.payload, using the private key skR corresponding to
ECHConfig, as follows:

context = SetupBaseR(ECHClientHello.enc, skR,
"tls ech" || 0x00 || ECHConfig)
EncodedClientHelloInner = context.Open(ClientHelloOuterAAD,
ECHClientHello.payload)

ClientHelloOuterAAD is computed from ClientHelloOuter as described in Section 5.2. The
info parameter to SetupBaseR is the concatenation "tls ech”, a zero byte, and the serialized
ECHConfig. If decryption fails, the server continues to the next candidate ECHConfig. Otherwise,
the server reconstructs ClientHelloInner from EncodedClientHelloInner, as described in
Section 5.1. It then stops iterating over the candidate ECHConfig values.

Once the server has chosen the correct ECHConfig, it MAY verify that the value in the
ClientHelloOuter "server_name" extension matches the value of
ECHConfig.contents.public_name and abort with an "illegal_parameter" alert if these do not
match. This optional check allows the server to limit ECH connections to only use the public SNI
values advertised in its ECHConfigs. The server MUST be careful not to unnecessarily reject
connections if the same ECHConfig id or keypair is used in multiple ECHConfigs with distinct
public names.

Upon determining the ClientHelloInner, the client-facing server checks that the message
includes a well-formed "encrypted_client_hello" extension of type inner and that it does not
offer TLS 1.2 or below. If either of these checks fails, the client-facing server MUST abort with an
"illegal_parameter" alert.

If these checks succeed, the client-facing server then forwards the ClientHelloInner to the
appropriate backend server, which proceeds as in Section 7.2. If the backend server responds
with a HelloRetryRequest, the client-facing server forwards it, decrypts the client's second
ClientHelloOuter using the procedure in Section 7.1.1, and forwards the resulting second
ClientHelloInner. The client-facing server forwards all other TLS messages between the client
and backend server unmodified.

Otherwise, if all candidate ECHConfig values fail to decrypt the extension, the client-facing
server MUST ignore the extension and proceed with the connection using ClientHelloOuter
with the following modifications:

o If sending a HelloRetryRequest, the server MAY include an "encrypted_client_hello"
extension with a payload of 8 random bytes; see Section 10.10.4 for details.

o If the server is configured with any ECHConfigs, it MUST include the
"encrypted_client_hello" extension in its EncryptedExtensions with the "retry_configs" field
set to one or more ECHConfig structures with up-to-date keys. Servers MAY supply multiple
ECHConfig values of different versions. This allows a server to support multiple versions at
once.

Rescorla, et al. Standards Track Page 23

RFC 9849 TLS Encrypted Client Hello December 2025

Note that decryption failure could indicate a GREASE ECH extension (see Section 6.2), so it is
necessary for servers to proceed with the connection and rely on the client to abort if ECH was
required. In particular, the unrecognized value alone does not indicate a misconfigured ECH
advertisement (Section 8.1.1). Instead, servers can measure occurrences of the "ech_required"
alert to detect this case.

7.1.1. Sending HelloRetryRequest

After sending or forwarding a HelloRetryRequest, the client-facing server does not repeat the
steps in Section 7.1 with the second ClientHelloOuter. Instead, it continues with the ECHConfig
selection from the first ClientHelloOuter as follows:

If the client-facing server accepted ECH, it checks that the second ClientHelloOuter also
contains the "encrypted_client_hello" extension. If not, it MUST abort the handshake with a
"missing_extension" alert. Otherwise, it checks that ECHClientHello.cipher_suite and
ECHClientHello.config_id are unchanged, and that ECHClientHello.enc is empty. If not, it
MUST abort the handshake with an "illegal_parameter" alert.

Finally, it decrypts the new ECHClientHello.payload as a second message with the previous
HPKE context:

EncodedClientHelloInner = context.Open(ClientHelloOuterAAD,
ECHClientHello.payload)

ClientHelloOuterAAD is computed as described in Section 5.2, but using the second
ClientHelloOuter. If decryption fails, the client-facing server MUST abort the handshake with a
"decrypt_error" alert. Otherwise, it reconstructs the second ClientHelloInner from the new
EncodedClientHelloInner as described in Section 5.1, using the second ClientHelloOuter for
any referenced extensions.

The client-facing server then forwards the resulting ClientHelloInner to the backend server. It
forwards all subsequent TLS messages between the client and backend server unmodified.

If the client-facing server rejected ECH, or if the first ClientHello did not include an
"encrypted_client_hello" extension, the client-facing server proceeds with the connection as
usual. The server does not decrypt the second ClientHello's ECHClientHello.payload value, if
there is one. Moreover, if the server is configured with any ECHConfigs, it MUST include the
"encrypted_client_hello" extension in its EncryptedExtensions with the "retry_configs" field set to
one or more ECHConfig structures with up-to-date keys, as described in Section 7.1.

Note that a client-facing server that forwards the first ClientHello cannot include its own
"cookie" extension if the backend server sends a HelloRetryRequest. This means that the client-
facing server either needs to maintain state for such a connection or it needs to coordinate with
the backend server to include any information it requires to process the second ClientHello.

Rescorla, et al. Standards Track Page 24

RFC 9849 TLS Encrypted Client Hello December 2025

7.2. Backend Server

Upon receipt of an "encrypted_client_hello" extension of type inner in a ClientHello, if the
backend server negotiates TLS 1.3 or higher, then it MUST confirm ECH acceptance to the client
by computing its ServerHello as described here.

The backend server embeds in ServerHello. random a string derived from the inner handshake.
It begins by computing its ServerHello as usual, except the last 8 bytes of ServerHello. random
are set to zero. It then computes the transcript hash for ClientHelloInner up to and including
the modified ServerHello, as described in [RFC8446], Section 4.4.1. Let transcript_ech_conf
denote the output. Finally, the backend server overwrites the last 8 bytes of the
ServerHello.random with the following string:

accept_confirmation = HKDF-Expand-Label(
HKDF-Extract(@, ClientHelloInner.random),
"ech accept confirmation",
transcript_ech_conf,
8)

where HKDF-Expand-Label is defined in [RFC8446], Section 7.1, "0" indicates a string of
Hash.length bytes set to zero, and Hash is the hash function used to compute the transcript hash.
In DTLS, the modified version of HKDF-Expand-Label defined in [RFC9147], Section 5.9 is used
instead.

The backend server MUST NOT perform this operation if it negotiated TLS 1.2 or below. Note that
doing so would overwrite the downgrade signal for TLS 1.3 (see [RFC8446], Section 4.1.3).

7.2.1. Sending HelloRetryRequest

When the backend server sends HelloRetryRequest in response to the ClientHello, it similarly
confirms ECH acceptance by adding a confirmation signal to its HelloRetryRequest. But instead
of embedding the signal in the HelloRetryRequest.random (the value of which is specified by
[RFC8446]), it sends the signal in an extension.

The backend server begins by computing HelloRetryRequest as usual, except that it also contains
an "encrypted_client_hello" extension with a payload of 8 zero bytes. It then computes the
transcript hash for the first ClientHelloInner, denoted ClientHelloInnerl, up to and including
the modified HelloRetryRequest. Let transcript_hrr_ech_conf denote the output. Finally, the
backend server overwrites the payload of the "encrypted_client_hello" extension with the
following string:

hrr_accept_confirmation = HKDF-Expand-Label(
HKDF-Extract (@, ClientHelloInner1.random),
“hrr ech accept confirmation",
transcript_hrr_ech_conf,
8)

Rescorla, et al. Standards Track Page 25

https://www.rfc-editor.org/rfc/rfc8446#section-4.4.1
https://www.rfc-editor.org/rfc/rfc8446#section-7.1
https://www.rfc-editor.org/rfc/rfc9147#section-5.9
https://www.rfc-editor.org/rfc/rfc8446#section-4.1.3

RFC 9849 TLS Encrypted Client Hello December 2025

In the subsequent ServerHello message, the backend server sends the accept_confirmation
value as described in Section 7.2.

8. Deployment Considerations

The design of ECH as specified in this document necessarily requires changes to client, client-
facing server, and backend server. Coordination between client-facing and backend server
requires care, as deployment mistakes can lead to compatibility issues. These are discussed in
Section 8.1.

Beyond coordination difficulties, ECH deployments may also induce challenges for use cases of
information that ECH protects. In particular, use cases which depend on this unencrypted
information may no longer work as desired. This is elaborated upon in Section 8.2.

8.1. Compatibility Issues

Unlike most TLS extensions, placing the SNI value in an ECH extension is not interoperable with
existing servers, which expect the value in the existing plaintext extension. Thus, server
operators SHOULD ensure servers understand a given set of ECH keys before advertising them.
Additionally, servers SHOULD retain support for any previously advertised keys for the duration
of their validity.

However, in more complex deployment scenarios, this may be difficult to fully guarantee. Thus,
this protocol was designed to be robust in case of inconsistencies between systems that advertise
ECH keys and servers, at the cost of extra round-trips due to a retry. Two specific scenarios are
detailed below.

8.1.1. Misconfiguration and Deployment Concerns

It is possible for ECH advertisements and servers to become inconsistent. This may occur, for
instance, from DNS misconfiguration, caching issues, or an incomplete rollout in a multi-server
deployment. This may also occur if a server loses its ECH keys, or if a deployment of ECH must
be rolled back on the server.

The retry mechanism repairs inconsistencies, provided the TLS server has a certificate for the
public name. If server and advertised keys mismatch, the server will reject ECH and respond
with "retry_configs". If the server does not understand the "encrypted_client_hello" extension at
all, it will ignore it as required by Section 4.1.2 of [RFC8446]. Provided the server can present a
certificate valid for the public name, the client can safely retry with updated settings, as
described in Section 6.1.6.

Unless ECH is disabled as a result of successfully establishing a connection to the public name,
the client MUST NOT fall back to using unencrypted ClientHellos, as this allows a network
attacker to disclose the contents of this ClientHello, including the SNI. It MAY attempt to use
another server from the DNS results, if one is provided.

Rescorla, et al. Standards Track Page 26

https://www.rfc-editor.org/rfc/rfc8446#section-4.1.2

RFC 9849 TLS Encrypted Client Hello December 2025

In order to ensure that the retry mechanism works successfully, servers SHOULD ensure that
every endpoint which might receive a TLS connection is provisioned with an appropriate
certificate for the public name. This is especially important during periods of server
reconfiguration when different endpoints might have different configurations.

8.1.2. Middleboxes

The requirements in [RFC8446], Section 9.3 which require proxies to act as conforming TLS
client and server provide interoperability with TLS-terminating proxies even in cases where the
server supports ECH but the proxy does not, as detailed below.

The proxy must ignore unknown parameters and generate its own ClientHello containing only
parameters it understands. Thus, when presenting a certificate to the client or sending a
ClientHello to the server, the proxy will act as if connecting to the ClientHelloOuter
server_name, which SHOULD match the public name (see Section 6.1) without echoing the
"encrypted_client_hello" extension.

Depending on whether the client is configured to accept the proxy's certificate as authoritative
for the public name, this may trigger the retry logic described in Section 6.1.6 or result in a
connection failure. A proxy which is not authoritative for the public name cannot forge a signal
to disable ECH.

8.2. Deployment Impact

Some use cases which depend on information ECH encrypts may break with the deployment of
ECH. The extent of breakage depends on a number of external factors, including, for example,
whether ECH can be disabled, whether or not the party disabling ECH is trusted to do so, and
whether or not client implementations will fall back to TLS without ECH in the event of
disablement.

Depending on implementation details and deployment settings, use cases which depend on
plaintext TLS information may require fundamentally different approaches to continue
working. For example, in managed enterprise settings, one approach may be to disable ECH
entirely via group policy and for client implementations to honor this action. Server
deployments which depend on SNI -- e.g., for load balancing -- may no longer function properly
without updates; the nature of those updates is out of scope of this specification.

In the context of Section 6.1.6, another approach may be to intercept and decrypt client TLS
connections. The feasibility of alternative solutions is specific to individual deployments.

9. Compliance Requirements

In the absence of an application profile standard specifying otherwise, a compliant ECH
application MUST implement the following HPKE cipher suite:

* KEM: DHKEM(X25519, HKDF-SHA256) (see Section 7.1 of [HPKE])
* KDF: HKDF-SHA256 (see Section 7.2 of [HPKE])

Rescorla, et al. Standards Track Page 27

https://www.rfc-editor.org/rfc/rfc8446#section-9.3
https://www.rfc-editor.org/rfc/rfc9180#section-7.1
https://www.rfc-editor.org/rfc/rfc9180#section-7.2

RFC 9849 TLS Encrypted Client Hello December 2025
* AEAD: AES-128-GCM (see Section 7.3 of [HPKE])

10. Security Considerations

This section contains security considerations for ECH.

10.1. Security and Privacy Goals

ECH considers two types of attackers: passive and active. Passive attackers can read packets
from the network, but they cannot perform any sort of active behavior such as probing servers
or querying DNS. A middlebox that filters based on plaintext packet contents is one example of a
passive attacker. In contrast, active attackers can also write packets into the network for
malicious purposes, such as interfering with existing connections, probing servers, and querying
DNS. In short, an active attacker corresponds to the conventional threat model [RFC3552] for
TLS 1.3 [RFC8446].

Passive and active attackers can exist anywhere in the network, including between the client
and client-facing server, as well as between the client-facing and backend servers when running
ECH in split mode. However, for split mode in particular, ECH makes two additional
assumptions:

1. The channel between each client-facing and each backend server is authenticated such that
the backend server only accepts messages from trusted client-facing servers. The exact
mechanism for establishing this authenticated channel is out of scope for this document.

2. The attacker cannot correlate messages between a client and client-facing server with
messages between client-facing and backend server. Such correlation could allow an
attacker to link information unique to a backend server, such as their server name or IP
address, with a client's encrypted ClientHelloInner. Correlation could occur through
timing analysis of messages across the client-facing server, or via examining the contents of
messages sent between client-facing and backend servers. The exact mechanism for
preventing this sort of correlation is out of scope for this document.

Given this threat model, the primary goals of ECH are as follows.

1. Security preservation. Use of ECH does not weaken the security properties of TLS without
ECH.

2. Handshake privacy. TLS connection establishment to a server name within an anonymity set
is indistinguishable from a connection to any other server name within the anonymity set.
(The anonymity set is defined in Section 1.)

3. Downgrade resistance. An attacker cannot downgrade a connection that attempts to use
ECH to one that does not use ECH.

These properties were formally proven in [ECH-Analysis].

With regards to handshake privacy, client-facing server configuration determines the size of the
anonymity set. For example, if a client-facing server uses distinct ECHConfig values for each
server name, then each anonymity set has size k = 1. Client-facing servers SHOULD deploy ECH

Rescorla, et al. Standards Track Page 28

https://www.rfc-editor.org/rfc/rfc9180#section-7.3

RFC 9849 TLS Encrypted Client Hello December 2025

in such a way so as to maximize the size of the anonymity set where possible. This means client-
facing servers should use the same ECHConfig for as many server names as possible. An attacker
can distinguish two server names that have different ECHConfig values based on the
ECHClientHello.config_id value.

This also means public information in a TLS handshake should be consistent across server
names. For example, if a client-facing server services many backend origin server names, only
one of which supports some cipher suite, it may be possible to identify that server name based
on the contents of the unencrypted handshake message. Similarly, if a backend origin reuses
KeyShare values, then that provides a unique identifier for that server.

Beyond these primary security and privacy goals, ECH also aims to hide, to some extent, the fact
that it is being used at all. Specifically, the GREASE ECH extension described in Section 6.2 does
not change the security properties of the TLS handshake at all. Its goal is to provide "cover" for
the real ECH protocol (Section 6.1), as a means of addressing the "do not stick out" requirements
of [RFC8744]. See Section 10.10.4 for details.

10.2. Unauthenticated and Plaintext DNS

ECH supports delivery of configurations through the DNS using SVCB or HTTPS records without
requiring any verifiable authenticity or provenance information [RFCYYY1]. This means that any
attacker which can inject DNS responses or poison DNS caches, which is a common scenario in
client access networks, can supply clients with fake ECH configurations (so that the client
encrypts data to them) or strip the ECH configurations from the response. However, in the face
of an attacker that controls DNS, no encryption scheme can work because the attacker can
replace the IP address, thus blocking client connections, or substitute a unique IP address for
each DNS name that was looked up. Thus, using DNS records without additional authentication
does not make the situation significantly worse.

Clearly, DNSSEC (if the client validates and hard fails) is a defense against this form of attack, but
encrypted DNS transport is also a defense against DNS attacks by attackers on the local network,
which is a common case where ClientHello and SNI encryption are desired. Moreover, as
noted in the introduction, SNI encryption is less useful without encryption of DNS queries in
transit.

10.3. Client Tracking

A malicious client-facing server could distribute unique, per-client ECHConfig structures as a
way of tracking clients across subsequent connections. On-path adversaries which know about
these unique keys could also track clients in this way by observing TLS connection attempts.

The cost of this type of attack scales linearly with the desired number of target clients. Moreover,
DNS caching behavior makes targeting individual users for extended periods of time, e.g., using
per-client ECHConfig structures delivered via HTTPS RRs with high TTLs, challenging. Clients
can help mitigate this problem by flushing any DNS or ECHConfig state upon changing networks
(this may not be possible if clients use the operating system resolver rather than doing their own
resolution).

Rescorla, et al. Standards Track Page 29

RFC 9849 TLS Encrypted Client Hello December 2025

ECHConfig rotation rate is also an issue for non-malicious servers, which may want to rotate
keys frequently to limit exposure if the key is compromised. Rotating too frequently limits the
client anonymity set. In practice, servers which service many server names and thus have high
loads are the best candidates to be client-facing servers and so anonymity sets will typically
involve many connections even with fairly fast rotation intervals.

10.4. Ignored Configuration Identifiers and Trial Decryption

Ignoring configuration identifiers may be useful in scenarios where clients and client-facing
servers do not want to reveal information about the client-facing server in the
"encrypted_client_hello" extension. In such settings, clients send a randomly generated
config_idin the ECHClientHello. Servers in these settings must perform trial decryption since
they cannot identify the client's chosen ECH key using the config_id value. As a result, ignoring
configuration identifiers may exacerbate DoS attacks. Specifically, an adversary may send
malicious ClientHello messages, i.e., those which will not decrypt with any known ECH key, in
order to force wasteful decryption. Servers that support this feature should, for example,
implement some form of rate limiting mechanism to limit the potential damage caused by such
attacks.

Unless specified by the application using (D)TLS or externally configured, implementations
MUST NOT use this mode.

10.5. Outer ClientHello

Any information that the client includes in the ClientHelloOuter is visible to passive observers.
The client SHOULD NOT send values in the ClientHelloOuter which would reveal a sensitive
ClientHelloInner property, such as the true server name. It MAY send values associated with
the public name in the ClientHelloOuter.

In particular, some extensions require the client send a server-name-specific value in the
ClientHello. These values may reveal information about the true server name. For example,
the "cached_info" ClientHello extension [RFC7924] can contain the hash of a previously
observed server certificate. The client SHOULD NOT send values associated with the true server
name in the ClientHelloOuter. It MAY send such values in the ClientHelloInner.

A client may also use different preferences in different contexts. For example, it may send
different ALPN lists to different servers or in different application contexts. A client that treats
this context as sensitive SHOULD NOT send context-specific values in ClientHelloOuter.

Values which are independent of the true server name, or other information the client wishes to
protect, MAY be included in ClientHelloOuter. If they match the corresponding
ClientHelloInner, they MAY be compressed as described in Section 5.1. However, note that the
payload length reveals information about which extensions are compressed, so inner extensions
which only sometimes match the corresponding outer extension SHOULD NOT be compressed.

Rescorla, et al. Standards Track Page 30

RFC 9849 TLS Encrypted Client Hello December 2025

Clients MAY include additional extensions in ClientHelloOuter to avoid signaling unusual
behavior to passive observers, provided the choice of value and value itself are not sensitive. See
Section 10.10.4.

10.6. Inner ClientHello

Values which depend on the contents of ClientHelloInner, such as the true server name, can
influence how client-facing servers process this message. In particular, timing side channels can
reveal information about the contents of ClientHelloInner. Implementations should take such
side channels into consideration when reasoning about the privacy properties that ECH provides.

10.7. Related Privacy Leaks

ECH requires encrypted DNS to be an effective privacy protection mechanism. However,
verifying the server's identity from the Certificate message, particularly when using the X509
CertificateType, may result in additional network traffic that may reveal the server identity.
Examples of this traffic may include requests for revocation information, such as Online
Certificate Status Protocol (OCSP) or Certificate Revocation List (CRL) traffic, or requests for
repository information, such as authorityInformationAccess. It may also include
implementation-specific traffic for additional information sources as part of verification.

Implementations SHOULD avoid leaking information that may identify the server. Even when
sent over an encrypted transport, such requests may result in indirect exposure of the server's
identity, such as indicating a specific CA or service being used. To mitigate this risk, servers
SHOULD deliver such information in-band when possible, such as through the use of OCSP
stapling, and clients SHOULD take steps to minimize or protect such requests during certificate
validation.

Attacks that rely on non-ECH traffic to infer server identity in an ECH connection are out of
scope for this document. For example, a client that connects to a particular host prior to ECH
deployment may later resume a connection to that same host after ECH deployment. An
adversary that observes this can deduce that the ECH-enabled connection was made to a host
that the client previously connected to and which is within the same anonymity set.

10.8. Cookies

Section 4.2.2 of [RFC8446] defines a cookie value that servers may send in HelloRetryRequest for
clients to echo in the second ClientHello. While ECH encrypts the cookie in the second
ClientHelloInner, the backend server's HelloRetryRequest is unencrypted. This means
differences in cookies between backend servers, such as lengths or cleartext components, may
leak information about the server identity.

Backend servers in an anonymity set SHOULD NOT reveal information in the cookie which
identifies the server. This may be done by handling HelloRetryRequest statefully, thus not
sending cookies, or by using the same cookie construction for all backend servers.

Rescorla, et al. Standards Track Page 31

https://www.rfc-editor.org/rfc/rfc8446#section-4.2.2

RFC 9849 TLS Encrypted Client Hello December 2025

Note that, if the cookie includes a key name, analogous to Section 4 of [RFC5077], this may leak
information if different backend servers issue cookies with different key names at the time of
the connection. In particular, if the deployment operates in split mode, the backend servers may
not share cookie encryption keys. Backend servers may mitigate this either by handling key
rotation with trial decryption or by coordinating to match key names.

10.9. Attacks Exploiting Acceptance Confirmation

To signal acceptance, the backend server overwrites 8 bytes of its ServerHello. random with a
value derived from the ClientHelloInner . random. (See Section 7.2 for details.) This behavior
increases the likelihood of the ServerHello. random colliding with the ServerHello.random of a
previous session, potentially reducing the overall security of the protocol. However, the
remaining 24 bytes provide enough entropy to ensure this is not a practical avenue of attack.

On the other hand, the probability that two 8-byte strings are the same is non-negligible. This
poses a modest operational risk. Suppose the client-facing server terminates the connection (i.e.,
ECH is rejected or bypassed): if the last 8 bytes of its ServerHello. random coincide with the
confirmation signal, then the client will incorrectly presume acceptance and proceed as if the
backend server terminated the connection. However, the probability of a false positive
occurring for a given connection is only 1 in 2/A64. This value is smaller than the probability of
network connection failures in practice.

Note that the same bytes of the ServerHello. random are used to implement downgrade
protection for TLS 1.3 (see [RFC8446], Section 4.1.3). These mechanisms do not interfere because
the backend server only signals ECH acceptance in TLS 1.3 or higher.

10.10. Comparison Against Criteria

[RFC8744] lists several requirements for SNI encryption. In this section, we reiterate these
requirements and assess the ECH design against them.

10.10.1. Mitigate Cut-and-Paste Attacks

Since servers process either ClientHelloInner or ClientHelloOuter, and because
ClientHelloInner.random is encrypted, it is not possible for an attacker to "cut and paste" the
ECH value in a different Client Hello and learn information from ClientHelloInner.

10.10.2. Avoid Widely Shared Secrets

This design depends upon DNS as a vehicle for semi-static public key distribution. Server
operators may partition their private keys however they see fit provided each server behind an
IP address has the corresponding private key to decrypt a key. Thus, when one ECH key is
provided, sharing is optimally bound by the number of hosts that share an IP address. Server
operators may further limit sharing of private keys by publishing different DNS records
containing ECHConfig values with different public keys using a short TTL.

Rescorla, et al. Standards Track Page 32

https://www.rfc-editor.org/rfc/rfc5077#section-4
https://www.rfc-editor.org/rfc/rfc8446#section-4.1.3

RFC 9849 TLS Encrypted Client Hello December 2025

10.10.3. SNI-Based Denial-of-Service Attacks

This design requires servers to decrypt ClientHello messages with ECHClientHello extensions
carrying valid digests. Thus, it is possible for an attacker to force decryption operations on the
server. This attack is bound by the number of valid transport connections an attacker can open.

10.10.4. Do Not Stick Out

As a means of reducing the impact of network ossification, [RFC8744] recommends SNI-
protection mechanisms be designed in such a way that network operators do not differentiate
connections using the mechanism from connections not using the mechanism. To that end, ECH
is designed to resemble a standard TLS handshake as much as possible. The most obvious
difference is the extension itself: as long as middleboxes ignore it, as required by [RFC8446], the
rest of the handshake is designed to look very much as usual.

The GREASE ECH protocol described in Section 6.2 provides a low-risk way to evaluate the
deployability of ECH. It is designed to mimic the real ECH protocol (Section 6.1) without
changing the security properties of the handshake. The underlying theory is that if GREASE ECH
is deployable without triggering middlebox misbehavior, and real ECH looks enough like
GREASE ECH, then ECH should be deployable as well. Thus, the strategy for mitigating network
ossification is to deploy GREASE ECH widely enough to disincentivize differential treatment of
the real ECH protocol by the network.

Ensuring that networks do not differentiate between real ECH and GREASE ECH may not be
feasible for all implementations. While most middleboxes will not treat them differently, some
operators may wish to block real ECH usage but allow GREASE ECH. This specification aims to
provide a baseline security level that most deployments can achieve easily while providing
implementations enough flexibility to achieve stronger security where possible. Minimally, real
ECH is designed to be indifferentiable from GREASE ECH for passive adversaries with following
capabilities:

1. The attacker does not know the ECHConfigList used by the server.

2. The attacker keeps per-connection state only. In particular, it does not track endpoints
across connections.

Moreover, real ECH and GREASE ECH are designed so that the following features do not
noticeably vary to the attacker, i.e., they are not distinguishers:

1. the code points of extensions negotiated in the clear, and their order;
2. the length of messages; and
3. the values of plaintext alert messages.

This leaves a variety of practical differentiators out-of-scope. including, though not limited to,
the following:

1. the value of the configuration identifier;
2. the value of the outer SNI;

Rescorla, et al. Standards Track Page 33

RFC 9849 TLS Encrypted Client Hello December 2025

3. the TLS version negotiated, which may depend on ECH acceptance;
4. client authentication, which may depend on ECH acceptance; and
5. HRR issuance, which may depend on ECH acceptance.

These can be addressed with more sophisticated implementations, but some mitigations require
coordination between the client and server, and even across different client and server
implementations. These mitigations are out-of-scope for this specification.

10.10.5. Maintain Forward Secrecy

This design does not provide forward secrecy for the inner ClientHello because the server's
ECH key is static. However, the window of exposure is bound by the key lifetime. It is
RECOMMENDED that servers rotate keys regularly.

10.10.6. Enable Multi-party Security Contexts

This design permits servers operating in split mode to forward connections directly to backend
origin servers. The client authenticates the identity of the backend origin server, thereby
allowing the backend origin server to hide behind the client-facing server without the client-
facing server decrypting and reencrypting the connection.

Conversely, if the DNS records used for configuration are authenticated, e.g., via DNSSEC,
spoofing a client-facing server operating in split mode is not possible. See Section 10.2 for more
details regarding plaintext DNS.

Authenticating the ECHConfig structure naturally authenticates the included public name. This
also authenticates any retry signals from the client-facing server because the client validates the
server certificate against the public name before retrying.

10.10.7. Support Multiple Protocols

This design has no impact on application layer protocol negotiation. It may affect connection
routing, server certificate selection, and client certificate verification. Thus, it is compatible with
multiple application and transport protocols. By encrypting the entire ClientHello, this design
additionally supports encrypting the ALPN extension.

10.11. Padding Policy

Variations in the length of the ClientHelloInner ciphertext could leak information about the
corresponding plaintext. Section 6.1.3 describes a RECOMMENDED padding mechanism for
clients aimed at reducing potential information leakage.

10.12. Active Attack Mitigations

This section describes the rationale for ECH properties and mechanics as defenses against active
attacks. In all the attacks below, the attacker is on-path between the target client and server. The
goal of the attacker is to learn private information about the inner ClientHello, such as the true
SNI value.

Rescorla, et al. Standards Track Page 34

RFC 9849 TLS Encrypted Client Hello December 2025

10.12.1. Client Reaction Attack Mitigation

This attack uses the client's reaction to an incorrect certificate as an oracle. The attacker
intercepts a legitimate ClientHello and replies with a ServerHello, Certificate, CertificateVerify,
and Finished messages, wherein the Certificate message contains a "test" certificate for the
domain name it wishes to query. If the client decrypted the Certificate and failed verification (or
leaked information about its verification process by a timing side channel), the attacker learns
that its test certificate name was incorrect. As an example, suppose the client's SNI value in its
inner ClientHello is "example.com," and the attacker replied with a Certificate for "test.com". If
the client produces a verification failure alert because of the mismatch faster than it would due
to the Certificate signature validation, information about the name leaks. Note that the attacker
can also withhold the CertificateVerify message. In that scenario, a client which first verifies the
Certificate would then respond similarly and leak the same information.

Client Attacker Server
ClientHello
+ key_share
+eh ------ > (intercept) ----- > X (drop)
ServerHello

+ key_share
{EncryptedExtensions}
{CertificateRequest*}

{Certificate*}
{CertificateVerify*}

Alert

Figure 3: Client Reaction Attack

ClientHelloInner.random prevents this attack. In particular, since the attacker does not have
access to this value, it cannot produce the right transcript and handshake keys needed for
encrypting the Certificate message. Thus, the client will fail to decrypt the Certificate and abort
the connection.

10.12.2. HelloRetryRequest Hijack Mitigation

This attack aims to exploit server HRR state management to recover information about a
legitimate ClientHello using its own attacker-controlled ClientHello. To begin, the attacker
intercepts and forwards a legitimate ClientHello with an "encrypted_client_hello" (ech)
extension to the server, which triggers a legitimate HelloRetryRequest in return. Rather than
forward the retry to the client, the attacker attempts to generate its own ClientHello in
response based on the contents of the first ClientHello and HelloRetryRequest exchange with
the result that the server encrypts the Certificate to the attacker. If the server used the SNI from
the first ClientHello and the key share from the second (attacker-controlled) ClientHello, the
Certificate produced would leak the client's chosen SNI to the attacker.

Rescorla, et al. Standards Track Page 35

RFC 9849 TLS Encrypted Client Hello December 2025

Client Attacker Server
ClientHello
+ key_share
+eh ------ > (forward) ------- >
HelloRetryRequest
+ key_share
(intercept) S et
ClientHello
+ key_share'
+ eh' 0 - >

ServerHello

+ key_share
{EncryptedExtensions}
{CertificateRequest*}
{Certificate*}
{CertificateVerify*}
{Finished}

(process server flight)

Figure 4: HelloRetryRequest Hijack Attack

This attack is mitigated by using the same HPKE context for both ClientHello messages. The
attacker does not possess the context's keys, so it cannot generate a valid encryption of the
second inner ClientHello.

If the attacker could manipulate the second ClientHello, it might be possible for the server to
act as an oracle if it required parameters from the first ClientHello to match that of the second
ClientHello. For example, imagine the client's original SNI value in the inner ClientHello is
"example.com", and the attacker's hijacked SNI value in its inner ClientHello is "test.com". A
server which checks these for equality and changes behavior based on the result can be used as
an oracle to learn the client's SNI.

10.12.3. ClientHello Malleability Mitigation

This attack aims to leak information about secret parts of the encrypted ClientHello by adding
attacker-controlled parameters and observing the server's response. In particular, the
compression mechanism described in Section 5.1 references parts of a potentially attacker-
controlled ClientHelloOuter to construct ClientHelloInner, or a buggy server may
incorrectly apply parameters from ClientHelloOuter to the handshake.

To begin, the attacker first interacts with a server to obtain a resumption ticket for a given test
domain, such as "example.com". Later, upon receipt of a ClientHelloOuter, it modifies it such
that the server will process the resumption ticket with ClientHelloInner. If the server only
accepts resumption PSKs that match the server name, it will fail the PSK binder check with an
alert when ClientHelloInner is for "example.com" but silently ignore the PSK and continue
when ClientHelloInner is for any other name. This introduces an oracle for testing encrypted
SNI values.

Rescorla, et al. Standards Track Page 36

RFC 9849 TLS Encrypted Client Hello December 2025

Client Attacker Server

handshake and ticket
for "example.com"

ClientHello
+ key_share
+ ech
+ ech_outer_extensions(pre_shared_key)
+ pre_shared_key

(intercept)
ClientHello
+ key_share
+ ech
+ ech_outer_extensions(pre_shared_key)
+ pre_shared_key"'

Alert
_Or—
ServerHello

Finished

Figure 5: Message Flow for Malleable ClientHello

This attack may be generalized to any parameter which the server varies by server name, such
as ALPN preferences.

ECH mitigates this attack by only negotiating TLS parameters from ClientHelloInner and
authenticating all inputs to the ClientHelloInner (EncodedClientHelloInner and
ClientHelloOuter) with the HPKE AEAD. See Section 5.2. The decompression process in Section
5.1 forbids "encrypted_client_hello" in OuterExtensions. This ensures the unauthenticated
portion of ClientHelloOuter is not incorporated into ClientHelloInner. An earlier iteration of
this specification only encrypted and authenticated the "server_name" extension, which left the
overall ClientHello vulnerable to an analogue of this attack.

10.12.4. ClientHelloInner Packet Amplification Mitigation

Client-facing servers must decompress EncodedClientHelloInners. A malicious attacker may
craft a packet which takes excessive resources to decompress or may be much larger than the
incoming packet:

o If looking up a ClientHelloOuter extension takes time linear in the number of extensions,
the overall decoding process would take O(M*N) time, where M is the number of extensions
in ClientHelloOuter and N is the size of OuterExtensions.

Rescorla, et al. Standards Track Page 37

RFC 9849 TLS Encrypted Client Hello December 2025

o If the same ClientHelloOuter extension can be copied multiple times, an attacker could
cause the client-facing server to construct a large ClientHelloInner by including a large
extension in ClientHelloOuter of length L and an OuterExtensions list referencing N
copies of that extension. The client-facing server would then use O(N*L) memory in
response to O(N+L) bandwidth from the client. In split mode, an O(N*L)-sized packet would
then be transmitted to the backend server.

ECH mitigates this attack by requiring that OuterExtensions be referenced in order, that
duplicate references be rejected, and by recommending that client-facing servers use a linear
scan to perform decompression. These requirements are detailed in Section 5.1.

11. TIANA Considerations

11.1. Update of the TLS ExtensionType Registry

IANA has created the following entries in the existing "TLS ExtensionType Values" registry
(defined in [RFC8446]):

1. encrypted_client_hello (0xfe0d), with "TLS 1.3" column values set to "CH, HRR, EE", "DTLS-
Only" column set to "N", and "Recommended" column set to "Y".

2. ech_outer_extensions (0xfd00), with the "TLS 1.3" column values set to "CH", "DTLS-Only"
column set to "N", "Recommended" column set to "Y", and the "Comment" column set to
"Only appears in inner CH."

11.2. Update of the TLS Alert Registry

IANA has created an entry, ech_required (121) in the existing "TLS Alerts" registry (defined in
[RFC8446]), with the "DTLS-OK" column set to "Y".

11.3. ECH Configuration Extension Registry

IANA has created a new "TLS ECHConfig Extension" registry in a new "TLS Encrypted Client
Hello (ECH) Configuration Extensions" registry group. New registrations will list the following
attributes:

Value: The two-byte identifier for the ECHConfigExtension, i.e., the ECHConfigExtensionType

Extension Name: Name of the ECHConfigExtension

Recommended: A "Y"or "N"value indicating if the TLS Working Group recommends that the
extension be supported. This column is assigned a value of "N" unless explicitly requested.
Adding a value of "Y" requires Standards Action [RFC8126].

Reference: The specification where the ECHConfigExtension is defined

Notes: Any notes associated with the entry

Rescorla, et al. Standards Track Page 38

RFC 9849 TLS Encrypted Client Hello December 2025

New entries in the "TLS ECHConfig Extension" registry are subject to the Specification Required
registration policy ([RFC8126], Section 4.6), with the policies described in [RFC8447], Section 17.
IANA has added the following note to the "TLS ECHConfig Extension" registry:

Note: The role of the designated expert is described in RFC 8447. The designated expert
[RFC8126] ensures that the specification is publicly available. It is sufficient to have an Internet-
Draft (that is posted and never published as an RFC) or a document from another standards
body, industry consortium, university site, etc. The expert may provide more in-depth reviews,
but their approval should not be taken as an endorsement of the extension.

This document defines several Reserved values for ECH configuration extensions to be used for
"greasing" as described in Section 6.2.2.

The initial contents for this registry consists of multiple reserved values with the following
attributes, which are repeated for each registration:

Value: 0x0000, 0x1A1A, 0x2A2A, 0x3A3A, 0x4A4A, 0X5A5A, 0X6A6A, 0X7A7A, 0X8A8A, 0X9A9A,
0xAAAA, 0XBABA, 0xCACA, 0xDADA, OXEAEA, 0XFAFA

Extension Name: RESERVED
Recommended: Y
Reference: RFC 9849

Notes: GREASE entries

12. References

12.1. Normative References

[HPKE] Barnes, R., Bhargavan, K., Lipp, B., and C. Wood, "Hybrid Public Key Encryption",
RFC 9180, DOI 10.17487/RF(C9180, February 2022, <https://www.rfc-editor.org/
info/rfc9180>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

[RFC5890] Klensin, J., "Internationalized Domain Names for Applications (IDNA):
Definitions and Document Framework", RFC 5890, DOI 10.17487/RFC5890,
August 2010, <https://www.rfc-editor.org/info/rfc5890>.

[RFC7918] Langley, A., Modadugu, N., and B. Moeller, "Transport Layer Security (TLS) False
Start", RFC 7918, DOI 10.17487/RFC7918, August 2016, <https://www.rfc-
editor.org/info/rfc7918>.

Rescorla, et al. Standards Track Page 39

https://www.rfc-editor.org/rfc/rfc8126#section-4.6
https://www.rfc-editor.org/rfc/rfc8447#section-17
https://www.rfc-editor.org/info/rfc9180
https://www.rfc-editor.org/info/rfc9180
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5890
https://www.rfc-editor.org/info/rfc7918
https://www.rfc-editor.org/info/rfc7918

RFC 9849 TLS Encrypted Client Hello December 2025

[RFC8126] Cotton, M., Leiba, B, and T. Narten, "Guidelines for Writing an IANA
Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June
2017, <https://www.rfc-editor.org/info/rfc8126>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP
14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/
rfc8174>.

[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446,
DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.

[RFC8447] Salowey,]. and S. Turner, "IANA Registry Updates for TLS and DTLS", RFC 8447,
DOI 10.17487/RFC8447, August 2018, <https://www.rfc-editor.org/info/rfc8447>.

[RFC9147] Rescorla, E., Tschofenig, H., and N. Modadugu, "The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3", RFC 9147, DOI 10.17487/RFC9147, April
2022, <https://www.rfc-editor.org/info/rfc9147>.

[RFC9460] Schwartz, B., Bishop, M., and E. Nygren, "Service Binding and Parameter
Specification via the DNS (SVCB and HTTPS Resource Records)", RFC 9460, DOI
10.17487/RFC9460, November 2023, <https://www.rfc-editor.org/info/rfc9460>.

[RFC9525] Saint-Andre, P. and R. Salz, "Service Identity in TLS", RFC 9525, DOI 10.17487/
RFC9525, November 2023, <https://www.rfc-editor.org/info/rfc9525>.

12.2. Informative References

[DNS-TERMS] Hoffman, P. and K. Fujiwara, "DNS Terminology", BCP 219, RFC 9499, DOI
10.17487/RFC9499, March 2024, <https://www.rfc-editor.org/info/rfc9499>.

[ECH-Analysis] Bhargavan, K., Cheval, V., and C. Wood, "A Symbolic Analysis of Privacy for TLS
1.3 with Encrypted Client Hello", CCS '22: Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pp. 365-379, DOI
10.1145/3548606.3559360, November 2022, <https://www.cs.ox.ac.uk/people/
vincent.cheval/publis/BCW-ccs22.pdf>.

[PROTECTED-SNI] Oku, K., "TLS Extensions for Protecting SNI", Work in Progress, Internet-
Draft, draft-kazuho-protected-sni-00, 18 July 2017, <https://datatracker.ietf.org/
doc/html/draft-kazuho-protected-sni-00>.

[RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on Security
Considerations", BCP 72, RFC 3552, DOI 10.17487/RFC3552, July 2003, <https://
www.rfc-editor.org/info/rfc3552>.

[RFC3986] Berners-Lee, T, Fielding, R., and L. Masinter, "Uniform Resource Identifier
(URID): Generic Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005,
<https://www.rfc-editor.org/info/rfc3986>.

Rescorla, et al. Standards Track Page 40

https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8447
https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/info/rfc9460
https://www.rfc-editor.org/info/rfc9525
https://www.rfc-editor.org/info/rfc9499
https://www.cs.ox.ac.uk/people/vincent.cheval/publis/BCW-ccs22.pdf
https://www.cs.ox.ac.uk/people/vincent.cheval/publis/BCW-ccs22.pdf
https://datatracker.ietf.org/doc/html/draft-kazuho-protected-sni-00
https://datatracker.ietf.org/doc/html/draft-kazuho-protected-sni-00
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3986

RFC 9849

[REC5077]

[REC7301]

[RFC7858]

[RFC7924]

[REC80941]

[RFC8484]

[REC8701]

[RFC8744]

[RFC9250]

[RECYYY1]

TLS Encrypted Client Hello December 2025

Salowey, J., Zhou, H., Eronen, P.,, and H. Tschofenig, "Transport Layer Security
(TLS) Session Resumption without Server-Side State", RFC 5077, DOI 10.17487/
RFC5077, January 2008, <https://www.rfc-editor.org/info/rfc5077>.

Friedl, S., Popov, A., Langley, A, and E. Stephan, "Transport Layer Security (TLS)
Application-Layer Protocol Negotiation Extension”, RFC 7301, DOI 10.17487/
RFC7301, July 2014, <https://www.rfc-editor.org/info/rfc7301>.

Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D., and P. Hoffman,
"Specification for DNS over Transport Layer Security (TLS)", RFC 7858, DOI
10.17487/RFC7858, May 2016, <https://www.rfc-editor.org/info/rfc7858>.

Santesson, S. and H. Tschofenig, "Transport Layer Security (TLS) Cached
Information Extension", RFC 7924, DOI 10.17487/RFC7924, July 2016, <https://
www.rfc-editor.org/info/rfc7924>.

Reddy, T., Wing, D., and P. Patil, "DNS over Datagram Transport Layer Security
(DTLS)", RFC 8094, DOI 10.17487/RFC8094, February 2017, <https://www.rfc-
editor.org/info/rfc8094>.

Hoffman, P. and P. McManus, "DNS Queries over HTTPS (DoH)", RFC 8484, DOI
10.17487/RF(C8484, October 2018, <https://www.rfc-editor.org/info/rfc8484>.

Benjamin, D., "Applying Generate Random Extensions And Sustain Extensibility
(GREASE) to TLS Extensibility", RFC 8701, DOI 10.17487/RFC8701, January 2020,
<https://www.rfc-editor.org/info/rfc8701>.

Huitema, C., "Issues and Requirements for Server Name Identification (SNI)
Encryption in TLS", RFC 8744, DOI 10.17487/RFC8744, July 2020, <https://
www.rfc-editor.org/info/rfc8744>.

Huitema, C., Dickinson, S., and A. Mankin, "DNS over Dedicated QUIC
Connections", RFC 9250, DOI 10.17487/RFC9250, May 2022, <https://www.rfc-
editor.org/info/rfc9250>.

Schwartz, B., Bishop, M., and E. Nygren, "Bootstrapping TLS Encrypted
ClientHello with DNS Service Bindings", RFC YYY1, DOI 10.17487/RFCYYY1,
December 2025, <https://www.rfc-editor.org/info/rfcYYY1>.

[WHATWG-IPV4] WHATWG, "URL - IPv4 Parser", WHATWG Living Standard, May 2021,

<https://url.spec.whatwg.org/#concept-ipv4-parser>.

Appendix A. Linear-Time Outer Extension Processing

The following procedure processes the "ech_outer_extensions" extension (see Section 5.1) in
linear time, ensuring that each referenced extension in the ClientHelloOuter is included at

most once:

1. Let I be initialized to zero and N be set to the number of extensions in ClientHelloOuter.

Rescorla, et al.

Standards Track Page 41

https://www.rfc-editor.org/info/rfc5077
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7858
https://www.rfc-editor.org/info/rfc7924
https://www.rfc-editor.org/info/rfc7924
https://www.rfc-editor.org/info/rfc8094
https://www.rfc-editor.org/info/rfc8094
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/info/rfc8701
https://www.rfc-editor.org/info/rfc8744
https://www.rfc-editor.org/info/rfc8744
https://www.rfc-editor.org/info/rfc9250
https://www.rfc-editor.org/info/rfc9250
https://www.rfc-editor.org/info/rfcYYY1
https://url.spec.whatwg.org/#concept-ipv4-parser

RFC 9849 TLS Encrypted Client Hello December 2025

2. For each extension type, E, in OuterExtensions:
o If E is "encrypted_client_hello", abort the connection with an "illegal_parameter" alert and
terminate this procedure.
o While I is less than N and the I-th extension of ClientHelloOuter does not have type E,
increment I.
o IfIis equal to N, abort the connection with an "illegal_parameter" alert and terminate this
procedure.

> Otherwise, the I-th extension of ClientHelloOuter has type E. Copy it to the
EncodedClientHelloInner and increment I.

Acknowledgements

This document draws extensively from ideas in [PROTECTED-SNI], but is a much more limited
mechanism because it depends on the DNS for the protection of the ECH key. Richard Barnes,
Christian Huitema, Patrick McManus, Matthew Prince, Nick Sullivan, Martin Thomson, and
David Benjamin also provided important ideas and contributions.

Authors' Addresses

Eric Rescorla
Knight-Georgetown Institute
Email: ekr@rtfm.com

Kazuho Oku
Fastly
Email: kazuhooku@gmail.com

Nick Sullivan
Cryptography Consulting LLC
Email: nicholas.sullivan+ietf@gmail.com

Christopher A. Wood
Cloudflare
Email: caw@heapingbits.net

Rescorla, et al. Standards Track Page 42

mailto:ekr@rtfm.com
mailto:kazuhooku@gmail.com
mailto:nicholas.sullivan+ietf@gmail.com
mailto:caw@heapingbits.net

	RFC 9849
	TLS Encrypted Client Hello
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Overview
	3.1. Topologies
	3.2. Encrypted ClientHello (ECH)

	4. Encrypted ClientHello Configuration
	4.1. Configuration Identifiers
	4.2. Configuration Extensions

	5. The "encrypted_client_hello" Extension
	5.1. Encoding the ClientHelloInner
	5.2. Authenticating the ClientHelloOuter

	6. Client Behavior
	6.1. Offering ECH
	6.1.1. Encrypting the ClientHello
	6.1.2. GREASE PSK
	6.1.3. Recommended Padding Scheme
	6.1.4. Determining ECH Acceptance
	6.1.5. Handshaking with ClientHelloInner
	6.1.6. Handshaking with ClientHelloOuter
	6.1.7. Authenticating for the Public Name
	6.1.8. Impact of Retry on Future Connections

	6.2. GREASE ECH
	6.2.1. Client Greasing
	6.2.2. Server Greasing

	7. Server Behavior
	7.1. Client-Facing Server
	7.1.1. Sending HelloRetryRequest

	7.2. Backend Server
	7.2.1. Sending HelloRetryRequest

	8. Deployment Considerations
	8.1. Compatibility Issues
	8.1.1. Misconfiguration and Deployment Concerns
	8.1.2. Middleboxes

	8.2. Deployment Impact

	9. Compliance Requirements
	10. Security Considerations
	10.1. Security and Privacy Goals
	10.2. Unauthenticated and Plaintext DNS
	10.3. Client Tracking
	10.4. Ignored Configuration Identifiers and Trial Decryption
	10.5. Outer ClientHello
	10.6. Inner ClientHello
	10.7. Related Privacy Leaks
	10.8. Cookies
	10.9. Attacks Exploiting Acceptance Confirmation
	10.10. Comparison Against Criteria
	10.10.1. Mitigate Cut-and-Paste Attacks
	10.10.2. Avoid Widely Shared Secrets
	10.10.3. SNI-Based Denial-of-Service Attacks
	10.10.4. Do Not Stick Out
	10.10.5. Maintain Forward Secrecy
	10.10.6. Enable Multi-party Security Contexts
	10.10.7. Support Multiple Protocols

	10.11. Padding Policy
	10.12. Active Attack Mitigations
	10.12.1. Client Reaction Attack Mitigation
	10.12.2. HelloRetryRequest Hijack Mitigation
	10.12.3. ClientHello Malleability Mitigation
	10.12.4. ClientHelloInner Packet Amplification Mitigation

	11. IANA Considerations
	11.1. Update of the TLS ExtensionType Registry
	11.2. Update of the TLS Alert Registry
	11.3. ECH Configuration Extension Registry

	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Linear-Time Outer Extension Processing
	Acknowledgements
	Authors' Addresses

