Stream: Internet Engineering Task Force (IETF)

RFC: 9880

Category: Standards Track

Published: January 2026

ISSN: 2070-1721

Authors: M. Koster, Ed. C. Bormann, Ed. A. Keranen

KTC Control AB Universitdt Bremen TZI ~ Ericsson

RFC 9880
Semantic Definition Format (SDF) for Data and
Interactions of Things

Abstract

The Semantic Definition Format (SDF) is a format for domain experts to use in the creation and
maintenance of data and interaction models that describe Things, i.e., physical objects that are
available for interaction over a network. An SDF specification describes definitions of SDF
Objects/SDF Things and their associated interactions (Events, Actions, and Properties), as well as
the Data types for the information exchanged in those interactions. Tools convert this format to
database formats and other serializations as needed.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9880.

Copyright Notice

Copyright (c) 2026 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

Koster, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9880
https://www.rfc-editor.org/info/rfc9880
https://trustee.ietf.org/license-info

RFC 9880 SDF: Semantic Definition Format January 2026

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction
1.1. Structure of This Document
1.2. Terminology and Conventions
Programming Platform Terms
Conceptual Terms
Specification Language Terms

Conventions

2. Overview

2.1. Example Definition

2.2. Elements of an SDF Model
2.2.1. sdfObject
2.2.2. sdfProperty
2.2.3. sdfAction
2.2.4. sdfEvent
2.2.5. sdfData
2.2.6. sdfThing

2.3. Member Names: Given Names and Quality Names
2.3.1. Given Names and Quality Names
2.3.2. Hierarchical Names
2.3.3. Extensibility of Given Names and Quality Names

3. SDF Structure

3.1. Information Block

3.2. Namespaces Block

3.3. Definitions Block

3.4. Top-Level Affordances and sdfData

Koster, et al. Standards Track

L o o 1 U1 U1 b

10
11
12
12
13
13
14

14
14
15
15

16
16
18
19
20

Page 2

RFC 9880 SDF: Semantic Definition Format

4. Names and Namespaces
4.1. Structure
4.2. Contributing Global Names
4.3. Referencing Global Names
4.4. sdfRef
4.4.1. Resolved Models

4.5. sdfRequired
4.6. Common Qualities
4.7. Data Qualities
4.7.1. sdfType
4.7.2. sdfChoice

5. Keywords for Definition Groups
5.1. sdfObject
5.2. sdfProperty
5.3. sdfAction
5.4. sdfEvent
5.5. sdfData

6. High-Level Composition
6.1. Paths in the Model Namespaces
6.2. Modular Composition

6.2.1. Use of the "sdfRef" Keyword to Reuse a Definition
6.3. sdfThing

7. IANA Considerations
7.1. Media Type
7.2. Content-Format
7.3. IETF URN Sub-Namespace for Unit Names (urn:ietf:params:unit)
7.4. SenML Registry Group
7.5. Registries
7.5.1. SDF Quality Names
7.5.2. SDF Quality Name Prefixes

Koster, et al. Standards Track

January 2026

20
20
20
21
21
24

24
26
27
28
29

31
31
31
32
32
33

33
34
34
34

35

36
36
37
37
37
38
38
40

Page 3

RFC 9880 SDF: Semantic Definition Format January 2026

7.5.3. sdfType Values 41
7.5.4. SDF Feature Names 41

8. Security Considerations 42
9. References 43
9.1. Normative References 43
9.2. Informative References 45
Appendix A. Formal Syntax of SDF 47
Appendix B. json-schema.org Rendition of SDF Syntax 52
Appendix C. Data Qualities Inspired by json-schema.org 84
C.1. type "number", type "integer" 85
C.2. type "string" 85
C.3. type "boolean" 86
CA4. type "array" 86
C.5. type "object" 86
C.6. Implementation Notes 87
Appendix D. Composition Examples 87
D.1. Outlet Strip Example 87
D.2. Refrigerator-Freezer Example 88
Appendix E. Some Changes from Earlier Draft Versions of this Specification 89
List of Figures 90
List of Tables 90
Acknowledgements 91
Contributors 91
Authors' Addresses 91

1. Introduction

The Semantic Definition Format (SDF) is concerned with Things, namely physical objects that are
available for interaction over a network. SDF is a format for domain experts to use in the
creation and maintenance of data and interaction models that describe Things. An SDF
specification describes definitions of SDF Objects/SDF Things and their associated interactions

Koster, et al. Standards Track Page 4

RFC 9880 SDF: Semantic Definition Format January 2026

(Events, Actions, and Properties), as well as the Data types for the information exchanged in
those interactions. Tools convert this format to database formats and other serializations as
needed.

SDF is designed to be an extensible format. The present document constitutes the base
specification for SDF, "base SDF" for short. In addition, SDF extensions can be defined, some of
which may make use of extension points specifically defined for this in base SDF. One area for
such extensions would be refinements of SDF's abstract interaction models into protocol
bindings for specific ecosystems (e.g., [SDF-MAPPING]). For the use of certain other extensions, it
may be necessary to indicate in the SDF document using them that a specific extension is in
effect; see Section 3.1 for details of the features quality that can be used for such indications.
With extension points and feature indications available, base SDF does not define a "version"
concept for the SDF format itself (as opposed to version indications within SDF documents
indicating their own evolution; see Section 3.1).

1.1. Structure of This Document

After introductory material and an overview (Section 2) over the elements of the model and the
different kinds of names used, Section 3 introduces the main components of an SDF model.
Section 4 revisits names and structures them into namespaces. Section 5 discusses the inner
structure of the Objects defined by SDF, the sdfObjects, in further detail. Section 6 discusses how
SDF supports composition. Conventional Sections (IANA Considerations, Security Considerations,
Normative References, and Informative References) follow. The normative Appendix A defines
the syntax of SDF in terms of its JSON structures, employing the Concise Data Definition
Language (CDDL) [RFC8610]. This is followed by the informative Appendix B, a rendition of the
SDF syntax in a "JSON Schema" format as they are defined by json-schema.org (collectively
called JSO). The normative Appendix C defines certain terms ("data qualities") used at the SDF
data model level that were inspired by JSO. The informative Appendix D provides a few
examples for the use of composition in SDF. Finally, Appendix E provides some historical
information that can be useful in upgrading earlier, pre-standard SDF models and
implementations to base SDF.

1.2. Terminology and Conventions

Terms introduced in this section are capitalized when used in this section. To maintain
readability, capitalization is only used when needed where they are used in the body of this
document.

Programming Platform Terms

The following definitions mention terms that are used with specific meanings in various
programming platforms, but often have an independent definition for this document, which can
be found further below in this section.

Element: A generic term used here in its English sense. Exceptionally, in Appendix C, the term
is used explicitly in accordance with its meaning in the JSON ecosystem, i.e., the elements of
JSON arrays.

Koster, et al. Standards Track Page 5

RFC 9880 SDF: Semantic Definition Format January 2026

Entry: A key-value pair in a map. (In JSON maps, sometimes also called "member".)

Map: A collection of entries (key-value pairs) where there are no two entries with equivalent
keys. (Also known as associative array, dictionary, or symbol table.)

Object: An otherwise very generic term that JavaScript (and thus JSON) uses for the kind of
maps that were part of the original languages from the outset. In this document, Object is
used exclusively in its general English meaning or as the colloquial shorthand for sdfObject,
even if the type name "object" is imported with JSON-related semantics from a data
definition language.

Property: Certain environments use the term "property"” for a JSON concept that JSON calls
"member" and is called "entry" here, or sometimes just for the map key of these. In this
document, the term Property is specifically reserved for a certain kind of Affordance, even if
the map key "properties" is imported with JSON-related semantics from a data definition
language.

Byte: This document uses the term "byte" in its now-customary sense as a synonym for "octet".

Conceptual Terms

Thing: A physical item that is also available for interaction over a network.

Element: A partor an aspect of something abstract; i.e., the term is used here in its usual
English definition.

Affordance: An element of an interface offered for interaction. Such an element becomes an
Affordance when information is available (directly or indirectly) that indicates how it can or
should be used. In the present document, the term is used for the digital (network-directed)
interfaces of a Thing only; as it is a physical object as well, the Thing might also have physical
affordances such as buttons, dials, and displays. The specification language offers certain
ways to create sets of related Affordances and combine them into "Groupings" (see below).

Property: An Affordance that can potentially be used to read, write, and/or observe state
(current/stored information) on a Grouping.

Action: An Affordance that can potentially be used to perform a named operation on a
Grouping.

Event: An Affordance that can potentially be used to obtain information about what happened
to a Grouping.

Specification Language Terms
SDF Document: Container for SDF Definitions, together with data about the SDF Document

itself (information block). Represented as a JSON text representing a single JSON map, which
is built from nested maps.

Koster, et al. Standards Track Page 6

RFC 9880 SDF: Semantic Definition Format January 2026

SDF Model: Definitions and declarations that model the digital interaction opportunities
offered by one or more kinds of Things, represented by Groupings (sdfObjects and sdfThings).
An SDF Model can be fully contained in a single SDF Document, or it can be built from an SDF
Document that references definitions and declarations from additional SDF documents. The
term SDF Specification can be used when the distinction between the distribution into
individual SDF Documents and the abstract nature of the SDF Model is not of interest.

Block: One or more entries in a JSON map that is part of an SDF specification. These entries can
be described as a Block to emphasize that they serve a specific function together.

Group: An entry in the top-level JSON map that represents the SDF document. Groups also can
be used in certain nested definitions. A group has a Class Name Keyword as its key and a map
of named definition entries (Definition Group) as a value.

Class Name Keyword: One of sdfThing, sdfObject, sdfProperty, sdfAction, sdfEvent, or
sdfData. The Classes for these type keywords are capitalized and prefixed with sdf.

Class: Abstract term for the information that is contained in groups identified by a Class Name
Keyword.

Quality: A metadata item in a definition or declaration that says something about that
definition or declaration. A quality is represented in SDF as an entry in a JSON map (JSON
object) that serves as a definition or declaration. (The term "Quality" is used because another
popular term, "Property", already has a different meaning.)

Definition: An entry in a Definition Group. The entry creates a new semantic term for use in
SDF models and associates it with a set of qualities. Unless the Class Name Keyword of the
Group also makes it a Declaration (see Section 3.3), a definition just defines a term and it does
not create a component item within the enclosing definition.

Declaration: A definition within an enclosing definition that is intended to create a component
item within that enclosing definition. Every declaration can also be used as a definition for
reference elsewhere.

Grouping: An sdfThing or sdfObject, i.e., (directly or indirectly) a description for a combination
of Affordances.

Object, sdfObject: A Grouping where the declarations that it contains are for Affordances only
(Property, Action, and Event declarations). It serves as the main "atom" of reusable semantics
for model construction, representing the interaction model for a Thing that is simple enough
to not require a nested structure. Therefore, sdfObjects are similar to sdfThings, but do not
allow nesting, i.e., they cannot contain other Groupings (sdfObjects or sdfThings).

sdfThing: A Grouping that can contain nested Groupings (sdfThings and sdfObjects). Like
sdfObject, it can also contain Affordance declarations (Property, Action, and Event
declarations). (Note that "Thing" has a different meaning from sdfThing and is therefore not
available as a colloquial shorthand of sdfThing.)

Koster, et al. Standards Track Page 7

RFC 9880 SDF: Semantic Definition Format January 2026

Augmentation Mechanism: A companion document to a base SDF Model that provides
additional information ("augments" the base specification). The information may be for use
in a specific ecosystem or with a specific protocol ("Protocol Binding"). No specific
Augmentation Mechanisms are defined in base SDF. A simple mechanism for such
augmentations has been discussed as a "mapping file" [SDF-MAPPING].

Protocol Binding: A companion document to an SDF Model that defines how to map the
abstract concepts in the model into the protocols that are in use in a specific ecosystem. The
Protocol Binding might supply URL components, numeric IDs, and similar details. Protocol
Bindings are one case of an Augmentation Mechanism.

Conventions

Regular expressions that are used in the text as a "pattern” for some string are interpreted as per
[RFC9485]. (Note that a form of regular expressions is also used as values of the quality pattern;
see Appendix C.2.)

The term "URI" in this document always refers to "full" URIs ("URI" in Section 3 of RFC 3986
[STD66]), never to relative URI references ("relative-ref" in Section 4.1 of RFC 3986 [STD66]),

so the term "URI" does NOT serve as the colloquial abbreviation of "URI-Reference" it is often
used for. Therefore, the "reference resolution” process defined in Section 5 of RFC 3986 [STD66] is
NOT used in this specification. Where necessary, full URIs are assembled out of substrings by
simple concatenation, e.g., when CURIEs are expanded (Section 4.3) or when a global name is
formed out of a namespace absolute-URI (Section 5 of RFC 3986 [STD66]) and a fragment
identifier part (Section 4.1). Also note that URIs are not only used to construct the SDF models,
they are also the subject of SDF models where they are used as data in actual interactions (and
could even be represented as relative references there); these two usages are entirely separate.

The singular form is chosen as the preferred one for the keywords defined in this specification.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

2. Overview

2.1. Example Definition

The overview starts with an example for the SDF definition of a simple sdfObject called
"Switch" (Figure 1).

Koster, et al. Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc3986#section-3
https://www.rfc-editor.org/rfc/rfc3986#section-4.1
https://www.rfc-editor.org/rfc/rfc3986#section-5
https://www.rfc-editor.org/rfc/rfc3986#section-5

RFC 9880 SDF: Semantic Definition Format January 2026

"info": {
“title": "Example document for SDF (Semantic Definition Format)",
"version": "2019-04-24",
"copyright": "Copyright 2019 Example Corp. All rights reserved.",
"license": "https://example.com/license"

}

'amespace": {
"cap": "https://example.com/capability/cap"

"defaultNamespace": "cap",
"sdfObject": {
"Switch": {
"sdfProperty": {
"value": {
"description":
"The state of the switch; false for off and true for on.",
"type": "boolean"

)i
"sdfAction": {
Ilonll: {
"description”:
"Turn the switch on; equivalent to setting value to true."

}I
n ffll : {
"description”:
"Turn the switch off; equivalent to setting value to false."

}

"toggle": {
"description":
"Toggle the switch; equivalent to setting value to its complement."”

}
}
}
}

Figure 1: A Simple Example of an SDF Document

This is a model of a switch. The state value declared in the sdfProperty group, represented by a
Boolean, will be true for "on" and will be false for "off". The Actions on or off declared in the
sdfAction group are redundant with setting the value and are in the example to illustrate that
there are often different ways of achieving the same effect. The action toggle will invert the
value of the sdfProperty value so that 2-way switches can be created; having such action will
avoid the need for retrieving the current value first and then applying/setting the inverted value.

The sdfObject group lists the affordances of Things modeled by this sdfObject. The sdfProperty
group lists the Property affordances described by the model; these represent various
perspectives on the state of the sdfObject. Properties can have additional qualities to describe
the state more precisely. Properties can be annotated to be read, write, or read/write; how this is
actually done by the underlying transfer protocols is not described in the SDF model but left to
companion protocol bindings. Properties are often used with RESTful paradigms [REST-IOT]

Koster, et al. Standards Track Page 9

RFC 9880 SDF: Semantic Definition Format January 2026

describing state. The sdfAction group is the mechanism to describe other interactions in terms
of their names, input, and output data (no data are used in the example), as in a POST method in
REST or in a remote procedure call. The example toggle is an Action that changes the state
based on the current state of the Property named value. (The third type of affordance is Events,
which are not described in this example.)

In the JSON representation, the info group is an exception in that this group's map has keys
taken from the SDF vocabulary. All other groups (such as namespace and sdfObject) have maps
with keys that are freely defined by the model writer (Switch, value, on, etc.). These map keys
are therefore called Given Names. The groups made up of entries with Given Names as keys
usually use the named<> production in the formal syntax of SDF (Appendix A). Where the values
of these entries are maps, these again use SDF vocabulary keys, and so on, generally alternating
in further nesting. The SDF-defined vocabulary items used in the hierarchy of such groups are
often, but not always, called Quality Names or qualities. See Section 2.3 for more information
about naming in SDF.

2.2. Elements of an SDF Model

The SDF language uses six predefined Class Name Keywords for modeling connected Things,
which are illustrated in Figure 2 (limited rendition in the plaintext form of this document, please
use typographic forms for full information).

Koster, et al. Standards Track Page 10

RFC 9880 SDF: Semantic Definition Format January 2026

@sdfThing hasThing

hasProperty [hasEvent hasAction

hasProperty /hasEvent hasAction

0 0+

@sdfProperty @sdevent @sdection

isInstanceOf \hasOutputData
0+

hasInputData /hasOutputData
0

Figure 2: Main Classes Used in SDF Models
The six main Class Name Keywords are discussed below.

2.2.1. sdfObject

sdfObjects, the items listed in an sdfObject definition group, are the main "atom" of reusable
semantics for model construction. The concept aligns in scope with common definition items
from many IoT modeling systems, e.g., ZigBee Clusters [ZCL], OMA SpecWorks LwM2M Objects
[OMA], OCF Resource Types [OCF], and W3C Web of Things Thing Descriptions [WoT].

An sdfObject definition contains a set of sdfProperty, sdfAction, and sdfEvent definitions that
describe the interaction affordances associated with some scope of functionality.

For the granularity of definition, sdfObject definitions are meant to be kept narrow enough in
scope to enable broad reuse and interoperability. For example, defining a light bulb using
separate sdfObject definitions for on/off control, dimming, and color control affordances will
enable interoperable functionality to be configured for diverse product types. An sdfObject
definition for a common on/off control may be used to control many different kinds of Things
that require on/off control.

Koster, et al. Standards Track Page 11

RFC 9880 SDF: Semantic Definition Format January 2026

The presence of one or both of the optional qualities "minItems" and "maxItems" defines the
sdfObject as an array; i.e., all the affordances defined for the sdfObject exist a number of times,
indexed by a number constrained to be between minItems and maxItems, inclusive, if given.
(Note: Setting "minItems" to zero and leaving out "maxItems" puts the minimum constraints on
that array.)

2.2.2. sdfProperty

sdfProperty is used to model elements of state within Things modeled by the enclosing
grouping.

A named definition entry in an sdfProperty may be associated with some protocol affordance to
enable the application to obtain the state variable and, optionally, modify the state variable.

Additionally, some protocols provide for in-time reporting of state changes. (These three aspects
are described by the qualities readable, writable, and observable defined for an sdfProperty.)

Definitions in sdfProperty groups look like the definitions in sdfData groups. However, they
actually declare that a Property with the given qualities potentially is present in the containing
sdfObject.

For definitions in sdfProperty and sdfData, SDF provides qualities that can constrain the
structure and values of data allowed in the interactions modeled by them. It also provides
qualities that associate semantics to this data, such as engineering units and unit scaling
information.

For the data definition within sdfProperty or sdfData, SDF borrows some vocabulary proposed
for drafts 4 [JSO4] [JSO4V] and 7 [JSO7] [JSO7V] of the json-schema.org "JSON Schema" format
(collectively called JSO here), enhanced by qualities that are specific to SDF. Details about the JSO-
inspired vocabulary are in Appendix C. For base SDF, data are constrained to be of simple types
(number, string, boolean), JSON maps composed of named data, and arrays of these types.
Syntax extension points are provided that can be used to provide richer types in a future
extension of this specification (possibly more of which can be borrowed from json-schema.org).

Note that sdfProperty definitions (and sdfData definitions in general) are not intended to
constrain the formats of data used for communication over network interfaces. Where needed,
data definitions for payloads of protocol messages are expected to be part of the protocol
binding.

2.2.3. sdfAction

The sdfAction group contains declarations of Actions, which model affordances that, when
triggered, have an effect that can go beyond just reading, updating, or observing Thing state.
Actions often result in some outward physical effect (which, itself, cannot be modeled in SDF).
From a programmer's perspective, they might be considered to be roughly analogous to method
calls.

Actions may have data parameters; these are each modeled as a single item of input data and
output data. Where multiple parameters need to be modeled, an "object" type can be used to
combine these parameters into one; for an example, see Figure 6 in Appendix C.5.

Koster, et al. Standards Track Page 12

RFC 9880 SDF: Semantic Definition Format January 2026

Actions may be long-running, that is to say that the effects may not take place immediately as
would be expected for an update to an sdfProperty; the effects may play out over time and emit
action results. Actions may also not always complete and may result in application errors, such
as an item blocking the closing of an automatic door.

One idiom for giving an action initiator status and control about the ongoing action is to provide
a URI for an ephemeral "action resource” in the sdfAction output data, allowing the action to
deliver immediate feedback (including errors that prevent the action from starting) and the
action initiator to use the action resource for further observation or modification of the ongoing
action (including canceling it). Base SDF does not provide any tailored support for describing
such action resources; an extension for modeling links in more detail (for instance, [SDFTYPE-
LINK]) may be all that is needed to fully enable modeling them.

Actions may have (or lack) the characteristics of idempotence and side-effect safety (see Section
9.2 of RFC 9110 [STD97] for more on these terms).

Base SDF only provides data constraint modeling and semantics for the input and output data of
definitions in sdfAction groups. Again, data definitions for payloads of protocol messages, and
detailed protocol settings for invoking the action, are expected to be part of the protocol binding.

2.2.4. sdfEvent

The sdfEvent group contains declarations of Events, which model affordances that inform
about "happenings" associated with a Thing modeled by the enclosing sdfObject; these may
result in a signal being stored or emitted as a result.

Note that there is a trivial overlap with sdfProperty state changes, which may also be defined as
Events but are not generally required to be defined as such. However, Events may exhibit
certain ordering, consistency, and reliability requirements that are expected to be supported in
various implementations of sdfEvent that do distinguish sdfEvent from sdfProperty. For
instance, while a state change may simply be superseded by another state change, some Events
are "precious” and need to be preserved even if further Events follow.

Base SDF only provides data constraint modeling and semantics for the output data of Event
affordances. Again, data definitions for payloads of protocol messages, and detailed protocol
settings for soliciting the event, are expected to be part of the protocol binding.

2.2.5. sdfData

Definitions in sdfData groups do not themselves specify affordances. These definitions are
provided separately from those in sdfProperty groups to enable common modeling patterns,
data constraints, and semantic anchor concepts to be factored out for data items that make up
sdfProperty items and serve as input and output data for sdfAction and sdfEvent items. The data
types defined in sdfData definitions only spring to life by being referenced in one of these
contexts (directly or indirectly via some other sdfData definitions).

Koster, et al. Standards Track Page 13

https://www.rfc-editor.org/rfc/rfc9110#section-9.2

RFC 9880 SDF: Semantic Definition Format January 2026

It is a common use case for such a data definition to be shared between an sdfProperty item and
input or output parameters of an sdfAction or output data provided by an sdfEvent. sdfData
definitions also enable factoring out extended application data types, such as mode and machine
state enumerations to be reused across multiple definitions that have similar basic
characteristics and requirements.

2.2.6. sdfThing

Back at the top level, the sdfThing group enables definition of models for complex devices that
will use one or more sdfObject definitions. Like sdfObject, sdfThing groups allow for the
inclusion of interaction affordances, sdfData, as well as "minItems" and "maxItems" qualities.
Therefore, they can be seen as a superset of sdfObject groups, additionally allowing for
composition.

As a result, an sdfThing directly or indirectly contains a set of sdfProperty, sdfAction, and
sdfEvent definitions that describe the interaction affordances associated with some scope of
functionality.

A definition in an sdfThing group can refine the metadata of the definitions it is composed of:
other definitions in sdfThing groups or definitions in sdfObject groups.

2.3. Member Names: Given Names and Quality Names

SDF documents are JSON maps that mostly employ JSON maps as member values, which in turn
mostly employ JSON maps as their member values, and so on. This nested structure of JSON
maps creates a tree, where the edges are the member names (map keys) used in these J[SON
maps. (In certain cases, where member names are not needed, JSON arrays may be interspersed
in this tree.)

2.3.1. Given Names and Quality Names

For any particular JSON map in an SDF document, the set of member names that are used is
either:

* A set of "Quality Names", where the entries in the map are Qualities. Quality Names are
defined by the present specification and its extensions, together with specific semantics to
be associated with the member value given with a certain Quality Name.

* A set of "Given Names", where the entries in the map are separate entities (definitions,
declarations, etc.) that each have names that are chosen by the SDF document author in
order that these names can be employed by a user of that model.

In a path from the root of the tree to any leaf, Quality Names and Given Names roughly alternate
(with the information block, Section 3.1, as a prominent exception).

The meaning of the JSON map that is the member value associated with a Given Name is derived
from the Quality Name that was used as the member name associated to the parent. In the CDDL
grammar given in Appendix A, JSON maps with member names that are Given Names are

defined using the CDDL generic rule reference named<membervalues>, where membervalues is in

Koster, et al. Standards Track Page 14

RFC 9880 SDF: Semantic Definition Format January 2026

turn the structure of the member values of the JSON map, i.e., the value of the member named
by the Given Name. As quality-named maps and given-named maps roughly alternate in a path
down the tree, membervalues is usually a map built from Quality Names as keys.

2.3.2. Hierarchical Names

From the outside of a specification, Given Names are usually used as part of a hierarchical name
that looks like a JSON Pointer [RFC6901]. These hierarchical names are generally rooted in (used
as the fragment identifier in) an outer namespace that looks like an https:// URL (see Section
4).

As Quality Names and Given Names roughly alternate in a path into the model, the JSON Pointer
part of the hierarchical name also alternates between Quality Names and Given Names.

Note that the actual Given Names may need to be encoded when specified via the JSON Pointer
fragment identifier syntax. There are two layers of such encoding: tilde encoding of ~ and / as
per Section 3 of [RFC6901], as well as percent encoding of the tilde-encoded name into a valid
URI fragment as per Section 6 of [RFC6901]. For example, when a model is using the Given Name

warning/danger alarm

(with an embedded slash and a space) for an sdfObject, that sdfObject may need to be referenced
as

#/sdfObject/warning~1danger%20alarm

To sidestep potential interoperability problems, it is probably wise to avoid characters in Given
Names that need such encoding (Quality Names are already defined in such a way that they
never do).

2.3.3. Extensibility of Given Names and Quality Names

In SDF, both Quality Names and Given Names are extension points. This is more obvious for
Quality Names. Extending SDF is mostly done by defining additional qualities. To enable non-
conflicting third party extensions to SDF, qualified names (names with an embedded colon) can
be used as Quality Names.

A nonqualified Quality Name is composed of ASCII letters, digits, and $ signs, starting with a
lower case letter or a $ sign (i.e., using a pattern of "[a-z$] [A-Za-z$68-9]*"). Names with $ signs
are intended to be used for functions separate from most other names; for instance, Scomment is
used for the comment quality in this specification (the presence or absence of a Scomment
quality does not change the meaning of the SDF model). Names that are composed of multiple
English words can use the "lowerCamelCase" convention [CamelCase] for indicating the word
boundaries; no other use is intended for upper case letters in Quality Names.

Koster, et al. Standards Track Page 15

https://www.rfc-editor.org/rfc/rfc6901#section-3
https://www.rfc-editor.org/rfc/rfc6901#section-6

RFC 9880 SDF: Semantic Definition Format January 2026

A qualified Quality Name is composed of a Quality Name Prefix, a : (colon) character, and a
nonqualified Quality Name. Quality Name Prefixes are registered in the "Quality Name Prefixes"
registry in the "Semantic Definition Format (SDF)" registry group (Section 7.5.2). They are
composed of lower case ASCII letters and digits, starting with a lowercase ASCII letter (i.e., using
a pattern of "[a-z][a-zB8-9]*").

Given Names are not restricted by the formal SDF syntax. To enable non-surprising name
translations in tools, combinations of ASCII alphanumeric characters and - (ASCII hyphen/
minus) are preferred, typically employing kebab-case for names constructed out of multiple
words [KebabCase]. ASCII hyphen/minus can then unambiguously be translated to an ASCII _
underscore character and back depending on the programming environment. Some styles also
allow a dot (".") in Given Names. Given Names are often sufficiently self-explanatory that they
can be used in place of the label quality if that is not given. In turn, if a Given Name turns out
too complicated, a more elaborate label can be given and the Given Name kept simple. As Given
Names are "programmers' names", base SDF does not address internationalization of Given
Names. (More likely qualities to receive localizable equivalents by exercising the Quality Name
extension point are label and description).

Further, to enable Given Names to have a more powerful role in building global hierarchical
names, an extension is foreseen that makes use of qualified names for Given Names. So, until
that extension is defined, Given Names with one or more embedded colons are reserved and
MUST NOT be used in an SDF document.

All names in SDF are case-sensitive.

3. SDF Structure

SDF definitions are contained in SDF documents together with data about the SDF document
itself (information block). Definitions and declarations from additional SDF documents can be
referenced; together with the definitions and declarations in the referencing SDF document,
they build the SDF model expressed by that SDF document.

Each SDF document is represented as a single JSON map. This map can be thought of as having
three blocks: the information block, the namespaces block, and the definitions block. These
blocks contain zero or more JSON name/value pairs, the names of which are Quality Names and
the values of which mostly are (nested) maps (the exception defined in base SDF is the
defaultNamespace quality, the value of which is a text string). An empty nested map of this kind
is equivalent to not having the quality included at all.

3.1. Information Block

The information block contains generic metadata for the SDF document itself and all included
definitions. To enable tool integration, the information block is optional in the grammar of SDF;
most processes for working with SDF documents will have policies that only SDF documents
with an info block can be processed. It is therefore RECOMMENDED that SDF validator tools emit
a warning when no information block is found.

Koster, et al. Standards Track Page 16

RFC 9880 SDF: Semantic Definition Format January 2026

The keyword (map key) that defines an information block is "info". The keyword's value is a
nested JSON map with a set of entries that represent qualities that apply to the included
definitions.

Qualities of this map are shown in Table 1. None of these qualities are required or have default
values that are assumed if the quality is absent.

Quality Type Description

title string A short summary to be displayed in search results, etc.
description = string Long-form text description (no constraints)

version string The incremental version of the definition

modified string Time of the latest modification

copyright string Link to text or embedded text containing a copyright notice
license string Link to text or embedded text containing license terms
features array of strings List of extension features used

$comment string Source code comments only, no semantics

Table 1: Qualities of the Information Block

The version quality is used to indicate version information about the set of definitions in the SDF
document. The version is RECOMMENDED to be lexicographically increasing over the life of a
model; a newer model always has a version string that string-compares higher than all previous
versions. This is easily achieved by following the convention to start the version with a date-
time as defined in [RFC3339] or, if new versions are generated less frequently than once a day,
just the full-date (i.e., YYYY-MM-DD); in many cases, that will be all that is needed (see Figure 1
for an example). This specification does not give a strict definition for the format of the version
string, but each system or organization using the version string should define internal structure
and semantics to the level needed for their use. If no further details are provided, a date-time or
full-date in this field can be assumed to indicate the latest update time of the definitions in the
SDF document.

The modified quality can be used with a value using date-time as defined in [RFC3339] (with z
for time-zone) or full-date format to express time of the latest revision of the definitions.

The license string is preferably either a URI that points to a web page with an unambiguous
definition of the license or an [SPDX] license identifier. (As an example, for models to be handled
by the One Data Model liaison group, this license identifier will typically be "BSD-3-Clause".)

The features quality can be used to list names of critical (i.e., cannot be safely ignored) SDF
extension features that need to be understood for the definitions to be properly processed.
Extension feature names will be specified in extension documents. They can either be registered

Koster, et al. Standards Track Page 17

RFC 9880 SDF: Semantic Definition Format January 2026

(see Section 7.5.4 for specifics, which make sure that a registered feature name does not contain
a colon) or be a URI (which always contain a colon). Note that SDF processors are not expected
to, and normally SHOULD NOT, dereference URIs used as feature names; any representation
retrievable under such a URI could be useful to humans, though. (See [DEREF-ID-PATTERN] for a
more extensive discussion of dereferenceable identifiers).

3.2. Namespaces Block
The namespaces block contains the namespace map and the defaultNamespace setting; none of
these qualities are required or have default values that are assumed if the quality is absent.

The namespace map is a map from short names for URIs to the namespace URIs themselves.

The defaultNamespace setting selects one of the entries in the namespace map by giving its short
name. The associated URI (value of this entry) becomes the default namespace for the SDF
document.

Quality Type Description
namespace map Defines short names mapped to namespace URIs, to be used as
identifier prefixes

defaultNamespace string Identifies one of the prefixes in the namespace map to be used
as a default in resolving identifiers

Table 2: Namespaces Block

The following example declares a set of namespaces and defines cap as the default namespace.
By convention, the values in the namespace map contain full URIs without a fragment identifier
and the fragment identifier is then added, if needed, where the namespace entry is used.

"namespace”: {
"cap": "https://example.com/capability/cap",
"zcl": "https://zcl.example.com/sdf"

}

efaultNamespace": "cap

Multiple SDF documents can contribute to the same namespace by using the same namespace
URI for the default namespace across the documents.

If no defaultNamespace setting is given, the SDF document does not contribute to a global
namespace (all definitions remain local to the model and are not accessible for re-use by other
models). As the defaultNamespace is set by supplying a namespace short name, its presence
requires a namespace map that contains a mapping for that namespace short name.

If no namespace mabp is given, no short names for namespace URIs are set up and no
defaultNamespace can be given.

Koster, et al. Standards Track Page 18

RFC 9880 SDF: Semantic Definition Format January 2026

3.3. Definitions Block

The Definitions block contains one or more groups, each identified by a Class Name Keyword
such as sdfObject or sdfProperty. There can only be one group per keyword at this level;
putting all the individual definitions in the group under that keyword is just a shortcut for
identifying the class name keyword that applies to each of them without repeating it for each
definition.

The value of each group is a JSON map, the keys of which serve for naming the individual
definitions in this group, and the corresponding values provide a set of qualities (name-value
pairs) for the individual definition. (In short, these map entries are also termed "named sets of
qualities".)

Each group may contain zero or more definitions. Each identifier defined creates a new type and
term in the target namespace. Declarations have a scope of the definition block they are directly
contained in.

In turn, a definition may contain other definitions. Each definition is a named set of qualities,
i.e., it consists of the newly defined identifier and a set of key-value pairs that represent the
defined qualities and contained definitions.

An example for an sdfObject definition is given in Figure 3:

"sdfObject": {

"foo": {
"sdfProperty": {
"bar": {

"type": "boolean"

Figure 3: Example sdfObject Definition

This example defines an sdfObject "foo" that is defined in the default namespace (full address: #/
sdfObject/foo), containing a Property that can be addressed as #/sdf0Object/foo/
sdfProperty/bar, with data of type boolean.

Often, definitions are also declarations. The definition of the entry "bar" in the Property "foo"
means that data corresponding to the "foo" Property in a Property interaction offered by Thing
can have zero or one components modeled by "bar". Entries within sdfProperty, sdfAction,
and sdfEvent that are in turn within sdfObject or sdfThing entries, are also declarations;
entries within sdfData are not. Similarly, sdfObject or sdfThing entries within an sdfThing
definition specify that the interactions offered by a Thing modeled by this sdfThing include the
interactions modeled by the nested sdfObject or sdfThing.

Koster, et al. Standards Track Page 19

RFC 9880 SDF: Semantic Definition Format January 2026

3.4. Top-Level Affordances and sdfData

Besides their placement within an sdfObject or sdfThing, affordances (i.e., sdfProperty,
sdfAction, and sdfEvent) as well as sdfData can also be placed at the top level of an SDF
document. Since they are not associated with an sdfObject or sdfThing, these kinds of definitions
are intended to be reused via the sdfRef mechanism (see Section 4.4).

4. Names and Namespaces

SDF documents may contribute to a global namespace and may reference elements from that
global namespace. (An SDF document that does not set a defaultNamespace does not contribute
to a global namespace.)

4.1. Structure

Global names look exactly like https:// URIs with attached fragment identifiers.

There is no intention to require that these URIs can be dereferenced. (However, as future
extensions of SDF might find a use for dereferencing global names, the URI should be chosen in
such a way that this may become possible in the future. See also [DEREF-ID-PATTERN] for a
discussion of dereferenceable identifiers.)

The absolute-URI of a global name should be a URI as per Section 3 of RFC 3986 [STD66] with a
scheme of "https" and a path (hier-part in [STD66]). For base SDF, the query part should not be
used (it might be used in extensions).

The fragment identifier is constructed as per Section 6 of [REC6901].

4.2. Contributing Global Names

The fragment identifier part of a global name defined in an SDF document is constructed from a
JSON Pointer that selects the element defined for this name in the SDF document. The absolute-
URI part is a copy of the default namespace.

As a result, the default namespace is always the target namespace for a name for which a
definition is contributed. In order to emphasize that name definitions are contributed to the
default namespace, this namespace is also termed the "target namespace" of the SDF document.

For instance, in Figure 1, definitions for the following global names are contributed:

* https://example.com/capability/cap#/sdfObject/Switch

* https://example.com/capability/cap#/sdfObject/Switch/sdfProperty/value
* https://example.com/capability/cap#/sdfObject/Switch/sdfAction/on

* https://example.com/capability/cap#/sdfObject/Switch/sdfAction/off

* https://example.com/capability/cap#/sdfObject/Switch/sdfAction/toggle

Koster, et al. Standards Track Page 20

https://www.rfc-editor.org/rfc/rfc3986#section-3
https://www.rfc-editor.org/rfc/rfc6901#section-6

RFC 9880 SDF: Semantic Definition Format January 2026

Note the #, which separates the absolute-URI part (Section 4.3 of RFC 3986 [STD66]) from the
fragment identifier part (including the #, a JSON Pointer as in Section 6 of [RFC6901]).

4.3. Referencing Global Names

A name reference takes the form of the production curie in Section 3 of [W3C.NOTE-
curie-20101216], but limiting the IRIs involved in that grammar to URIs as per [STD66] and the
prefixes to ASCII characters [STD80]. (Note that this definition does not make use of the
production safe-curie in [W3C.NOTE-curie-20101216].)

A name that is contributed by the current SDF document can be referenced by a Same-Document
Reference as per Section 4.4 of RFC 3986 [STD66]. As there is little point in referencing the entire
SDF document, this will be a # followed by a JSON Pointer. This is the only kind of name
reference to itself that is possible in an SDF document that does not set a default namespace.

Name references that point outside the current SDF document need to contain CURIE prefixes.
These then reference namespace declarations in the namespaces block.

For example, if a namespace prefix is defined:

"namespace”: {
"foo": "https://example.com/"
}

then this reference to that namespace:
"sdfRef": "foo:#/sdfData/temperatureData"”
references the global name:
"https://example.com/#/sdfData/temperatureData”

Note that there is no way to provide a URI scheme name in a CURIE, so all references to outside
of the document need to go through the namespace map.

Name references occur only in specific elements of the syntax of SDF:

* copying elements via sdfRef values
* pointing to elements via sdfRequired value elements

4.4. sdfRef

In a JSON map establishing a definition, the keyword sdfRef is used to copy the qualities and
enclosed definitions of the referenced definition, indicated by the included name reference, into
the newly formed definition. (This can be compared to the processing of the Sref keyword in

Koster, et al. Standards Track Page 21

https://www.rfc-editor.org/rfc/rfc3986#section-4.3
https://www.rfc-editor.org/rfc/rfc6901#section-6
https://www.rfc-editor.org/rfc/rfc3986#section-4.4

RFC 9880 SDF: Semantic Definition Format January 2026

[JSO7].) The referenced definition should be such that, after copying and applying the additional
qualities in the referencing definition, the newly built definition is also valid SDF (e.g., the copied
qualities and definitions are valid in the context of the new definition).

For example, this reference:

"temperatureProperty": {
"sdfRef": "#/sdfData/temperatureData"

}

creates a new definition "temperatureProperty"” that contains all of the qualities defined in the
definition at /sdfData/temperatureData.

The sdfRef member need not be the only member of a map. Additional members may be present
with the intention of overriding parts of the referenced map or adding new qualities or
definitions.

When processing sdfRef, if the target definition contains also sdfRef (i.e., is based on yet another
definition), that MUST be processed as well.

More formally, for a JSON map that contains an sdfRef member, the semantics are defined to be
as if the following steps were performed:

1. The JSON map that contains the sdfRef member is copied into a variable named "patch".

2. The sdfRef member of the copy in "patch" is removed.

3. The JSON Pointer that is the value of the sdfRef member is dereferenced and the result is
copied into a variable named "original".

4. The JSON Merge Patch algorithm [RFC7396] is applied to patch the contents of "original"
with the contents of "patch".

5. The result of the Merge Patch is used in place of the value of the original JSON map.

Note that the formal syntaxes given in Appendices A and B generally describe the result of
applying a merge-patch. The notations are not powerful enough to describe, for instance, how
the merge-patch algorithm causes null values within the sdfRef to remove members of [SON
maps from the referenced target. Nonetheless, the syntaxes also give the syntax of the sdfRef
itself, which vanishes during the resolution; therefore, in many cases, even merge-patch inputs
will validate with these formal syntaxes.

Given the example (Figure 1) and the following definition:

Koster, et al. Standards Track Page 22

RFC 9880 SDF: Semantic Definition Format January 2026

{
"info": {
"title": "Example light switch using sdfRef"
Ji s
"namespace” : {
"cap": "https://example.com/capability/cap"
Ji s
"defaultNamespace": "cap",
"sdfObject": {
"BasicSwitch": {
"sdfRef": "cap:#/sdfObject/Switch",
"sdfAction": {
"toggle": null
}
}
}

The resulting definition of the "BasicSwitch" sdfObject would be identical to the definition of the
"Switch" sdfObject, except it would not contain the "toggle" Action.

"info": {
"title": "Example light switch using sdfRef"
I
"namespace": {
"cap": "https://example.com/capability/cap"

"defaultNamespace": "cap",
"sdfObject": {
"BasicSwitch": {
"sdfProperty": {
"value": {
"description":
"The state of the switch; false for off and true for on.",

"type": "boolean"

J
"sdfAction": {
"On": {
"description":
“Turn the switch on; equivalent to setting value to true.”
e
n ffll: {
"description”:
"Turn the switch off; equivalent to setting value to false.
}
}

}
}
}

Koster, et al. Standards Track Page 23

RFC 9880 SDF: Semantic Definition Format January 2026

4.4.1. Resolved Models

A model where all sdfRef references are processed as described in Section 4.4 is called a
resolved model.

For example, given the following sdfData definitions:

"sdfData": {
"Coordinate" : {
"type": "number”, "unit": "m"

"X-Coordinate" : {
"sdfRef" : "#/sdfData/Coordinate”,
"description”:
"Distance from the base of the Thing along the X axis."

}

on-neg-X-Coordinate" : {
"sdfRef": "#/sdfData/X-Coordinate",
"minimum": ©
}
}

the definitions would look as follows after being resolved:

"sdfData": {
"Coordinate" : {
“"type": "number", "unit": "m"
"X-Coordinate” : {
"description”:
"Distance from the base of the Thing along the X axis.",
Iltypell : Ilnumberll' llunitll : llmll
”Non—neg—X—Coordinate" 1
"description”:
"Distance from the base of the Thing along the X axis.",
"minimum": @, "type": "number", "unit": "m"
}
}

4.5. sdfRequired

The keyword sdfRequired is provided to apply a constraint that defines for which declarations
the corresponding data are mandatory in a grouping (sdfThing or sdfObject) modeled by the
current definition.

The value of sdfRequired is an array of references, each indicating one or more declarations
that are mandatory to be represented.

Koster, et al. Standards Track Page 24

RFC 9880 SDF: Semantic Definition Format January 2026

References in this array can be SDF names (JSON Pointers) or one of two abbreviated reference
formats:

* A text string with a "referenceable-name”, namely an affordance name or a grouping name:

o All affordance declarations that are directly in the same grouping (i.e., not nested further
in another grouping) and that carry this name are declared to be mandatory to be
represented. Note that there can be multiple such affordance declarations, one per
affordance type.

> The same applies to groupings made mandatory within groupings containing them.

* The Boolean value true. The affordance or grouping itself that carries the sdfRequired
keyword is declared to be mandatory to be represented.

Note that referenceable-names are not subject to the encoding JSON Pointers require as
discussed in Section 2.3.2. To ensure that referenceable-names are reliably distinguished from
JSON Pointers, they are defined such that they cannot contain ":" or "#" characters (see rule
referenceable-name in Appendix A). (If these characters are indeed contained in a Given Name,
a JSON Pointer needs to be formed instead in order to reference it in "sdfRequired", potentially
requiring further path elements as well as JSON Pointer encoding. The need for this is best
avoided by choosing Given Names without these characters.)

The example in Figure 4 shows two required elements in the sdfObject definition for
"temperatureWithAlarm", the sdfProperty "currentTemperature"”, and the sdfEvent
"overTemperatureEvent". The example also shows the use of JSON Pointers with "sdfRef" to use
a pre-existing definition for the sdfProperty "currentTemperature" and for the sdfOutputData
produced by the sdfEvent "overTemperatureEvent".

Koster, et al. Standards Track Page 25

RFC 9880 SDF: Semantic Definition Format January 2026

"sdfObject": {
“temperatureWithAlarm": {
"sdfRequired": [
"#/sdfObject/temperatureWithAlarm/sdfProperty/currentTemperature",
"#/sdfObject/temperatureWithAlarm/sdfEvent/overTemperatureEvent"

”édeata”:{
"temperatureData": {
"type": "number"

}

dfProperty": {

"currentTemperature": {

"sdfRef": "#/sdfObject/temperatureWithAlarm/sdfData/temperatureData",
"writable": false

}

o
"sdfEvent": {
"overTemperatureEvent": {
"sdfOutputData": {
"sdfRef": "#/sdfObject/temperatureWithAlarm/sdfData/temperatureData"”

}
}
}
}
}

Figure 4: Using sdfRequired
In Figure 4, the same sdfRequired can also be represented in short form:
"sdfRequired”: ["currentTemperature", "overTemperatureEvent"]
Or, for instance, "overTemperatureEvent" could carry:
"overTemperatureEvent": {

"sdfRequired”: [true],

}

4.6. Common Qualities

Definitions in SDF share a number of qualities that provide metadata for them. These are listed
in Table 3. None of these qualities are required or have default values that are assumed if the
quality is absent. If a short textual description is required for an application and no label is
given in the SDF model, applications could use the last part (the last reference-token, Section 3
of [RFC6901]) of the JSON Pointer to the definition in its place.

Koster, et al. Standards Track Page 26

https://www.rfc-editor.org/rfc/rfc6901#section-3

RFC 9880 SDF: Semantic Definition Format January 2026

Quality Type Description

description string long text (no constraints)

label string short text (no constraints)

$comment string source code comments only, no semantics
sdfRef sdf-pointer (see Section 4.4)

sdfRequired pointer-list (see Section 4.5, used in affordances or groupings)

Table 3: Common Qualities

4.7. Data Qualities

Data qualities are used in sdfData and sdfProperty definitions, which are named sets of data
qualities (abbreviated as named-sdq).

These qualities include the common qualities, JSO-inspired qualities (see below), and data
qualities defined specifically for the present specification; the latter are shown in Table 4.

Appendix C lists data qualities inspired by the various proposals at json-schema.org; the
intention is that these (information model-level) qualities are compatible with the (data model)
semantics from the versions of the json-schema.org proposal they were imported from.

Quality Type Description Default

(common) Section 4.6

unit string unit name (note 1) N/A

nullable boolean indicates a null value is available for true
this type

contentFormat string content type (IANA media type string N/A

plus parameters), encoding (note 2)

sdfType string (Section 4.7.1) sdfType enumeration (extensible) N/A
sdfChoice named set of data named alternatives N/A
qualities (Section
4.7.2)

Koster, et al. Standards Track Page 27

RFC 9880 SDF: Semantic Definition Format January 2026

Quality Type Description Default
enum array of strings abbreviation for string-valued named N/A
alternatives

Table 4: SDF-Defined Qualities of sdfData and sdfProperty

1. The unit name SHOULD be as per the "SenML Units" registry or the "Secondary Units"
registry in [TANA.senml] as specified by Sections 4.5.1 and 12.1 of [RFC8428] and Section 3 of
[RFC8798], respectively.

Exceptionally, if a registration in these registries cannot be obtained or would be
inappropriate, the unit name can also be a URI that is pointing to a definition of the unit.
Note that SDF processors are not expected to, and normally SHOULD NOT, dereference these
URIs; the definition pointed to may be useful to humans, though. (See [DEREF-ID-PATTERN]
for a more extensive discussion of dereferenceable identifiers).

A URI unit name is distinguished from a registered unit name by the presence of a colon;
therefore, any registered unit names that contain a colon (at the time of writing, none)
cannot be directly used in SDFE.

For use by translators into ecosystems that require URIs for unit names, the URN sub-
namespace "urn:ietf:params:unit” is provided (Section 7.3). URNs from this sub-namespace
MUST NOT be used in a unit quality in favor of simply notating the unit name (such as kg
instead of urn:ietf:params:unit:kg) except where the unit name contains a colon and can
therefore not be directly used in SDF.

2. The contentFormat quality follows the Content-Format-Spec as defined in Section 6 of
[RFC9193], allowing for expressing both numeric and string based Content-Formats.

4.7.1. sdfType

SDF defines a number of basic types beyond those provided by JSON or JSO. These types are
identified by the sdfType quality, which is a text string from a set of type names defined by the
"sdfType values" registry in the "Semantic Definition Format (SDF)" registry group (Section 7.5.3).
The sdfType name is composed of lowercase ASCII letters, digits, and - (ASCII hyphen/minus)
characters, starting with a lowercase ASCII letter (i.e., using a pattern of "[a-z][-a-z0-9]*")
and typically employing kebab-case for names constructed out of multiple words [KebabCase].

To aid interworking with JSO implementations, it is RECOMMENDED that sdfType is always used
in conjunction with the type quality inherited from [JSO7V] in such a way as to yield a common
representation of the type's values in JSON.

Values for sdfType that are defined in this specification are shown in Table 5. This table also
gives a description of the semantics of the sdfType, the conventional value for type to be used
with the sdfType value, and a conventional JSON representation for values of the type. The type
and the JSON representation are chosen to be consistent with each other; this MUST be true for
additionally registered sdfType values as well.

Koster, et al. Standards Track Page 28

https://www.rfc-editor.org/rfc/rfc8428#section-4.5.1
https://www.rfc-editor.org/rfc/rfc8428#section-12.1
https://www.rfc-editor.org/rfc/rfc8798#section-3
https://www.rfc-editor.org/rfc/rfc9193#section-6

RFC 9880 SDF: Semantic Definition Format January 2026

Name Description type JSON Reference
Representation

byte- A sequence of zero string base64url without Section 3.4.5.2 of RFC

string or more bytes padding 8949 [STDY4]

unix- A point in civil time number POSIX time Section 3.4.2 of RFC

time (note 1) 8949 [STDY4]

Table 5: Values Defined in Base SDF for the sdfType Quality

(1) Note that the definition of unix-time does not imply the capability to represent points in
time that fall on leap seconds. More date/time-related sdfTypes are likely to be added in the
sdfType value registry.

4.7.2. sdfChoice

Data can be a choice of named alternatives called sdfChoice. Each alternative is identified by a
name (string, key in the outer JSON map used to represent the overall choice) and a set of
dataqualities (each in an inner JSON map, the value used to represent the individual alternative
in the outer JSON map). Dataqualities that are specified at the same level as the sdfChoice apply
to all choices in the sdfChoice except those specific choices where the dataquality is overridden
at the choice level.

sdfChoice merges the functions of two constructs found in [JSO7V]:

® enum

What could be expressed as:

"enum": ["foo", "bar", "baz"]

in JSO, is often best represented as:

"sdfChoice": {
"foo": { "description": "This is a foonly"},
"bar": { "description":
"As defined in the second world congress"},
"baz": { "description": "From bigzee foobaz"}

}

This allows the placement of other dataqualities such as description in the example.

If an enum needs to use a data type different from the text string, what would, for instance,
have been:

"type": "number",
"enum": [1, 2, 3]

Koster, et al. Standards Track Page 29

https://www.rfc-editor.org/rfc/rfc8949#section-3.4.5.2
https://www.rfc-editor.org/rfc/rfc8949#section-3.4.2

RFC 9880 SDF: Semantic Definition Format January 2026

in JSO, is represented as:

"type": "number",

"sdfChoice": {
"a-better-name-for-alternative-1": { "const": 1 },
"alternative-2": { "const": 2 },
"the-third-alternative": { "const": 3 }

}

where the string names obviously would be chosen in a way that is descriptive for what

these numbers actually stand for; sdfChoice also makes it easy to add number ranges into
the mix.

(Note that const can also be used for strings as in the previous example, for instance, if the
actual string value is indeed a crucial element for the data model.)

* anyOf

JSO provides a type union called any0f, which provides a choice between anonymous
alternatives.

What could have been in JSO:

"anyOf": |
{"type": "array", "minItems": 3, "maxItems": "3",
"items": {"Sref": "#/sdfData/rgbVal"}},
{"type": "array", "minItems": 4, "maxItems": "4",

"items": {"Sref": "#/sdfData/cmykVal"}}
]

can be more descriptively notated in SDF as:

"sdfChoice": {

"rgb": {"type": "array", "minItems": 3, "maxItems": "3",
"items": {"sdfRef": "#/sdfData/rgbVal"}},
"cmyk": {"type": "array", "minItems": 4, "maxItems": "4",

"items": {"sdfRef": "#/sdfData/cmykVal"}}

Note that there is no need in SDF for the type intersection construct al1l0f or the peculiar type-
xor construct oneOf found in [JSO7V].

As a simplification for users of SDF models who are accustomed to the JSO enum keyword, this is
retained, but limited to a choice of text string values, such that:

"enum": ["foo", "bar", "baz"]

is syntactic sugar for:

Koster, et al. Standards Track Page 30

RFC 9880 SDF: Semantic Definition Format January 2026

"sdfChoice": {

"foo": { "const": "foo"},
"bar": { "const": "bar"},
"baz": { "const": "baz"}

}

In a single definition, the keyword enum cannot be used at the same time as the keyword
sdfChoice, as the former is just syntactic sugar for the latter.

5. Keywords for Definition Groups

The following SDF keywords are used to create definition groups in the target namespace. All
these definitions share some common qualities as discussed in Section 4.6.

5.1. sdfObject

The sdfObject keyword denotes a group of zero or more sdfObject definitions. sdfObject
definitions may contain or include definitions of named Properties, Actions, and Events declared
for the sdfObject, as well as named data types (sdfData group) to be used in this or other
sdfObjects.

The qualities of an sdfObject include the common qualities; additional qualities are shown in
Table 6. None of these qualities are required or have default values that are assumed if the
quality is absent.

Quality Type Description

(common) Section 4.6

sdfProperty property zero or more named property definitions for this sdfObject

sdfAction action zero or more named action definitions for this sdfObject

sdfEvent event zero or more named event definitions for this sdfObject

sdfData named- zero or more named data type definitions that might be used in
sdq the above

minltems number (array) minimum number of multiplied affordances in array

maxItems number (array) maximum number of multiplied affordances in array

Table 6: Qualities of sdfObject

5.2. sdfProperty

The sdfProperty keyword denotes a group of zero or more Property definitions.

Koster, et al. Standards Track Page 31

RFC 9880 SDF: Semantic Definition Format January 2026

Properties are used to model elements of state.

The qualities of a Property definition include the data qualities (and thus the common qualities);
see Section 4.7. Additional qualities are shown in Table 7.

Quality Type Description Default
(data) Section 4.7

readable boolean Reads are allowed true
writable boolean Writes are allowed true

observable boolean Flag to indicate asynchronous notification is available true

Table 7: Qualities of sdfProperty

5.3. sdfAction

The sdfAction keyword denotes a group of zero or more Action definitions.

Actions are used to model commands and methods that are invoked. Actions may have
parameter data that is supplied upon invocation and output data that is provided as a direct
result of the invocation of the action (note that "action objects" may also be created to furnish
ongoing information during a long-running action; these would be pointed to by the output data).

The qualities of an Action definition include the common qualities. Additional qualities are
shown in Table 8. None of these qualities are required or have default values that are assumed if
the quality is absent.

Quality Type Description

(common) Section 4.6

sdfInputData map data qualities of the input data for an Action

sdfOutputData map data qualities of the output data for an Action

sdfData named- zero or more named data type definitions that might be used
sdq in the above

Table 8: Qualities of sdfAction

sdfInputData defines the input data of the action. sdfOutputData defines the output data of the
action. As discussed in Section 2.2.3, a set of data qualities with type "object" can be used to
substructure either data item, with optionality indicated by the data quality required.

5.4. sdfEvent

The sdfEvent keyword denotes zero or more Event definitions.

Koster, et al. Standards Track Page 32

RFC 9880 SDF: Semantic Definition Format January 2026

Events are used to model asynchronous occurrences that may be communicated proactively.
Events have data elements that are communicated upon the occurrence of the event.

The qualities of sdfEvent include the common qualities. Additional qualities are shown in Table
9. None of these qualities are required or have default values that are assumed if the quality is
absent.

Quality Type Description

(common) Section 4.6

sdfOutputData map data qualities of the output data for an Event

sdfData named- zero or more named data type definitions that might be used
sdq in the above

Table 9: Qualities of sdfEvent

sdfOutputData defines the output data of the action. As discussed in Section 2.2.4, a set of data
qualities with type "object" can be used to substructure the output data item, with optionality
indicated by the data quality required.

5.5. sdfData

The sdfData keyword denotes a group of zero or more named data type definitions (named-sdq).

An sdfData definition provides a reusable semantic identifier for a type of data item and
describes the constraints on the defined type. sdfData is not itself a declaration, so it does not
cause any of these data items to be included in an affordance definition.

The qualities of sdfData include the data qualities (and thus the common qualities); see Section
4.7.

6. High-Level Composition

The requirements for high-level composition include the following:

* The ability to represent products, standardized product types, and modular products while
maintaining the atomicity of sdfObjects.

* The ability to compose a reusable definition block from sdfObjects. Example: a single plug
unit of an outlet strip with sdfObjects for on/off control, energy monitor, and optional
dimmer, while retaining the atomicity of the individual sdfObjects.

* The ability to compose sdfObjects and other definition blocks into a higher level sdfThing
that represents a product, while retaining the atomicity of sdfObjects.

* The ability to enrich and refine a base definition to have product-specific qualities and
quality values, such as unit, range, and scale settings.

Koster, et al. Standards Track Page 33

RFC 9880 SDF: Semantic Definition Format January 2026

* The ability to reference items in one part of a complex definition from another part of the
same definition. Example: summarizing the energy readings from all plugs in an outlet strip.

6.1. Paths in the Model Namespaces

The model namespace is organized according to terms that are defined in the SDF documents
that contribute to the namespace. For example, definitions that originate from an organization
or vendor are expected to be in a namespace that is specific to that organization or vendor.

The structure of a path in a namespace is defined by the JSON Pointers to the definitions in the
SDF documents in that namespace. For example, if there is an SDF document defining an
sdfObject "Switch" with an action "on", then the reference to the action would be "ns:#/
sdfObject/Switch/sdfAction/on", where ns is the namespace prefix (short name for the
namespace).

6.2. Modular Composition

Modular composition of definitions enables an existing definition (which could be in the same or
another SDF document) to become part of a new definition by including a reference to the
existing definition within the model namespace.

6.2.1. Use of the "sdfRef" Keyword to Reuse a Definition

An existing definition may be used as a template for a new definition, that is, a new definition is
created in the target namespace that uses the defined qualities of some existing definition. This
pattern uses the keyword sdfRef as a quality of a new definition with a value consisting of a
reference to the existing definition that is to be used as a template.

In the definition that uses sdfRef, new qualities may be added and existing qualities from the
referenced definition may be overridden. (Note that JSON maps do not have a defined order, so
the SDF processor may see these overrides before seeing the sdfRef.)

Note that the definition referenced by sdfRef might contain qualities or definitions that are not
valid in the context where the sdfRef is used. In this case, the resulting model, when resolved,
may be invalid. Example: an sdfRef adds an sdfThing definition in an sdfObject definition.

As a convention, overrides are intended to be used only for further restricting the allowable set
of data values. Such a usage is shown in Figure 5: any value allowable for a cable-length is also
an allowable value for a 1ength, with the additional restriction that the length cannot be smaller
than 5 cm. (This is labeled as a convention as it cannot be checked in the general case. A quality
of implementation consideration for a tool might be to provide at least some form of checking.)
Note that the example provides a description that overrides the description of the referenced
definition; as this quality is intended for human consumption, there is no conflict with the
intended goal.

Koster, et al. Standards Track Page 34

RFC 9880 SDF: Semantic Definition Format January 2026

"sdfData":
"length" : {
"type": "number",
"minimum": O,
"unit": "m"
"description”: "There can be no negative lengths."
}

"cable-length" : {
"sdfRef": "#/sdfData/length"
"minimum": 5e-2,
"description”: "Cables must be at least 5 cm."

}

Figure 5: Using an Override to Further Restrict the Set of Data Values

6.3. sdfThing

An sdfThing is a set of declarations and qualities that may be part of a more complex model. For
example, the sdfObject declarations that make up the definition of a single socket of an outlet
strip could be encapsulated in an sdfThing, which itself could be used in a declaration in the
sdfThing definition for the outlet strip. (See Figure 7 in Appendix D.1 for parts of an SDF model
for this example.)

sdfThing definitions carry semantic meaning, such as a defined refrigerator compartment and a
defined freezer compartment, making up a combination refrigerator-freezer product. An
sdfThing may be composed of sdfObjects and other sdfThings. It can also contain sdfData
definitions, as well as declarations of interaction affordances itself, such as a status (on/off) for
the refrigerator-freezer as a whole (see Figure 8 in Appendix D.2 for an example SDF model
illustrating these aspects).

The qualities of sdfThing are shown in Table 10. None of these qualities are required or have
default values that are assumed if the quality is absent. Analogous to sdfObject, the presence of
one or both of the optional qualities "minItems" and "maxItems" defines the sdfThing as an array.

Quality Type Description
(common) Section 4.6
sdfThing thing

sdfObject object

sdfProperty property zero or more named property definitions for this thing
sdfAction action zero or more named action definitions for this thing
sdfEvent event zero or more named event definitions for this thing

Koster, et al. Standards Track Page 35

RFC 9880 SDF: Semantic Definition Format January 2026

Quality Type Description

sdfData named- zero or more named data type definitions that might be used in
sdq the above

minltems number (array) minimum number of multiplied affordances in array

maxItems number (array) maximum number of multiplied affordances in array

Table 10: Qualities of sdfThing

7. TANA Considerations

7.1. Media Type
IANA has added the following Media-Type to the "Media Types" registry [[ANA.media-types].

Name Template Reference

sdf+json application/sdf+json RFC 9880, Section 7.1
Table 11: Media Type Registration for SDF

Type name: application

Subtype name: sdf+json

Required parameters: N/A

Optional parameters: N/A

Encoding considerations: binary (JSON is UTF-8-encoded text)
Security considerations: Section 8 of RFC 9880
Interoperability considerations: none

Published specification: Section 7.1 of RFC 9880

Applications that use this media type: Tools for data and interaction modeling in the Internet
of Things and related environments.

Fragment identifier considerations: A JSON Pointer fragment identifier may be used as defined
in Section 6 of [RFC6901].

Additional information:

Magic number(s): n/a

File extension(s): .sdf.json

Windows Clipboard Name: "Semantic Definition Format (SDF) for Data and Interactions of
Things"

Koster, et al. Standards Track Page 36

https://www.rfc-editor.org/rfc/rfc6901#section-6

RFC 9880 SDF: Semantic Definition Format January 2026

Macintosh file type code(s): n/a
Macintosh Universal Type Identifier code: org.ietf.sdf-json conforms to public.text

Person & email address to contact for further information: ASDF WG mailing list
(asdf@ietf.org) or IETF Applications and Real-Time Area (art@ietf.org)

Intended usage: COMMON
Restrictions on usage: none
Author/Change controller: IETF

Provisional registration: no

7.2. Content-Format

IANA has added the following Content-Format to the "CoAP Content-Formats" registry within the
"Constrained RESTful Environments (CoRE) Parameters" registry group [IANA.core-parameters].

Content Type Content Coding ID Reference

application/sdf+json - 434 RFC 9880
Table 12: SDF Content-Format Registration

7.3. IETF URN Sub-Namespace for Unit Names (urn:ietf:params:unit)

IANA has registered the following value in the "IETF URN Sub-namespace for Registered
Protocol Parameter Identifiers” registry in [TANA.params], following the template in [BCP73]:

Registry name: unit
Specification: RFC 9880

Repository: Combining the symbol values from the "SenML Units" registry and the "Secondary
Units" registry in the "Sensor Measurement Lists (SenML)" registry group [[ANA.senml] as
specified by Sections 4.5.2 and 12.1 of [RFC8428] and Section 3 of [RFC8798], respectively
(which, by the registration policy, are guaranteed to be non-overlapping).

Index value: Percent-encoding (Section 2.1 of RFC 3986 [STD66]) is required of any characters
in unit names except for the set "unreserved" (Section 2.3 of RFC 3986 [STD66]), the set "sub-
delims" (Section 2.2 of RFC 3986 [STD66]), and ":" or "@" (i.e., the result must match the ABNF
rule "pchar" in Section 3.3 of RFC 3986 [STD66]).

7.4. SenML Registry Group

IANA has added the following note to the "Sensor Measurement Lists (SenML)" registry group
[IANA.senml]:

Koster, et al. Standards Track Page 37

https://www.rfc-editor.org/rfc/rfc8428#section-4.5.2
https://www.rfc-editor.org/rfc/rfc8428#section-12.1
https://www.rfc-editor.org/rfc/rfc8798#section-3
https://www.rfc-editor.org/rfc/rfc3986#section-2.1
https://www.rfc-editor.org/rfc/rfc3986#section-2.3
https://www.rfc-editor.org/rfc/rfc3986#section-2.2
https://www.rfc-editor.org/rfc/rfc3986#section-3.3

RFC 9880 SDF: Semantic Definition Format January 2026

In SDF [RFC9880], a URI unit name is distinguished from a registered unit name by the
presence of a colon; any registered unit name that contains a colon can therefore not be
directly used in SDFE.

7.5. Registries
IANA has created the "Semantic Definition Format (SDF)" registry group with the registries
defined in this Section.

7.5.1. SDF Quality Names

IANA has created the "SDF Quality Names" registry in the "Semantic Definition Format (SDF)"
registry group with the following template:

Name: A Quality Name composed of ASCII letters, digits, and dollar signs, starting with a
lowercase ASCII letter or a dollar sign (i.e., using a pattern of "[a-z$][A-Za-z$6-9]*").

Brief Description: A brief description.
Reference: A pointer to a specification.
Change Controller: (See Section 2.3 of RFC 8126 [BCP26])

Quality Names in this registry are intended to be registered in conjunction with RFCs and
activities of the IETF.

The registration policy is Specification Required as per Section 4.6 of RFC 8126 [BCP26]. Note that
the policy is not "RFC Required" or "IETF Review" (Sections 4.7 and 4.8 of RFC 8126 [BCP26]) so
that registrations can be made earlier in the process, even earlier than foreseen in [BCP100].)

The instructions to the Experts are:

* to ascertain that the specification is available in an immutable reference and has achieved a
good level of review in conjunction with RFCs or activities of the IETF, and

* to be frugal in the allocation of Quality Names that are suggestive of generally applicable
semantics, keeping them in reserve for qualities that are likely to enjoy wide use and can
make good use of their conciseness.

The "SDF Quality Names" registry starts out as in Table 13; all references for these initial entries
are to RFC 9880 (this document) and all change controllers are "IETF".

Name Brief Description
$comment source code comments only, no semantics
const constant value

Koster, et al. Standards Track Page 38

https://www.rfc-editor.org/rfc/rfc8126#section-2.3
https://www.rfc-editor.org/rfc/rfc8126#section-4.6
https://www.rfc-editor.org/rfc/rfc8126#section-4.7
https://www.rfc-editor.org/rfc/rfc8126#section-4.8

RFC 9880 SDF: Semantic Definition Format January 2026

Name Brief Description

contentFormat content format

default default value

description long description text

enum sdfChoice limited to text strings

exclusiveMaximum exclusive maximum for a number

exclusiveMinimum exclusive minimum for a number

format specific format for a text string

items items of an array

label short text (no constraints); defaults to key

maxItems maximum number of items in an array

maxLength maximum length for a text string (in characters, i.e., Unicode scalar
values)

maximum maximum for a number

minltems minimum number of items in an array

minLength minimum length for a text string (in characters, i.e., Unicode scalar
values)

minimum minimum for a number

multipleOf step size of number

nullable boolean: can the item be left out?

observable boolean: can the item be observed?

pattern regular expression pattern for a text string

properties named dataqualities for type="object"

readable boolean: can the item be read?

required which data items are required?

sdfChoice named dataqualities for a choice

Koster, et al. Standards Track Page 39

RFC 9880 SDF: Semantic Definition Format January 2026
Name Brief Description
sdfData named dataqualities for an independent data type definition
sdfInputData input data to an action
sdfOutputData output data of an action or event (sdfRequired applies here)
sdfRef sdf-pointer to definition being referenced
sdfRequired pointer-list to declarations of required components
sdfRequiredInputData pointer-list to declarations of required input data for an action
sdfType more detailed information about the type of a string
type general category of data type
uniqueltems boolean: do the items of the array need to be all different?
unit engineering unit and scale (per SenML registry)
writable boolean: can the item be written to?

Table 13: Initial Content of the SDF Quality Names Registry

7.5.2. SDF Quality Name Prefixes
IANA has created the "SDF Quality Name Prefixes" registry in the "Semantic Definition Format

(SDF)" registry group with the following template:

Prefix: A Quality Name prefix composed of lower case ASCII letters and digits, starting with a
lower case ASCII letter (i.e., using a pattern of "[a-z][a-z0-9]*").

Contact: A contact point for the organization that assigns Quality Names with this prefix.

Reference: A pointer to additional information, if available.

Quality Name Prefixes are intended to be registered by organizations that plan to define Quality
Names constructed with an organization-specific prefix (Section 2.3.3).

The registration policy is Expert Review as per Section 4.5 of RFC 8126 [BCP26]. The instructions
to the Expert are to ascertain that the organization will handle Quality Names constructed using
their prefix in a way that roughly achieves the objectives for an IANA registry that supports
interoperability of SDF models employing these Quality Names, including:

* Stability, "stable and permanent";
» Transparency, "readily available" and "in sufficient detail" (Section 4.6 of RFC 8126 [BCP26]).

The "SDF Quality Name Prefixes" registry is empty at this time.

Koster, et al. Standards Track Page 40

https://www.rfc-editor.org/rfc/rfc8126#section-4.5
https://www.rfc-editor.org/rfc/rfc8126#section-4.6

RFC 9880 SDF: Semantic Definition Format January 2026

7.5.3. sdfType Values

IANA has created the "sdfType Values" registry in the "Semantic Definition Format (SDF)"
registry group with the following template:

Name: A name composed of lower case ASCII letters, digits and - (ASCII hyphen/minus)
characters, starting with a lower case ASCII letter (i.e., using a pattern of "[a-z][-a-z08-9]*").

Description: A short description of the information model level structure and semantics.

type: The value of the quality "type" to be used with this sdfType.

JSON Representation: A short description of a JSON representation that can be used for this
sdfType. As per Section 4.7.1, this MUST be consistent with the type.

Reference: A more detailed specification of meaning and use of sdfType.

sdfType values are intended to be registered to enable modeling additional SDF-specific types
(see Section 4.7.1).

The registration policy is Specification Required as per Section 4.6 of RFC 8126 [BCP26]. The
instructions to the Expert are to ascertain that the specification provides enough detail to enable
interoperability between implementations of the sdfType being registered, and that names are
chosen with enough specificity that ecosystem-specific sdfTypes will not be confused with more
generally applicable ones.

The initial set of registrations is described in Table 5.

7.5.4. SDF Feature Names

IANA has created the "SDF Feature Names" registry in the "Semantic Definition Format (SDF)"
registry group with the following template:

Name: A feature name composed of ASCII letters, digits, and dollar signs, starting with a lower
case ASCII letter or a dollar sign (i.e., using a pattern of "[a-z$][A-Za-z$0-9]*").

Brief Description: A brief description.

Reference: A pointer to a specification.

Change Controller: (See Section 2.3 of RFC 8126 [BCP26])

The registration policy is Specification Required as per Section 4.6 of RFC 8126 [BCP26].

The instructions to the Experts are:

* to ascertain that the specification is available in an immutable reference and has achieved a
good level of review, and

Koster, et al. Standards Track Page 41

https://www.rfc-editor.org/rfc/rfc8126#section-4.6
https://www.rfc-editor.org/rfc/rfc8126#section-2.3
https://www.rfc-editor.org/rfc/rfc8126#section-4.6

RFC 9880 SDF: Semantic Definition Format January 2026

* to be frugal in the allocation of feature names that are suggestive of generally applicable
semantics, keeping them in reserve for features that are likely to enjoy wide use and can
make good use of their conciseness.

The "SDF Feature Names" registry is empty at this time.

8. Security Considerations

Some wider security considerations applicable to Things are discussed in [RFC8576].

Section 5 of [RFC8610] gives an overview over security considerations that arise when formal
description techniques are used to govern interoperability; analogs of these security
considerations can apply to SDF.

The security considerations of underlying building blocks such as those detailed in Section 10 of
RFC 3629 [STD63] apply.

SDF uses JSON as a representation language. For a number of cases, [STD90] indicates that
implementation behavior for certain constructs allowed by the JSON grammar is unpredictable.

Implementations need to be robust against invalid or unpredictable cases on input, preferably
by rejecting input that is invalid or that would lead to unpredictable behavior, and avoid
generating these cases on output.

Implementations of model languages may also exhibit performance-related availability issues
when the attacker can control the input, see Section 4.1 of [RFC9535] for a brief discussion and
Section 8 of [RFC9485] for considerations specific to the use of pattern.

SDF may be used in two processes that are often security relevant: (1) model-based validation of
data that is intended to be described by SDF models, and (2) model-based augmentation of these
data with information obtained from the SDF models that apply.

Implementations need to ascertain the provenance (and thus authenticity and integrity) and
applicability of the SDF models they employ operationally in such security-relevant ways.
Implementations that make use of the composition mechanisms defined in this document need
to do this for each of the components they combine into the SDF models they employ. Essentially,
this process needs to undergo the same care and scrutiny as any other introduction of source
code into a build environment; the possibility of supply-chain attacks on the modules imported
needs to be considered.

Specifically, implementations might rely on model-based input validation for enforcing certain
characteristics of the data structure ingested (which, if not validated, could lead to malfunctions
such as crashes and remote code execution). These implementations need to be particularly
careful about the data models they apply, including their provenance and potential changes of
these characteristics that upgrades to the referenced modules may (inadvertently or as part of
an attack) cause. More generally speaking, implementations should strive to be robust against
expected and unexpected limitations of the model-based input validation mechanisms and their
implementations.

Koster, et al. Standards Track Page 42

https://www.rfc-editor.org/rfc/rfc8610#section-5
https://www.rfc-editor.org/rfc/rfc3629#section-10
https://www.rfc-editor.org/rfc/rfc9535#section-4.1
https://www.rfc-editor.org/rfc/rfc9485#section-8

RFC 9880 SDF: Semantic Definition Format January 2026

Similarly, implementations that rely on model-based augmentation may generate false data
from their inputs; this is an integrity violation in any case, but also can possibly be exploited for
further attacks.

In applications that dynamically acquire models and obtain modules from module references in
these models, the security considerations of dereferenceable identifiers apply (see [DEREF-ID-
PATTERN] for a more extensive discussion of dereferenceable identifiers).

There may be confidentiality requirements on SDF models, both on their content and on the fact
that a specific model is used in a particular Thing or environment. The present specification
does not discuss model discovery or define an access control model for SDF models, nor does it
define a way to obtain selective disclosure where that may be required. It is likely that these
definitions require additional context from underlying ecosystems and the characteristics of the
protocols employed there; therefore, this is left as future work (e.g., for documents such as [SDF-
MAPPING])).

9. References

9.1. Normative References

[BCP26] Best Current Practice 26, <https://www.rfc-editor.org/info/bcp26>.
At the time of writing, this BCP comprises the following:

Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA
Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June
2017, <https://www.rfc-editor.org/info/rfc8126>.

[BCP73] Best Current Practice 73, <https://www.rfc-editor.org/info/bcp73>.
At the time of writing, this BCP comprises the following:

Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An IETF URN Sub-
namespace for Registered Protocol Parameters", BCP 73, RFC 3553, DOI 10.17487/
RFC3553, June 2003, <https://www.rfc-editor.org/info/rfc3553>.

[IANA.core-parameters] IANA, "Constrained RESTful Environments (CoRE) Parameters",
<https://www.iana.org/assignments/core-parameters>.

[IANA.media-types] IANA, "Media Types", <https://www.iana.org/assignments/media-types>.

[IANA.params] IANA, "Uniform Resource Name (URN) Namespace for IETF Use", <https://
www.iana.org/assignments/params>.

[IANA.senml] IANA, "Sensor Measurement Lists (SenML)", <https://www.iana.org/assignments/
senml>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

Koster, et al. Standards Track Page 43

https://www.rfc-editor.org/info/bcp26
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/bcp73
https://www.rfc-editor.org/info/rfc3553
https://www.iana.org/assignments/core-parameters
https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/params
https://www.iana.org/assignments/params
https://www.iana.org/assignments/senml
https://www.iana.org/assignments/senml
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

RFC 9880

[REC3339]

[REC6901]

[RFC7396]

[RFC8174]

[RFC8428]

[RFC8610]

[RFC8798]

[RFC9165]

[RFC9193]

[RFC9562]

[SPDX]
[STD63]

Koster, et al.

SDF: Semantic Definition Format January 2026

Klyne, G. and C. Newman, "Date and Time on the Internet: Timestamps", RFC
3339, DOI 10.17487/RFC3339, July 2002, <https://www.rfc-editor.org/info/
rfc3339>.

Bryan, P, Ed., Zyp, K., and M. Nottingham, Ed., "JavaScript Object Notation
(JSON) Pointer”, RFC 6901, DOI 10.17487/RFC6901, April 2013, <https://www.rfc-
editor.org/info/rfc6901>.

Hoffman, P. and J. Snell, "JSON Merge Patch", RFC 7396, DOI 10.17487/RFC7396,
October 2014, <https://www.rfc-editor.org/info/rfc7396>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP
14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/
rfc8174>.

Jennings, C., Shelby, Z., Arkko, J., Keranen, A., and C. Bormann, "Sensor
Measurement Lists (SenML)", RFC 8428, DOI 10.17487/RFC8428, August 2018,
<https://www.rfc-editor.org/info/rfc8428>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures”, RFC 8610, DOI 10.17487/
RFC8610, June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Bormann, C., "Additional Units for Sensor Measurement Lists (SenML)", RFC
8798, DOI 10.17487/RFC8798, June 2020, <https://www.rfc-editor.org/info/
rfc8798>.

Bormann, C., "Additional Control Operators for the Concise Data Definition
Language (CDDL)", RFC 9165, DOI 10.17487/RFC9165, December 2021, <https://
www.rfc-editor.org/info/rfc9165>.

Kerdnen, A. and C. Bormann, "Sensor Measurement Lists (SenML) Fields for
Indicating Data Value Content-Format", RFC 9193, DOI 10.17487/RFC9193, June
2022, <https://www.rfc-editor.org/info/rfc9193>.

Davis, K., Peabody, B., and P. Leach, "Universally Unique IDentifiers (UUIDs)",
RFC 9562, DOI 10.17487/RFC9562, May 2024, <https://www.rfc-editor.org/info/
rfc9562>.

"SPDX License List", <https://spdx.org/licenses/>.

Internet Standard 63, <https://www.rfc-editor.org/info/std63>.
At the time of writing, this STD comprises the following:

Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629,
DOI 10.17487/RFC3629, November 2003, <https://www.rfc-editor.org/info/
rfc3629>.

Standards Track Page 44

https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc7396
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8428
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8798
https://www.rfc-editor.org/info/rfc8798
https://www.rfc-editor.org/info/rfc9165
https://www.rfc-editor.org/info/rfc9165
https://www.rfc-editor.org/info/rfc9193
https://www.rfc-editor.org/info/rfc9562
https://www.rfc-editor.org/info/rfc9562
https://spdx.org/licenses/
https://www.rfc-editor.org/info/std63
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629

RFC 9880

[STD66]

[STD80]

[STD90]

[STD94]

SDF: Semantic Definition Format January 2026

Internet Standard 66, <https://www.rfc-editor.org/info/std66>.
At the time of writing, this STD comprises the following:

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier
(URI): Generic Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005,
<https://www.rfc-editor.org/info/rfc3986>.

Internet Standard 80, <https://www.rfc-editor.org/info/std80>.
At the time of writing, this STD comprises the following:

Cerf, V., "ASCII format for network interchange", STD 80, RFC 20, DOI 10.17487/
RFC0020, October 1969, <https://www.rfc-editor.org/info/rfc20>.

Internet Standard 90, <https://www.rfc-editor.org/info/std90>.
At the time of writing, this STD comprises the following:

Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format",
STD 90, RFC 8259, DOI 10.17487/RFC8259, December 2017, <https://www.rfc-
editor.org/info/rfc8259>.

Internet Standard 94, <https://www.rfc-editor.org/info/std94>.
At the time of writing, this STD comprises the following:

Bormann, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)",
STD 94, RFC 8949, DOI 10.17487/RFC8949, December 2020, <https://www.rfc-
editor.org/info/rfc8949>.

[W3C.NOTE-curie-20101216] Birbeck, M., Ed. and S. McCarron, Ed., "CURIE Syntax 1.0", W3C

Working Group Note, 16 December 2010, <https://www.w3.org/TR/2010/NOTE-
curie-20101216/>.

9.2. Informative References

[BCP100]

[CamelCase]

Best Current Practice 100, <https://www.rfc-editor.org/info/bcp100>.
At the time of writing, this BCP comprises the following:

Cotton, M., "Early IANA Allocation of Standards Track Code Points", BCP 100, RFC
7120, DOI 10.17487/RFC7120, January 2014, <https://www.rfc-editor.org/info/
rfc7120>.

"Camel Case", December 2014, <http://wiki.c2.com/?CamelCase>.

[DEREF-ID-PATTERN] Bormann, C. and C. Amsiiss, "The "dereferenceable identifier" pattern”,

Koster, et al.

Work in Progress, Internet-Draft, draft-bormann-t2trg-deref-id-06, 30 August
2025, <https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-deref-id-06>.

Standards Track Page 45

https://www.rfc-editor.org/info/std66
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/std80
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/std90
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/std94
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.w3.org/TR/2010/NOTE-curie-20101216/
https://www.w3.org/TR/2010/NOTE-curie-20101216/
https://www.rfc-editor.org/info/bcp100
https://www.rfc-editor.org/info/rfc7120
https://www.rfc-editor.org/info/rfc7120
http://wiki.c2.com/?CamelCase
https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-deref-id-06

RFC 9880 SDF: Semantic Definition Format January 2026

[ECMA-262] Ecma International, "ECMAScript 2025 Language Specification", 16th Edition,
ECMA Standard ECMA-262, June 2025, <https://ecma-international.org/wp-
content/uploads/ECMA-262_16th_edition_june_2025.pdf>.

[JSO4] Galiegue, F, Ed., Zyp, K., Ed., and G. Court, "JSON Schema: core definitions and
terminology", Work in Progress, Internet-Draft, draft-zyp-json-schema-04, 31
January 2013, <https://datatracker.ietf.org/doc/html/draft-zyp-json-schema-04>.

[JSO4V] Zyp, K. and G. Court, "JSON Schema: interactive and non interactive validation",
Work in Progress, Internet-Draft, draft-fge-json-schema-validation-00, 31
January 2013, <https://datatracker.ietf.org/doc/html/draft-fge-json-schema-
validation-00>.

[JSO7] Wright, A., Ed., Andrews, H., Ed., Hutton, B., Ed., and G. Dennis, "JSON Schema:
A Media Type for Describing JSON Documents"”, Work in Progress, Internet-
Draft, draft-handrews-json-schema-02, 17 September 2019, <https://
datatracker.ietf.org/doc/html/draft-handrews-json-schema-02>.

[JSO7V] Wright, A., Ed., Andrews, H., Ed., and B. Hutton, Ed., "JSON Schema Validation: A
Vocabulary for Structural Validation of JSON", Work in Progress, Internet-Draft,
draft-handrews-json-schema-validation-02, 17 September 2019, <https://
datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-02>.

[KebabCase] "Kebab Case", August 2014, <http://wiki.c2.com/?KebabCase>.

[OCF] Open Connectivity Foundation, "OCF Resource Type Specification", Version 2.2.7,
November 2023, <https://openconnectivity.org/specs/
OCF_Resource_Type_Specification.pdf>.

[OMA] Open Mobile Alliance, "LwM2M OBJECTS", <https://
www.openmobilealliance.org/specifications/registries/objects>.

[REST-IOT] Kerédnen, A., Kovatsch, M., and K. Hartke, "Guidance on RESTful Design for
Internet of Things Systems", Work in Progress, Internet-Draft, draft-irtf-t2trg-
rest-iot-17, 20 October 2025, <https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-
rest-iot-17>.

[RFC8576] Garcia-Morchon, O., Kumar, S., and M. Sethi, "Internet of Things (IoT) Security:
State of the Art and Challenges", RFC 8576, DOI 10.17487/RFC8576, April 2019,
<https://www.rfc-editor.org/info/rfc8576>.

[RFC9485] Bormann, C. and T. Bray, "I-Regexp: An Interoperable Regular Expression
Format", RFC 9485, DOI 10.17487/RFC9485, October 2023, <https://www.rfc-
editor.org/info/rfc9485>.

[RFC9535] Gossner, S., Ed., Normington, G., Ed., and C. Bormann, Ed., "JSONPath: Query
Expressions for JSON", RFC 9535, DOI 10.17487/RFC9535, February 2024, <https://
www.rfc-editor.org/info/rfc9535>.

Koster, et al. Standards Track Page 46

https://ecma-international.org/wp-content/uploads/ECMA-262_16th_edition_june_2025.pdf
https://ecma-international.org/wp-content/uploads/ECMA-262_16th_edition_june_2025.pdf
https://datatracker.ietf.org/doc/html/draft-zyp-json-schema-04
https://datatracker.ietf.org/doc/html/draft-fge-json-schema-validation-00
https://datatracker.ietf.org/doc/html/draft-fge-json-schema-validation-00
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-02
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-02
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-02
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-02
http://wiki.c2.com/?KebabCase
https://openconnectivity.org/specs/OCF_Resource_Type_Specification.pdf
https://openconnectivity.org/specs/OCF_Resource_Type_Specification.pdf
https://www.openmobilealliance.org/specifications/registries/objects
https://www.openmobilealliance.org/specifications/registries/objects
https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-rest-iot-17
https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-rest-iot-17
https://www.rfc-editor.org/info/rfc8576
https://www.rfc-editor.org/info/rfc9485
https://www.rfc-editor.org/info/rfc9485
https://www.rfc-editor.org/info/rfc9535
https://www.rfc-editor.org/info/rfc9535

RFC 9880 SDF: Semantic Definition Format January 2026

[SDE-MAPPING] Bormann, C. and J. Romann, "Semantic Definition Format (SDF): Mapping
files", Work in Progress, Internet-Draft, draft-ietf-asdf-sdf-mapping-00, 18
December 2025, <https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-
mapping-00>.

[SDFTYPE-LINK] Bormann, C. and A. Kerdnen, "An sdfType for Links", Work in Progress,
Internet-Draft, draft-ietf-asdf-sdftype-link-01, 19 December 2025, <https://
datatracker.ietf.org/doc/html/draft-ietf-asdf-sdftype-link-01>.

[STD97] Internet Standard 97, <https://www.rfc-editor.org/info/std97>.
At the time of writing, this STD comprises the following:

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed., "HTTP Semantics", STD
97, RFC 9110, DOI 10.17487/RFC9110, June 2022, <https://www.rfc-editor.org/info/
rfc9110>.

[WoT] Kaebisch, S., Ed., McCool, M., Ed., and E. Korkan, Ed., "Web of Things (WoT)
Thing Description 1.1", W3C Recommendation, 5 December 2023, <https://
www.w3.0rg/TR/2023/REC-wot-thing-description11-20231205/>.

[ZCL] "Chapter 6 - The ZigBee Cluster Library", Zighee Wireless Networking, pp.
239-271,D0OI 10.1016/b978-0-7506-8597-9.00006-9, ISBN 9780750685979, 2008,
<https://doi.org/10.1016/b978-0-7506-8597-9.00006-9>.

Appendix A. Formal Syntax of SDF

This normative appendix describes the syntax of SDF using CDDL [RFC8610].

This appendix shows the framework syntax only, i.e., a syntax with liberal extension points.
Since this syntax is nearly useless in finding typos in an SDF specification, a second syntax, the
validation syntax, is defined that does not include the extension points. The validation syntax
can be generated from the framework syntax by leaving out all lines containing the string
EXTENSION-POINT; as this is trivial, the result is not shown here.

This appendix makes use of CDDL "features" as defined in Section 4 of [RFC9165]. Features
whose names end in "-ext" indicate extension points for further evolution.

start = sdf-syntax

sdf-syntax = {
; info will be required in most process policies
info: sdfinfo
namespace: named<text>
defaultNamespace: text
; Thing is a composition of objects that work together in some way
? sdfThing: named<thingqualities>
; Object is a set of Properties, Actions, and Events that together
; perform a particular function
? sdfObject: named<objectqualities>

WD)) -

Koster, et al. Standards Track Page 47

https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-mapping-00
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-mapping-00
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdftype-link-01
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdftype-link-01
https://www.rfc-editor.org/info/std97
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.w3.org/TR/2023/REC-wot-thing-description11-20231205/
https://www.w3.org/TR/2023/REC-wot-thing-description11-20231205/
https://doi.org/10.1016/b978-0-7506-8597-9.00006-9
https://www.rfc-editor.org/rfc/rfc9165#section-4

RFC 9880 SDF: Semantic Definition Format January 2026

; Includes Properties, Actions, and Events as well as sdfData
paedataqualities

* SSSDF-EXTENSION-TOP

EXTENSION-POINT<"top-ext">

}

sdfinfo = {

? title: text

description: text

version: text

copyright: text

license: text

modified: modified-date-time
features: [

N N N N o) N

* (any .feature "feature-name") ; EXTENSION-POINT

optional-comment
* $SSDF-EXTENSION-INFO
EXTENSION-POINT<"info-ext">

}

; Shortcut for a map that gives names to instances of X
; (has keys of type text and values of type X)
named<X> = { * text => X }

; EXTENSION-POINT is only used in framework syntax
EXTENSION-POINT<f> = (* (quality-name .feature f) => any)
quality-name = text .regexp "([a-z][a-zB8-9]*:)?[a-zS8][A-Za-z$0-9]*"

sdf-pointer = global / same-object / true

global = text .regexp ".*[:#].*" ; rough CURIE or JSON Pointer syntax
same-object = referenceable-name

referenceable-name = text .regexp "[A:#]*"

; per se no point in having an empty list, but used for sdfRequired
; in odmobject-multiple_axis_joystick.sdf.json
pointer-list = [* sdf-pointer]

optional-comment = (

? Scomment: text ; source code comments only, no semantics
)
commonqualities = (
? description: text ; long text (no constraints)
? label: text ; short text (no constraints); default to key

optional-comment

? sdfRef: sdf-pointer

; applies to qualities of properties, of data:
? sdfRequired: pointer-1list

)

arraydefinitionqualities = (
? "minItems" => uint
? "maxItems" => uint

)

paedataqualities = (
; Property represents the state of an instance of an object

Koster, et al. Standards Track Page 48

RFC 9880 SDF: Semantic Definition Format January 2026

? sdfProperty: named<propertyqualities>

Action invokes an application layer verb associated with an object
? sdfAction: named<actionqualities>

Event represents an occurrence of event associated with an object
? sdfEvent: named<eventqualities>

; Data represents a piece of information that can be the state of a
property or a parameter to an action or a signal in an event

? sdfData: named<dataqualities>

)

; for building hierarchy
thingqualities = {

commonqualities

? sdfObject: named<objectqualities>
? sdfThing: named<thingqualities>
paedataqualities
arraydefinitionqualities

* SSSDF-EXTENSION-THING
EXTENSION-POINT<"thing-ext">

}

; for single objects, or for arrays of objects
objectqualities = {

commonqualities

paedataqualities

arraydefinitionqualities

* SSSDF-EXTENSION-OBJECT
EXTENSION-POINT<"object-ext">

}

parameter-list = dataqualities

actionqualities = {

commonqualities

? sdfInputData: parameter-list ; sdfRequiredInputData applies here
? sdfOutputData: parameter-list ; sdfRequired applies here

; zero or more named data type definitions that might be used above
? sdfData: named<dataqualities>

* SSSDF-EXTENSION-ACTION

EXTENSION-POINT<"action-ext">

}

eventqualities = {

commonqualities

? sdfOutputData: parameter-list ; sdfRequired applies here

; zero or more named data type definitions that might be used above
? sdfData: named<dataqualities>

* SSSDF-EXTENSION-EVENT

EXTENSION-POINT<"event-ext">

}

sdftype-name = text .regexp "[a-z][-a-zB-9]*" : EXTENSION-POINT
dataqualities = {

commonqualities

jsonschema
? "unit" => text

Koster, et al. Standards Track Page 49

RFC 9880 SDF: Semantic Definition Format January 2026

? nullable: bool
? "sdfType" => "byte-string” / "unix-time"
/ S$SDF-EXTENSION-SDFTYPE .within sdftype-name
/ (sdftype-name .feature "sdftype-ext") ; EXTENSION-POINT
? contentFormat: text
* SSSDF-EXTENSION-DATA
EXTENSION-POINT<"data-ext">

}

propertyqualities = {
observable: bool

? readable: bool

? writable: bool

* $SSDF-EXTENSION-PROPERTY
~dataqualities

}

allowed-types

-~

number / text / bool / null

[* number] / [* text] / [* bool]
{* text => any}
SSDF-EXTENSION-ALLOWED

(any .feature "allowed-ext")

~N S~~~ 1

; EXTENSION-POINT

compound-type = (
"type" => "object"
? required: [+text]
? properties: named<dataqualities>

optional-choice = (
? (("sdfChoice" => named<dataqualities>)
// ("enum" => [+ text])) ; limited to text strings

jsonschema = (
? (("type" => "number" / "string" / "boolean" / "integer" / "array")
// compound-type
// $SSDF-EXTENSION-TYPE
// (type: text .feature "type-ext") ; EXTENSION-POINT
; if present, all other qualities apply to all choices:
optional-choice
; the next three should validate against type:
? const: allowed-types
? default: allowed-types
number/integer constraints
minimum: number
maximum: number
exclusiveMinimum: number
exclusiveMaximum: number
multipleOf: number
text string constraints
minLength: uint
maxLength: uint
pattern: text , regexp
format: "date-time" / "date" / "time"
/ "uri" / "uri-reference" / "uuid"
/ SSDF-EXTENSION-FORMAT .within text

D D))) e

D D) D) -

Koster, et al. Standards Track Page 50

RFC 9880 SDF: Semantic Definition Format

/ (text .feature "format-ext") ; EXTENSION-POINT
array constraints

minItems: uint

maxItems: uint

uniqueltems: bool

items: jso-items

D D)) -

)

jso-items = {
? sdfRef: sdf-pointer ; import limited to subset allowed here...
? description: text ; long text (no constraints)
optional-comment
; leave commonqualities out for non-complex data types,
: but need the above three.
; no further nesting: no "array"
? ((type: "number" / "string" / "boolean" / "integer")
// compound-type
// $SSDF-EXTENSION-ITEMTYPE
// (type: text .feature "itemtype-ext") ; EXTENSION-POINT
; if present, all other qualities apply to all choices
optional-choice
; jso subset
minimum: number
maximum: number
format: text
minLength: uint
maxLength: uint
$SSDF-EXTENSION-ITEMS
EXTENSION-POINT<"items-ext">

}

modified-date-time =
modified-dt-abnf =

oD N N N) -

text .abnf modified-dt-abnf
"modified-dt" .det rfc3339z

; RFC 3339 sans time-numoffset, slightly condensed

rfc3339z =

date-fullyear = 4DIGIT

date-month = 2DIGIT ; ©1-12

date-mday = 2DIGIT ; ©1-28, 01-29, 01-30, 01-31 based on
; month/year

time-hour = 2DIGIT ; ©00-23

time-minute = 2DIGIT ; ©6-59

time-second = 2DIGIT ; 00-58, ©0-59, 00-60 based on leap sec
; rules

time-secfrac = "." 1*DIGIT

DIGIT = %x30-39 ; 8-9

partial-time = time-hour ":" time-minute ":" time-second

[time-secfrac]
date-fullyear

full-date = -" date-month "-" date-mday

modified-dt = full-date ["T" partial-time "Z"]

Koster, et al. Standards Track

January 2026

Page 51

RFC 9880 SDF: Semantic Definition Format

Appendix B. json-schema.org Rendition of SDF Syntax

January 2026

This informative appendix describes the syntax of SDF defined in Appendix A, but uses a version

of the description techniques advertised on json-schema.org [JSO7] [[SO7V].

The appendix shows both the validation and the framework syntax. Since most of the lines are
the same between these two files, those lines are shown only once, with a leading space, in the
form of a unified diff. Lines leading with a - are part of the validation syntax and lines leading

with a + are part of the framework syntax.

- "title": "sdf-validation.cddl -- Generated: 2025-10-13T08:43:18Z",
+

"title": "sdf-framework.cddl -- Generated: 2025-10-13T08:43:297",
"Sschema": "http://json-schema.org/draft-07/schema#",
"Sref": "#/definitions/sdf-syntax",
"definitions": {
"sdf-syntax": {
"type": "object",
"properties”: {
"info": {
"Sref": "#/definitions/sdfinfo"
H
"namespace” : {
"type": "object",
"additionalProperties": {
"type": "string"
}
H
"defaultNamespace": {
"type": "string"

b
"sdfThing": {
"type": "object",
"additionalProperties": {
"Sref": "#/definitions/thingqualities”

}
b
"sdfObject": {
"type": "object",
"additionalProperties": {
"Sref": "#/definitions/objectqualities”
}
}

”'dfProperty”: {
"Sref": "#/definitions/sdfProperty-"

},
"sdfAction": {
"Sref": "#/definitions/sdfAction-"
},
"sdfEvent": {
"Sref": "#/definitions/sdfEvent-"
},
"sdfData": {
Koster, et al. Standards Track

Page 52

RFC 9880 SDF: Semantic Definition Format

"Sref": "#/definitions/sdfData-sdfChoice-properties-"

}
’)
+ "patternProperties"
+ "A(?:[a-z][a-z6- 9]*)?[a-zS]1[A-Za-2z$6-9]1*$8": {}
+ I

"additionalProperties”: false

o
"sdfinfo": {
"type": "object",
"properties”: {
"title": {
"type": "string"

”éescription”: {
"type": "string"

"version": {
"type": "string"

”éopyright": {
"type": "string"

"iicense": {
"type": "string"

"modified” {
"Sref": "#/definitions/modified-date-time"
|8
"features": {
= "type": "array",
= "maxItems": @
"type": llarrayll
},
"Scomment": {
"type" : llStringll

},

+ "patternProperties": {
+ "A(?:[a-z][a-z08-9]*:)?[a-2zS][A-Za-2z80-9]*S": {}

"édditionalProperties": false

”&odified—date-time": {
"type" : lIStringll

"thingqualities": {
"type": "object",
"properties”": {

"description”: {
"type": "string"
}!

"label": {
"type" : lIStringll

”écomment”: {
"type" : lIStringll

Koster, et al. Standards Track

January 2026

Page 53

RFC 9880 SDF: Semantic Definition Format January 2026

"sdfRef": {
"Sref": "#/definitions/sdf-pointer"”
}
"sdfRequired": {
"Sref": "#/definitions/pointer-list"
}
"sdfObject": {
"type": "object",
"additionalProperties": {
"Sref": "#/definitions/objectqualities”
}
}
"sdfThing": {
"type": "object",
"additionalProperties": {
"Sref": "#/definitions/thingqualities”
}
}

”'dfProperty”: {
"Sref": "#/definitions/sdfProperty-"

}.
"sdfAction": {
"Sref": "#/definitions/sdfAction-"
}.
"sdfEvent": {
"Sref": "#/definitions/sdfEvent-"
}.
"sdfData": {
"Sref": "#/definitions/sdfData-sdfChoice-properties-"
}.
"minItems": {
"Sref": "#/definitions/uint"
}.
"maxItems": {
"Sref": "#/definitions/uint"
}
}.
+ "patternProperties": {
2 "A(?:[a-z][a-zB8-9]*:)?[a-zS][A-Za-z$0-9]1*S8": {}
+ I
"additionalProperties”: false
}
"sdf-pointer": {
"anyOf": |
"Sref": "#/definitions/global”
¥
{
"Sref": "#/definitions/same-object"”
¥
{
"Sref": "#/definitions/true"
}
]
}
"global": {

lltypell : "String”,
"pattern”: "ALAMNNNM\\r]*[:#][A\\n\\r]*$"

Koster, et al. Standards Track Page 54

RFC 9880 SDF: Semantic Definition Format

}

'ame—object": {
"Sref": "#/definitions/referenceable-name"

”}eferenceable-name": {
lltypell : lIStringll,
"pattern": "A[A:#]*S"

b
n ruell: {
"type": "boolean",
"const": true
b
"pointer-list": {
"type": "array",
"items": {
"Sref": "#/definitions/sdf-pointer"
}
b
"objectqualities": {
"type": "object",
"properties”: {
"description": {
"type": "string"
”iabel": {
"type": "string"
"écomment”: {
"type": "string"
H
"sdfRef": {
"Sref": "#/definitions/sdf-pointer"
H
"sdfRequired": {
"Sref": "#/definitions/pointer-list"
b
"sdfProperty": {
"Sref": "#/definitions/sdfProperty-"
H
"sdfAction": {
"Sref": "#/definitions/sdfAction-"
H
"sdfEvent": {
"Sref": "#/definitions/sdfEvent-"
b
"sdfData": {
"Sref": "#/definitions/sdfData-sdfChoice-properties-"
H
"minItems": {
"Sref": "#/definitions/uint"
H
"maxItems": {
"Sref": "#/definitions/uint"
}
)
+ "patternProperties”: {
2 "A(?:[a-z][a-zB-9]*:)?[a-zS][A-Za-z$0-9]1*S8": {}
+ ’
Koster, et al. Standards Track

January 2026

Page 55

RFC 9880 SDF: Semantic Definition Format

"additionalProperties"”: false

o
"propertyqualities”:
"anyOf": |
{
"type": "object",

+ "patternProperties": {
+ "A(?:[a-z][a-z08-9]*:)?[a-zS][A-Za-z80-9]*$": {}
+

"broperties”: {
"type’: |
"Sref": "#/definitions/type-"

e
"sdfChoice": {

"Sref": "#/definitions/sdfData-sdfChoice-properties-"
}

'bservable": {
"type": "boolean"

”}eadable”: {
"type": "boolean"
”Writable”: {
"type": "boolean"
”aescription”: {
lltypell : lIStringll
”iabel": {
lltypell : lIStringll

”écomment”: {
"type" : lIStringll

"sdfRef": {

"Sref": "#/definitions/sdf-pointer"
e
"sdfRequired”: {

"Sref": "#/definitions/pointer-list"
”éonst": {

"Sref": "#/definitions/allowed-types"
e
"default":

"Sref": "#/definitions/allowed-types"
}

"minimum”: {
"type": "number"
"maximum” : {
"type": "number"
"exclusiveMinimum": {
"type": "number"

"exclusiveMaximum": {
"type": "number"

Koster, et al. Standards Track

January 2026

Page 56

RFC 9880 SDF: Semantic Definition Format

"multipleOf": {
"type": "number"

”hinLength": {

"Sref": "#/definitions/uint"
}.
"maxLength": {

"Sref": "#/definitions/uint"
}.
"pattern”: {

"type": "string"
"%ormat": {

"Sref": "#/definitions/format-"
”hinItems”: {

"Sref": "#/definitions/uint"

”haxItems”: {
"Sref": "#/definitions/uint"
}

”'niqueItems”: {
"type": "boolean"
”items": {
"Sref": "#/definitions/jso-items"
unit s {
"type": "string"

”ﬁullable”: {
"type": "boolean"

Vs
"sdfType": {
"Sref": "#/definitions/sdfType-"

"contentFormat": {
"type": "string"

"édditionalProperties": false

s
{
"type": "object",
+ "patternProperties": {
+ "A(?:[a-z][a-z0-9]*:)?[a-zS][A-Za-z80-9]*S": {}
+ b
"properties”: {
"type": {
"type": "string",
"const": "object"
"}equired”: {
"type”: llarrayll,
"items": {
"type": "string"
"ﬁinItems": 1
Koster, et al. Standards Track

January 2026

Page 57

RFC 9880 SDF: Semantic Definition Format January 2026

}

'roperties": {
"Sref": "#/definitions/sdfData-sdfChoice-properties-"

e
"sdfChoice": {

"Sref": "#/definitions/sdfData-sdfChoice-properties-"
}

'bservable": {
"type": "boolean"

”}eadable”: {

"type": "boolean"
”Writable”: {

"type": "boolean"
”aescription”: {

"type" : lIStringll
”iabel": {

"type" : lIStringll
”écomment”: {

"type" : lIStringll
"sdfRef": {

"Sref": "#/definitions/sdf-pointer"
}

”'deequired”: {
"Sref": "#/definitions/pointer-list"

”éonst": {

"Sref": "#/definitions/allowed-types"
e
"default": {

"Sref": "#/definitions/allowed-types"
}

"minimum”: {
"type": "number"

"maximum” : {
"type": "number"

"exclusiveMinimum": {
"type": "number"

"exclusiveMaximum": {
"type": "number"

”ﬁultipleOf": {
"type": "number"

”ﬁinLength": {

"Sref": "#/definitions/uint"
}
"maxLength": {

"Sref": "#/definitions/uint"

}

Koster, et al. Standards Track Page 58

RFC 9880

I T Tk G T T S T s T S T S S S S A S S S A

Koster, et al.

SDF: Semantic Definition Format

"pattern”: {
"type": "string"

"%ormat":
"Sref": "#/definitions/format-"

”hinItems”: {
"Sref": "#/definitions/uint"

”haxItems”: {
"Sref": "#/definitions/uint"
}

'niqueItems": {
"type": "boolean"

”items": {
"Sref": "#/definitions/jso-items"

"Unit": {
"type": "string"

”ﬁullable”: {
"type": "boolean"

Vs
"sdfType": {
"Sref": "#/definitions/sdfType-"

"contentFormat": {
"type": "string"

"édditionalProperties": false

H
{
"type": "object",
"patternProperties": {
"A(?:[a-z][a-z08-9]*:)?[a-zS][A-Za-z80-9]*S": {}
}

'roperties”: {
"type": {
"type": "string"

H
"sdfChoice": {

"Sref": "#/definitions/sdfData-sdfChoice-properties-"

”ébservable": {
"type": "boolean"

”}eadable”: {
"type": "boolean"

”Writable”: {
"type": "boolean"

”aescription”: {
"type": "string"

"label": {

Standards Track

January 2026

Page 59

RFC 9880

Tk Tk Tt T T s s s T S e e e S S A S S A e G T T T T T 2 i T o T s o e S T o S S S S S S A S S S S S

Koster, et al.

SDF: Semantic Definition Format

"type": "string"

”écomment”: {
"type": "string"

o
"sdfRef": {
"Sref": "#/definitions/sdf-pointer"

o
"sdfRequired": {

"Sref": "#/definitions/pointer-1list"
o
"const": {

"Sref": "#/definitions/allowed-types"
"aefault": {

"Sref": "#/definitions/allowed-types"

"minimum" : {
"type": "number"

"maximum" : {
"type": "number"

"exclusiveMinimum": {
"type": "number"

"exclusiveMaximum": {
"type": "number"

¥
"multipleOf": {
"type": "number"

”ﬁinLength": {
"Sref": "#/definitions/uint"

o
"maxLength": {
"Sref": "#/definitions/uint"

s
"pattern”: {
"type": "string"

"%ormat”:
"Sref": "#/definitions/format-"

”ﬁinItems”: {
"Sref": "#/definitions/uint"

”ﬁaxItems”: {
"Sref": "#/definitions/uint"

”&niqueItems”: {
"type": "boolean"

”items":
"Sref": "#/definitions/jso-items"
}

"Unit": {
"type": "string"

Standards Track

January 2026

Page 60

RFC 9880 SDF: Semantic Definition Format January 2026

Jir
"nullable": {
"type": "boolean"

e
"sdfType": {

"Sref": "#/definitions/sdfType-"
e
"contentFormat": {
lltypell : "String”

}

'dditionalProperties": false

"type": "object",
"patternProperties": {
"A(?:[a-z][a-z08-9]*:)?[a-zS][A-Za-z80-9]*$": {}

+++ A+ A+

"broperties”: {
"type’: |
"Sref": "#/definitions/type-"

"enum" : {
"type": llarrayll,
"items": {

"type": "string"

"ﬁinItems": 1

)

’bservable": {
"type": "boolean"

”}eadable”: {
"type": "boolean"

”Writable”: {
"type": "boolean"

”éescription”: {
"type": "string"

},
"label": {
"type": "string"

”écomment”: {
"type": "string"

o
"sdfRef": {
"Sref": "#/definitions/sdf-pointer"

o
"sdfRequired": {

"Sref": "#/definitions/pointer-1list"
”éonst": {

"Sref": "#/definitions/allowed-types"
o
"default": {

"Sref": "#/definitions/allowed-types"

Koster, et al. Standards Track Page 61

RFC 9880 SDF: Semantic Definition Format January 2026

}

"minimum”: {
"type": "number"

"maximum” : {
"type": "number"

"exclusiveMinimum": {
"type": "number"

"exclusiveMaximum": {
"type": "number"

”ﬁultipleOf": {
"type": "number"

”ﬁinLength": {
"Sref": "#/definitions/uint"

}
"maxLength": {
"Sref": "#/definitions/uint"

Jir
"pattern”: {
"type" : lIStringll

"%ormat":
"Sref": "#/definitions/format-"
}
"minItems": {
"Sref": "#/definitions/uint"

”ﬁaxItems”: {
"Sref": "#/definitions/uint"
}

'niqueItems": {
"type": "boolean"

”items": {
"Sref": "#/definitions/jso-items"

”ﬂnit”: {
"type" : lIStringll

"nullable”: {
"type": "boolean"

e
"sdfType": {
"Sref": "#/definitions/sdfType-"

"contentFormat": {
"type" : lIStringll

"édditionalProperties": false
o

{
"type": "object",
+ "patternProperties": {

Koster, et al. Standards Track Page 62

RFC 9880 SDF: Semantic Definition Format

+ "A(?:[a-z][a-z08-9]*:)?[a-zS][A-Za-z80-9]*S$": {}
+ ’
"properties”": {
"type": {
"type": "string",
"const": "object"

"}equired”: {
"type”: llarrayll,
"items": {

"type": "string"
"ﬁinItems": 1

”broperties”: {

"Sref": "#/definitions/sdfData-sdfChoice-properties-"

"enum": {
"type": "array”,
"items": {

utypen : ”String”

"minItems": 1

}

'bservable": {
"type": "boolean"

”}eadable”: {
"type": "boolean"

”Writable”: {
"type": "boolean"

”aescription”: {
"type": "string"

}
"label": {
"type": "string"

"écomment”: {
"type": "string"

Vs
"sdfRef": {
"Sref": "#/definitions/sdf-pointer"”

H
"sdfRequired": {

"Sref": "#/definitions/pointer-list"
Vs
"const": {

"Sref": "#/definitions/allowed-types"
Vs
"default"”:

"Sref": "#/definitions/allowed-types"
}

"minimum": {
"type": "number"

"maximum": {

Koster, et al. Standards Track

January 2026

Page 63

RFC 9880 SDF: Semantic Definition Format January 2026

"type": "number"

"exclusiveMinimum": {
"type": "number"

"exclusiveMaximum": {
"type": "number"

”ﬁultipleOf": {
"type": "number"

”ﬁinLength": {
"Sref": "#/definitions/uint"

o
"maxLength": {
"Sref": "#/definitions/uint"

s
"pattern”: {
"type": "string"

"%ormat":
"Sref": "#/definitions/format-"

”ﬁinItems”: {
"Sref": "#/definitions/uint"

”ﬁaxItems”: {

"Sref": "#/definitions/uint"
o
"uniqueIltems": {
"type": "boolean"

”items": {
"Sref": "#/definitions/jso-items"

anit®: o
"type": "string"

o
"nullable": {
"type": "boolean"

o
"sdfType": {
"Sref": "#/definitions/sdfType-"

"contentFormat": {
"type": "string"

}

'dditionalProperties": false

3
{

"type": "object",
"patternProperties": {
"A(?:[a-z][a-2zB-9]*:)?[a-zS][A-Za-z$0-9]1*S8": {}
s
"properties”: {
"type": {
"type": "string"

+ 4+ + ++ A+ ++

Koster, et al. Standards Track Page 64

RFC 9880

Tk Tk Tt T T s s s T S e e e S S A S S A e G T T T T T 2 i T o T s o e S T o S S S S S S A S S S S S

Koster, et al.

SDF: Semantic Definition Format

e

"enum" : {
"type": "array",
"items": {

"type": "string"
"ﬁinItems": 1

”6bservab1e": {
"type": "boolean"

o
"readable": {
"type": "boolean"
”Writable”: {
"type": "boolean"
”éescription”: {
"type": "string"
"label": {
"type": "string"

”écomment”: {
"type": "string"

"sdfRef": {

"Sref": "#/definitions/sdf-pointer"
o
"sdfRequired": {

"Sref": "#/definitions/pointer-1list"
”éonst": {

"Sref": "#/definitions/allowed-types"

o
"default": {
"Sref": "#/definitions/allowed-types"

"minimum": {
"type": "number"

"maximum" : {
"type": "number"

"exclusiveMinimum": {
"type": "number"

"exclusiveMaximum": {
"type": "number"

”ﬁultipleOf": {
"type": "number"

”ﬁinLength": {
"Sref": "#/definitions/uint"

o
"maxLength": {
"Sref": "#/definitions/uint"

Standards Track

January 2026

Page 65

RFC 9880 SDF: Semantic Definition Format January 2026

|
"pattern”: {
"type" : lIStringll

"%ormat":
"Sref": "#/definitions/format-"

”ﬁinItems”: {
"Sref": "#/definitions/uint"
}
"maxItems”: {
"Sref": "#/definitions/uint"

”ﬂniqueItems”: {
"type": "boolean"

”items": {
"Sref": "#/definitions/jso-items"
}

”'nit”: {
"type" : lIStringll

"nullable”: {
"type": "boolean"

”édnype”: {

"Sref": "#/definitions/sdfType-"
e
"contentFormat": {
"type" : "String”

B o s S T S S e e e T i S S S S S S S A e i s 5

"édditionalProperties": false

}
]
b
"dataqualities”: {
"anyOf": |
{
"type": "object",
+ "patternProperties": {
2 "A(?:[a-z][a-zB-9]*:)?[a-zS][A-Za-z$0-9]1*S8": {}
+ }

'roperties”: {
Iltypell : {

"Sref": "#/definitions/type-"
}

”'dfChoice": {

"Sref": "#/definitions/sdfData-sdfChoice-properties-"
o
"description”: {
"type": "string"

"label": {
"type": "string"

”écomment”: {
"type": "string"

Koster, et al. Standards Track Page 66

RFC 9880

SDF: Semantic Definition Format

e
"sdfRef": {

"Sref": "#/definitions/sdf-pointer"
e
"sdfRequired”: {

"Sref": "#/definitions/pointer-list"
e
"const": {

"Sref": "#/definitions/allowed-types"
e
"default":

"Sref": "#/definitions/allowed-types"
”&inimum”: {

"type": "number"
”&aximum”: {

"type": "number"
”éxclusiveMinimum”: {

"type": "number"
”éxclusiveMaximum”: {

"type": "number"
”ﬁultipleOf": {

"type": "number"
”ﬁinLength": {

"Sref": "#/definitions/uint"
e
"maxLength": {

"Sref": "#/definitions/uint"
”battern”: {

lltypell : "String”
"%ormat":

"Sref": "#/definitions/format-"
”ﬁinItems”: {

"Sref": "#/definitions/uint"
”ﬁaxItems”: {

"Sref": "#/definitions/uint"
e
"uniqueItems”: {

"type": "boolean"
”items": {

"Sref": "#/definitions/jso-items"
e
"unit”: {

lltypell : "String”
"nullable”: {

"type": "boolean"

Koster, et al.

Standards Track

January 2026

Page 67

RFC 9880 SDF: Semantic Definition Format January 2026

"sdfType": {
"Sref": "#/definitions/sdfType-"
}

ontentFormat": {
"type": "string"

}

'dditionalProperties": false

"type": "object",
+ "patternProperties": {
+ "A(?:[a-z][a-z08-9]*:)?[a-2zS][A-Za-2z80-9]*S": {}
+ }I
"properties”": {
"type": {
"type": "string",
"const": "object"

"}equired”: {
"type”: llarrayll,
"items": {

"type": "string"
"ﬁinItems": 1

”broperties”: {
"Sref": "#/definitions/sdfData-sdfChoice-properties-"
}

”'dfChoice": {
"Sref": "#/definitions/sdfData-sdfChoice-properties-"
}

”’escription”: {
"type": "string"
"label": {
"type": "string"
”écomment”: {
"type": "string"
o
"sdfRef": {
"Sref": "#/definitions/sdf-pointer"

o
"sdfRequired": {

"Sref": "#/definitions/pointer-1list"
o
"const": {

"Sref": "#/definitions/allowed-types"
"aefault":

{
"Sref": "#/definitions/allowed-types"

"minimum": {
"type": "number"

"maximum" : {
"type": "number"

Koster, et al. Standards Track Page 68

RFC 9880 SDF: Semantic Definition Format January 2026

}

xclusiveMinimum": {
"type": "number"

"exclusiveMaximum": {
"type": "number"

”ﬁultipleOf": {
"type": "number"

”ﬁinLength": {
"Sref": "#/definitions/uint"

}
"maxLength": {
"Sref": "#/definitions/uint"

”battern”: {
"type" : lIStringll

"%ormat": {
"Sref": "#/definitions/format-"

”ﬁinItems”: {
"Sref": "#/definitions/uint"

”ﬁaxItems”: {

"Sref": "#/definitions/uint"
}
"uniqueItems”: {
"type": "boolean"

”items": {
"Sref": "#/definitions/jso-items"
}

”'nit”: {
"type" : lIStringll

"nullable”: {
"type": "boolean"

e
"sdfType": {

"Sref": "#/definitions/sdfType-"
e
"contentFormat": {
lltypell : "String”

}

'dditionalProperties": false

"type": "object",
"patternProperties": {
"A(?:[a-z][a-z08-9]*:)?[a-zS][A-Za-z80-9]*$": {}

"broperties”: {
"type": |
"type" : llStringll

+ 4+ + + + + +

Koster, et al. Standards Track Page 69

RFC 9880

Tk Tk Tt T T s s s T S e e e S S A S S A e G T T T T T 2 i T o T s o e S T o S S S S S S A S S S S S

Koster, et al.

SDF: Semantic Definition Format

"sdfChoice": {
"Sref": "#/definitions/sdfData-sdfChoice-properties-"
}

'escription": {
"type": "string"
"label": {

"type": "string"

"écomment”: {
"type": "string"

"sdfRef": {

"Sref": "#/definitions/sdf-pointer"
Vs
"sdfRequired": {

"Sref": "#/definitions/pointer-list"
”éonst": {

"Sref": "#/definitions/allowed-types"
Vs
"default": {

"Sref": "#/definitions/allowed-types"

"minimum": {
"type": "number"

"maximum": {
"type": "number"

"exclusiveMinimum" : {
"type": "number"

"exclusiveMaximum" : {
"type": "number"

”hultipleOf": {
"type": "number"

”hinLength": {
"Sref": "#/definitions/uint"

},
"maxLength": {
"Sref": "#/definitions/uint"

Vs
"pattern”: {
"type": "string"

"%ormat": {
"Sref": "#/definitions/format-"

”hinItems”: {
"Sref": "#/definitions/uint"

”haxItems”: {
"Sref": "#/definitions/uint"
}

niqueltems": {

Standards Track

January 2026

Page 70

RFC 9880 SDF: Semantic Definition Format January 2026

"type": "boolean"

”items": {

"Sref": "#/definitions/jso-items"
Linite: g

"type": "string"

"nullable": {
"type": "boolean"

o
"sdfType": {
"Sref": "#/definitions/sdfType-"

"contentFormat": {
"type": "string"

"édditionalProperties": false

T T T G T T i T S T S T S S S S S S A S A

o
{
"type": "object",
"patternProperties": {
"A(?:[a-z][a-2zB-9]*:)?[a-zS][A-Za-z$0-9]1*S8": {}
}

'roperties”: {
Iltypell : {
"Sref": "#/definitions/type-

o

"enum": {
"type": "array”,
"items": {

utypen : ”String”

"minItems": 1

}

'escription": {
"type": "string"
"label”: {

"type": "string"

"écomment”: {
"type": "string"

Vs
"sdfRef": {

"Sref": "#/definitions/sdf-pointer"”
Vs
"sdfRequired": {

"Sref": "#/definitions/pointer-list"
Vs
"const": {

"Sref": "#/definitions/allowed-types"

”aefault”: {
"Sref": "#/definitions/allowed-types"
}

inimum": {

Koster, et al. Standards Track Page 71

RFC 9880 SDF: Semantic Definition Format January 2026

"type": "number"

"maximum" : {
"type": "number"

"exclusiveMinimum": {
"type": "number"

"exclusiveMaximum": {
"type": "number"

¥
"multipleOf": {
"type": "number"

”ﬁinLength": {
"Sref": "#/definitions/uint"
o
"maxLength": {
"Sref": "#/definitions/uint"
o
"pattern”: {
"type": "string"
"%ormat": {
"Sref": "#/definitions/format-"

”ﬁinItems”: {
"Sref": "#/definitions/uint"

”ﬁaxItems”: {
"Sref": "#/definitions/uint"

”&niqueItems”: {
"type": "boolean"

”items": {
"Sref": "#/definitions/jso-items"
}

"Unit": {
"type": "string"

"nullable": {
"type": "boolean"

"édnype": {

"Sref": "#/definitions/sdfType-"
o
"contentFormat": {
"type": "string"

I
"additionalProperties"”: false
o
{
"type": "object",
+ "patternProperties": {
2 "A(?:[a-z][a-zB-9]*:)?[a-zS][A-Za-2z$0-9]1*S8": {}

’

Koster, et al. Standards Track Page 72

RFC 9880 SDF: Semantic Definition Format

"properties”": {

"type”: {
"type" : "String”,
"const": "object"

"required": {
"type": "array",
"items": {

"type": "string"

"minItems": 1

Vs

"properties”: {
"Sref": "#/definitions/sdfData-sdfChoice-properties-"

Vs

"enum": {
"type": "array",
"items": {

“type": "string"

"ﬁinItems": 1

e

"description”: {
"type" : lIStringll

”iabel": {

"type" . "Stril’lg"

”écomment”: {
"type" : "String”
e
"sdfRef": {
"Sref": "#/definitions/sdf-pointer"
}

”'deequired”: {
"Sref": "#/definitions/pointer-list"

e
"const": {

"Sref": "#/definitions/allowed-types"
e
"default":

"Sref": "#/definitions/allowed-types"
}

"minimum”: {
"type": "number"

"maximum” : {
"type": "number"

"exclusiveMinimum": {
"type": "number"

"exclusiveMaximum": {
"type": "number"

”ﬁultipleOf": {

"type": "number"

Koster, et al. Standards Track

January 2026

Page 73

RFC 9880

T T T G T T S e S T S S S S S S A S

Koster, et al.

SDF: Semantic Definition Format

"minLength": {
"Sref": "#/definitions/uint"

},
"maxLength": {
"Sref": "#/definitions/uint"

Vs
"pattern”: {
"type": "string"

"%ormat": {
"Sref": "#/definitions/format-"

”hinItems”: {
"Sref": "#/definitions/uint"

”haxItems”: {
"Sref": "#/definitions/uint"

”bniqueItems”: {

"type": "boolean"
”items": {

"Sref": "#/definitions/jso-items"
}

"unit": {
"type": "string"

”ﬁullable”: {
"type": "boolean"

”édnype”: {

"Sref": "#/definitions/sdfType-"
Vs
"contentFormat": {
"type": "string"

}

'dditionalProperties": false

"type": "object",
"patternProperties”:

{
"A(?:[a-z][a-z08-9]*:)?[a-2zS][A-Za-2z80-9]*S": {}

"ﬁroperties”: {
"type”: {
"type": "string"

"enum": {
"type": "array”,
"items": {

“type": "string"

"minItems": 1

}

"description”: {
"type” : lIStringll

Standards Track

January 2026

Page 74

RFC 9880

Tk Tk Tt T T s s s T S e e e S S A S S A e G T T T T T 2 i T o T s o e S T o S S S S S S A S S S S S

Koster, et al.

SDF: Semantic Definition Format

"label": {
"type": "string"

"écomment”: {
"type": "string"

Vs
"sdfRef": {
"Sref": "#/definitions/sdf-pointer"

b
"sdfRequired": {

"Sref": "#/definitions/pointer-list"
Vs
"const":

"Sref": "#/definitions/allowed-types"
Vs
"default"”:

"Sref": "#/definitions/allowed-types"
}

"minimum": {
"type": "number"

"maximum": {
"type": "number"

"exclusiveMinimum" : {
"type": "number"

"exclusiveMaximum" : {
"type": "number"

”hultipleOf": {

"type": "number"
”hinLength": {

"Sref": "#/definitions/uint"
}.
"maxLength": {

"Sref": "#/definitions/uint"

Vs
"pattern”: {
"type": "string"

"%ormat":

"Sref": "#/definitions/format-"
”hinItems”: {

"Sref": "#/definitions/uint"

”haxItems”: {
"Sref": "#/definitions/uint"
}

'niqueItems": {
"type": "boolean"

”items": {
"Sref": "#/definitions/jso-items’
}

"'nit”: {

Standards Track

January 2026

Page 75

RFC 9880 SDF: Semantic Definition Format January 2026

+ "type": "string"
+ o
+ "nullable": {
+ "type": "boolean"
+ o
+ "sdfType": {
+ "Sref": "#/definitions/sdfType-"
+ U
+ "contentFormat": {
+ "type": "string"
+
+)i
+ "additionalProperties"”: false
}
|
}l
"allowed-types": {
"anyOf": |
{
"type": "number"
b
{
"type": "string"
b
{
"type": "boolean"
b
{
"type": "null"
b
{
"type": "array",
"items": {
"type": "number"
b
{
"type": "array",
"items": {
"type": "string"
b
{
"type": "array",
"items": {
"type": "boolean"
b
{
"type": "object",
"additionalProperties": {}
- }
+ i
+ {}
]
o
"uint": {

"type": "integer",

Koster, et al. Standards Track Page 76

RFC 9880 SDF: Semantic Definition Format

"minimum": ©

}

{so—items": {
"anyOf": |

{
"type": "object",
+ "patternProperties": {
+ "A(?:[a-z][a-z08-9]*:)?[a-zS][A-Za-z80-9]*$": {}

"properties”": {
"type”: {
"type": "string",
"enum": [
"number",
"string",
"boolean",
"integer"”
|
}'
"sdfChoice": {
"Sref": "#/definitions/sdfData-sdfChoice-properties-"
}'
"sdfRef": {
"Sref": "#/definitions/sdf-pointer"”
}'
"description”: {
"type": "string"

”écomment”: {
"type" : lIStringll

"minimum”: {
"type": "number"

1
"maximum” : {

"type": "number"
"%ormat": {
lltypell : lIStringll

”ﬁinLength": {
"Sref": "#/definitions/uint"

”ﬁaxLength": {
"Sref": "#/definitions/uint"

}
}
"additionalProperties": false
|
{
"type": "object",
+ "patternProperties": {
+ "A(?:[a-z][a-z08-9]*:)?[a-zS][A-Za-z80-9]*$": {}
+ !
"properties": {
"type": {
lltypell : lIStringll ,
"const": "object"”
Koster, et al. Standards Track

January 2026

Page 77

RFC 9880 SDF: Semantic Definition Format January 2026

"required”: {
"type”: llarrayll,
"items": {

"type": "string"

"ﬁinItems": 1

”broperties”: {
"Sref": "#/definitions/sdfData-sdfChoice-properties-

o
"sdfChoice": {
"Sref": "#/definitions/sdfData-sdfChoice-properties-"
o
"sdfRef": {
"Sref": "#/definitions/sdf-pointer"
}

escription”: {
"type": "string"

”écomment”: {
"type": "string"

"minimum": {
"type": "number"

"maximum" : {
"type": "number"

"%ormat”: {
"type": "string"

”ﬁinLength": {
"Sref": "#/definitions/uint"

o
"maxLength": {

"Sref": "#/definitions/uint"
}

'dditionalProperties": false

}

3
{

"type": "object",
"patternProperties": {
"A(?:[a-z][a-zB8-9]*:)?[a-zS][A-Za-z$0-9]1*S8": {}
s
"properties”: {
"type": {
"type": "string"

o
"sdfChoice": {
"Sref": "#/definitions/sdfData-sdfChoice-properties-

o
"sdfRef": {

"Sref": "#/definitions/sdf-pointer"
}

escription”: {
"type": "string"

R T T G T T T 2 s T e S S

Koster, et al. Standards Track Page 78

RFC 9880 SDF: Semantic Definition Format January 2026

}

comment”: {
"type" : lIStringll

"minimum”: {
"type": "number"

"maximum” : {
"type": "number"

"%ormat": {
"type" : lIStringll

”ﬁinLength": {
"Sref": "#/definitions/uint"

”ﬁaxLength": {
"Sref": "#/definitions/uint"
}

'dditionalProperties": false

}

"type": "object",
"patternProperties": {
"A(?:[a-z][a-z08-9]*:)?[a-zS][A-Za-z80-9]*$": {}

B I T T i i s T o S S S e T S S S S S S

"properties”": {
"type": {
"type": "string",
"enum": [
"number",
"string",
"boolean",
"integer"”

]

num": {
"type": "array",
"items": {

"type": "string"

}

"ﬁinItems": 1
o
"sdfRef": {

"Sref": "#/definitions/sdf-pointer"
o
"description”: {
"type": "string"

”écomment”: {
"type": "string"

"minimum": {
"type": "number"

"maximum" : {
"type": "number"

Koster, et al. Standards Track Page 79

RFC 9880 SDF: Semantic Definition Format

}

ormat": {
"type" : lIStringll

”ﬁinLength": {
"Sref": "#/definitions/uint"
”ﬁaxLength": {

"Sref": "#/definitions/uint"

}

b
"additionalProperties": false
I
{
"type": "object",
+ "patternProperties": {
+ "A(?:[a-z][a-z08-9]*:)?[a-zS][A-Za-z80-9]*$": {}
+ !
"properties": {
"type": {
lltypell : "String” ,
"const": "object"
”}equired”: {
"type": "array",
"items": {
Iltypell : ”String"
"ﬁinItems": 1
s
"properties”: {
"Sref": "#/definitions/sdfData-sdfChoice-properties-"
s
"enum": {
"type": "array",
"items": {
“type": "string"
"ﬁinItems": 1
e
"sdfRef": {
"Sref": "#/definitions/sdf-pointer"
e
"description”: {
lltypell : "String”
”écomment”: {
lltypell : "String”
”&inimum”: {
"type": "number"
”&aximum”: {
"type": "number"
"%ormat": {
lltypell : "String”
Koster, et al. Standards Track

January 2026

Page 80

RFC 9880

R Tk T T T G T o T T S S i S S e S S S S S I T T e T T Tk 2 T 2 T T i T O 5

+ + + +

Koster, et al.

]

SDF: Semantic Definition Format

"minLength": {
"Sref": "#/definitions/uint"

iF
"maxLength": {

"Sref": "#/definitions/uint"
}
s
"additionalProperties”: false
s
{
"type": "object",
"patternProperties": {
"A(?:[a-z][a-z08-9]*:)?[a-2zS][A-Za-2z80-9]*S": {}
b
"properties”": {
"type": {
"type": "string"
”énum”: {
"type": "array",
"items": {
“type": "string"
"ﬁinItems": 1
e
"sdfRef": {
"Sref": "#/definitions/sdf-pointer"
e
"description”: {
"type" : lIStringll
”écomment”: {
"type" : lIStringll
”&inimum”: {
"type": "number"
”&aximum”: {
"type": "number"
"%ormat": {
"type" : lIStringll
”ﬁinLength": {
"Sref": "#/definitions/uint"
e
"maxLength": {
"Sref": "#/definitions/uint"
}
"édditionalProperties": false
}

'dftype—name”: {

"type": "string",
"pattern": "Ala-z][\\-a-zB8-9]*§"

Standards Track

January 2026

Page 81

RFC 9880 SDF: Semantic Definition Format

"actionqualities": {
"type": "object",
"properties”: {

"description": {
"type": "string"

"label": {
"type": "string"

"écomment”: {
"type": "string"
}

"sdfRef" : {
"Sref": "#/definitions/sdf-pointer"
}

”'deequired”: {
"Sref": "#/definitions/pointer-list"
}

”'denputData”: {
"Sref": "#/definitions/parameter-list"
}

"'dfOUtputData": {
"Sref": "#/definitions/parameter-list"
}

”'deata”: {
"Sref": "#/definitions/sdfData-sdfChoice-properties-"
}

}

'atternProperties": {
2 "A(?:[a-z][a-zB8-9]*:)?[a-zS][A-Za-z$0-9]1*S8": {}

"édditionalProperties": false

}

'arameter—list": {
"Sref": "#/definitions/dataqualities”

"eventqualities": {
"type": "object",
"properties”: {

"description”: {
"type": "string"

"label": {
"type": "string"

"écomment”: {
"type": "string"
}

"sdfRef" : {
"Sref": "#/definitions/sdf-pointer"
}

”'deequired”: {
"Sref": "#/definitions/pointer-list"

Vs
"sdfOutputData”: {

"Sref": "#/definitions/parameter-list"
}

”'deata”: {

Koster, et al. Standards Track

January 2026

Page 82

"A(?:[a-z][a-z0- 9]*)?[a-zS][A-Za-z$6-9]*S$":

},

RFC 9880
+
+
+

"
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Koster, et al.

},

SDF: Semantic Definition Format

"Sref":
}
’)
"patternProperties”
}
"additionalProperties”: false
format-": {
"type": "string",
"enum": [
"date-time",
"date",
"time",
"uri",
"uri-reference"”,
"uuid"
"anyOf": |
{
"type": "string"
"const": "date-time"
}l
{
"type": "string"
"const": "date"
¥
{
"type": "string"
"const": "time"
|
{
"type": "string"
"const": "uri"
}l
{
"type": "string",
"const": "uri-reference"
¥
{
"type": "string"
"const": "uuid"
|
{
"type": "string"
}
]
"sdfType-": {
"anyOf": |
"type": "string"
"const": "byte-string"
¥
{
"type": "string"
"const": "unix-time"
|
{

Standards Track

"#/definitions/sdfData-sdfChoice-properties-"

{}

January 2026

Page 83

RFC 9880 SDF: Semantic Definition Format January 2026

+

"Sref": "#/definitions/sdftype-name"
+ }
|

)

"sdfData-sdfChoice-properties-": {
"type": "object",
"additionalProperties": {

"Sref": "#/definitions/dataqualities”

}

ype-": {
"type": "string",
"enum": [
“number",
"string",
"boolean”,
"integer",
"array"
]
o
- "sdfEvent-": {
+ "sdfProperty-": {
"type": "object",
"additionalProperties": {
- "Sref": "#/definitions/eventqualities”
+ "Sref": "#/definitions/propertyqualities”
}
}!
"sdfAction-": {
"type": "object",
"additionalProperties": {
"Sref": "#/definitions/actionqualities”
}
}!
- "sdfProperty-": {
+ "sdfEvent-": {
"type": "object",
"additionalProperties”: {
- "Sref": "#/definitions/propertyqualities”
+ "Sref": "#/definitions/eventqualities”
}
- b
- "sdfType-": {
= "type": "string",
- "enum": [
= "byte-string”,
= "unix-time"
- |
}

}
}

}

Appendix C. Data Qualities Inspired by json-schema.org

This appendix is normative.

Koster, et al. Standards Track Page 84

RFC 9880 SDF: Semantic Definition Format January 2026

Data qualities define data used in SDF affordances at an information model level. A popular way
to describe JSON data at a data model level is proposed by a number of drafts on json-
schema.org (which collectively are abbreviated JSO here); for reference to a popular version,
this appendix points to [JSO7] and [JSO7V]. As the vocabulary used by JSO is familiar to many
JSON modelers, the present specification borrows some of the terms and ports their semantics to
the information model level needed for SDF.

The main data quality imported is the "type". In SDF, this can take one of six (text string) values,
which are discussed in the following subsections (note that the JSO type "null" is not supported
as a value of this data quality in SDF).

The additional quality "const" restricts the data to one specific value (given as the value of the
const quality).

Similarly, the additional quality "default" provides data that can be used in the absence of the
data (given as the value of the default quality); this is mainly documentary and not very well-
defined for SDF as no process is defined that would add default values to an instance of some
interaction data.

Other qualities that are inspired by JSO are "Scomment" and "description", both of which are
also available in the information block.

C.1. type "number", type "integer"

The types "number" and "integer" are associated with floating point and integer numbers, as
they are available in JSON. A type value of integer means that only integer values of J[SON
numbers can be used (note that 10.0 is an integer value, even if it is in a notation that would
also allow non-zero decimal fractions).

The additional data qualities "minimum", "maximum", "exclusiveMinimum", and
"exclusiveMaximum" provide number values that serve as inclusive/exclusive lower/upper
bounds for the number. (Note that the Boolean form of
"exclusiveMinimum"/"exclusiveMaximum" found in earlier JSO drafts [[SO4V] is not used.)

The data quality "multipleOf" gives a positive number that constrains the data value to be an
integer multiple of the number given. (Type "integer" can also be expressed as a "multipleOf"
quality of value 1, unless another "multipleOf" quality is present.)

C.2. type "string"

The type "string" is associated with Unicode text string values, as they can be represented in
JSON.

The length (as measured in characters, specifically Unicode scalar values) can be constrained by
the additional data qualities "minLength" and "maxLength", which are inclusive bounds.

(More specifically, Unicode text strings as defined in this specification are sequences of Unicode
scalar values, the number of which is taken as the length of such a text string.

Koster, et al. Standards Track Page 85

RFC 9880 SDF: Semantic Definition Format January 2026

The data quality "pattern” takes a string value that is interpreted as an [ECMA-262] regular
expression in Unicode mode that constrains the string (note that these are not anchored by
default, so unless * and $ anchors are employed, ECMA-262 regular expressions match any
string that contains a match). The JSO proposals acknowledge that regular expression support is
rather diverse in various platforms, so the suggestion is to limit them to:

e characters;

* character classes in square brackets, including ranges; their complements;
* simple quantifiers *, +, ?, and range quantifiers {n}, {n,m}, and {n, };

* grouping parentheses;

* the choice operator |;

* and anchors (beginning-of-input * and end-of-input $).

Note that this subset is somewhat similar to the subset introduced by I-Regexps [RFC9485],
which are anchored regular expressions and include certain backslash escapes for characters
and character classes.

The additional data quality "format" can take one of the following values. Note that, at an
information model level, the presence of this data quality changes the type from being a simple
text string to the abstract meaning of the format given (i.e., the format "date-time" is less about
the specific syntax employed in [RFC3339] than about the usage as an absolute point in civil
time).

e "date-time", "date", "time": A date-time, full-date, or full-time as defined in [RFC3339],
respectively.

suon

o "uri", "uri-reference": A URI or URI Reference as defined in [STD66], respectively.
* "uuid": A Universally Unique Identifier (UUID) as defined in [RFC9562]).

C.3. type "boolean"

The type "boolean" can take the values "true" or "false".

C.4. type "array"

The type "array" is associated with arrays, as they are available in JSON.
The additional quality "items" gives the type that each of the elements of the array must match.

The number of elements in the array can be constrained by the additional data qualities
"minItems" and "maxItems", which are inclusive bounds.

The additional data quality "uniqueItems" gives a Boolean value that, if true, requires the
elements to be all different.

C.5. type "object"

The type "object" is associated with maps, from strings to values, as they are available in JSON.

Koster, et al. Standards Track Page 86

RFC 9880 SDF: Semantic Definition Format January 2026

The additional quality "properties" is a map the entries of which describe entries in the
specified JSON map: the key gives an allowable map key for the specified JSON map and the
value is a map with a named set of data qualities giving the type for the corresponding value in
the specified JSON map.

All entries specified in this way are optional unless they are listed in the value of the additional
quality "required", which is an array of string values that give the key names of required
entries.

Note that the term "properties" as an additional quality for defining map entries is unrelated to
sdfProperty.

For example, to include information about the type of the event in the "overTemperatureEvent"
of Figure 4, the sdfOutputData there could be defined as follows:

"sdfOutputData”: {
"type": "object",
"properties": {
"alarmType": {
"sdfRef": "cap:#/sdfData/alarmTypes/quantityAlarms"”,
"const": "OverTemperatureAlarm"

3

"temperature": {
"sdfRef": "#/sdfObject/temperatureWithAlarm/sdfData/temperatureData"

}
}
}

Figure 6: Using Object Type with sdfOutputData

C.6. Implementation Notes

JSO-based keywords are also used in the specification techniques of a number of ecosystems, but
some adjustments may be required.

For instance, [OCF] is based on Swagger 2.0, which appears to be based on "draft-4" [JSO4]
[JSO4V] (also called draft-5, but semantically intended to be equivalent to draft-4). The
"exclusiveMinimum" and "exclusiveMaximum" keywords use the Boolean form there, so on
import to SDF, their values have to be replaced by the values of the respective
"minimum"/"maximum" keyword, which are then removed; the reverse transformation applies on
export.

Appendix D. Composition Examples

This informative appendix contains two examples illustrating different composition approaches
using the sdfThing quality.

D.1. Outlet Strip Example

Koster, et al. Standards Track Page 87

RFC 9880 SDF: Semantic Definition Format January 2026

"sdfThing": {
"outlet-strip": {

"label”: "Outlet strip",

"description”: "Contains a number of Sockets",

"sdfObject": {

"socket": {

"description”: "An array of sockets in the outlet strip",
"minItems": 2,
"maxItems": 10

Figure 7: Outlet Strip Example

D.2. Refrigerator-Freezer Example

Koster, et al. Standards Track Page 88

RFC 9880 SDF: Semantic Definition Format January 2026

"sdfThing": {
"refrigerator-freezer": {
"description": "A refrigerator combined with a freezer",

"sdfProperty": {
"status": {
"type": "boolean",

"description”:
"Indicates if the refrigerator-freezer is powered"”
}
}l
"sdfObject": {
"refrigerator": {
"description”: "A refrigerator compartment”,
"sdfProperty”: {
"temperature": {
"sdfRef": "#/sdfProperty/temperature",
"maximum": 8
}
}
}I
"freezer": {
"label”: "A freezer compartment",
"sdfProperty”: {
"temperature": {
"sdfRef": "#/sdfProperty/temperature",
"maximum": -6
}
}
}
}

}

”édfProperty”: {
"temperature": {

"description”: "The temperature for this compartment",
"type": "number",
"unit": "Cel"

}
}
}

Figure 8: Refrigerator-Freezer Example

Appendix E. Some Changes from Earlier Draft Versions of this
Specification

This appendix is informative.

Koster, et al. Standards Track Page 89

RFC 9880

SDF: Semantic Definition Format January 2026

The present document provides the base SDF definition. Previous revisions of SDF, as defined in
earlier drafts of this specification, have been in use for several years; both significant collections
of older SDF models and older SDF conversion tools are available today. This appendix provides
a brief checklist that can aid in upgrading these to the standard.

* The quality unit was previously called units.

* sdfType was developed out of a concept previously called subtype.

» sdfChoice is the preferred way to represent JSO enum (only a limited form of which is
retained) and also the way to represent JSO anyOf.

* The length of text strings (as used with minLength/maxLength constraints) was previously
defined in bytes. It now is defined as the number of characters (Unicode scalar values, to be
exact); a length in bytes is not meaningful unless bound to a specific encoding, which might
differ from UTF-8 in some ecosystem mappings and protocol bindings.

List of Figures

Figure 1: A Simple Example of an SDF Document

Figure 2: Main Classes Used in SDF Models

Figure 3: Example sdfObject Definition

Figure 4: Using sdfRequired

Figure 5: Using an Override to Further Restrict the Set of Data Values
Figure 6: Using Object Type with sdfOutputData

Figure 7: Outlet Strip Example

Figure 8: Refrigerator-Freezer Example

List of Tables

Table 1: Qualities of the Information Block

Table 2: Namespaces Block

Table 3: Common Qualities

Table 4: SDF-Defined Qualities of sdfData and sdfProperty
Table 5: Values Defined in Base SDF for the sdfType Quality
Table 6: Qualities of sdfObject

Table 7: Qualities of sdfProperty

Koster, et al.

Standards Track Page 90

RFC 9880

Table 8: Qualities of sdfAction
Table 9: Qualities of sdfEvent
Table 10: Qualities of sdfThing
Table 11: Media Type Registration for SDF

Table 12: SDF Content-Format Registration

Table 13: Initial Content of the SDF Quality Names Registry

Acknowledgements

This specification is based on work by the One Data Model group.

Contributors

Jan Romann

Universitit Bremen

Germany

Email: jan.romann@uni-bremen.de

Wouter van der Beek

Cascoda Ltd.

Threefield House

Threefield Lane

Southampton

United Kingdom

Email: wvanderbeek@cascoda.com

Authors' Addresses

Michael Koster (EDITOR)

KTC Control AB

29415 Alderpoint Road

Blocksburg, CA 95514

United States of America

Phone: +1-707-502-5136

Email: michaeljohnkoster@gmail.com

Koster, et al. Standards Track

SDF: Semantic Definition Format

January 2026

Page 91

mailto:jan.romann@uni-bremen.de
mailto:w.vanderbeek@cascoda.com
tel:+1-707-502-5136
mailto:michaeljohnkoster@gmail.com

RFC 9880 SDF: Semantic Definition Format January 2026

Carsten Bormann (EDITOR)
Universitit Bremen TZI
Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921
Email: cabo@tzi.org

Ari Kerdnen

Ericsson

F1-02420 Jorvas

Finland

Email: ari.keranen@ericsson.com

Koster, et al. Standards Track Page 92

tel:+49-421-218-63921
mailto:cabo@tzi.org
mailto:ari.keranen@ericsson.com

	RFC 9880
	Semantic Definition Format (SDF) for Data and Interactions of Things
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Structure of This Document
	1.2. Terminology and Conventions
	Programming Platform Terms
	Conceptual Terms
	Specification Language Terms
	Conventions

	2. Overview
	2.1. Example Definition
	2.2. Elements of an SDF Model
	2.2.1. sdfObject
	2.2.2. sdfProperty
	2.2.3. sdfAction
	2.2.4. sdfEvent
	2.2.5. sdfData
	2.2.6. sdfThing

	2.3. Member Names: Given Names and Quality Names
	2.3.1. Given Names and Quality Names
	2.3.2. Hierarchical Names
	2.3.3. Extensibility of Given Names and Quality Names

	3. SDF Structure
	3.1. Information Block
	3.2. Namespaces Block
	3.3. Definitions Block
	3.4. Top-Level Affordances and sdfData

	4. Names and Namespaces
	4.1. Structure
	4.2. Contributing Global Names
	4.3. Referencing Global Names
	4.4. sdfRef
	4.4.1. Resolved Models

	4.5. sdfRequired
	4.6. Common Qualities
	4.7. Data Qualities
	4.7.1. sdfType
	4.7.2. sdfChoice

	5. Keywords for Definition Groups
	5.1. sdfObject
	5.2. sdfProperty
	5.3. sdfAction
	5.4. sdfEvent
	5.5. sdfData

	6. High-Level Composition
	6.1. Paths in the Model Namespaces
	6.2. Modular Composition
	6.2.1. Use of the "sdfRef" Keyword to Reuse a Definition

	6.3. sdfThing

	7. IANA Considerations
	7.1. Media Type
	7.2. Content-Format
	7.3. IETF URN Sub-Namespace for Unit Names (urn:ietf:params:unit)
	7.4. SenML Registry Group
	7.5. Registries
	7.5.1. SDF Quality Names
	7.5.2. SDF Quality Name Prefixes
	7.5.3. sdfType Values
	7.5.4. SDF Feature Names

	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Formal Syntax of SDF
	Appendix B. json-schema.org Rendition of SDF Syntax
	Appendix C. Data Qualities Inspired by json-schema.org
	C.1. type "number", type "integer"
	C.2. type "string"
	C.3. type "boolean"
	C.4. type "array"
	C.5. type "object"
	C.6. Implementation Notes

	Appendix D. Composition Examples
	D.1. Outlet Strip Example
	D.2. Refrigerator-Freezer Example

	Appendix E. Some Changes from Earlier Draft Versions of this Specification
	List of Figures
	List of Tables
	Acknowledgements
	Contributors
	Authors' Addresses

